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Abstract
Microbial adaptation to extreme conditions takes many forms, including
specialized metabolism which may be crucial to survival in adverse conditions.
Here, we analyze the diversity and environmental importance of systems
allowing microbial carbon monoxide (CO) metabolism. CO is a toxic gas that
can poison most organisms because of its tight binding to metalloproteins.
Microbial CO uptake was first noted by Kluyver and Schnellen in 1947, and
since then many microbes using CO via oxidation have emerged. Many strains
use molecular oxygen as the electron acceptor for aerobic oxidation of CO
using Mo-containing CO oxidoreductase enzymes named CO dehydrogenase.
Anaerobic carboxydotrophs oxidize CO using CooS enzymes that contain
Ni/Fe catalytic centers and are unrelated to CO dehydrogenase. Though rare
on Earth in free form, CO is an important intermediate compound in anaerobic
carbon cycling, as it can be coupled to acetogenesis, methanogenesis,
hydrogenogenesis, and metal reduction. Many microbial species—both
bacteria and archaea—have been shown to use CO to conserve energy or fix
cell carbon or both. Microbial CO formation is also very common.
Carboxydotrophs thus glean energy and fix carbon from a “metabolic leftover”
that is not consumed by, and is toxic to, most microorganisms. Surprisingly,
many species are able to thrive under culture headspaces sometimes
exceeding 1 atmosphere of CO. It appears that carboxydotrophs are adapted
to provide a metabolic “currency exchange” system in microbial communities in
which CO arising either abiotically or biogenically is converted to CO  and H
that feed major metabolic pathways for energy conservation or carbon fixation.
Solventogenic CO metabolism has been exploited to construct very large gas
fermentation plants converting CO-rich industrial flue emissions into biofuels
and chemical feedstocks, creating renewable energy while mitigating global
warming. The use of thermostable CO dehydrogenase enzymes to construct
sensitive CO gas sensors is also in progress.
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Introduction
Public perception of the role of carbon monoxide (CO) in  
biology is dominated by its reputation as a silent killer because 
of its toxicity. Toxicity results from tight binding of CO to the  
metallocenters in heme proteins, such as hemoglobin, myoglobin, 
and cytochrome oxidase1. Globally, CO is considered an atmos-
pheric trace gas and rarely exceeds 1 ppm except in heavily  
polluted city airspaces, volcanic exhalations, or industrial flue  
gases2. Volcanic exhalations have significant CO content, subma-
rine hydrothermal vent fluids have about 100 nM CO, and local  
pockets of moderate concentrations of CO are produced bio-
genically by bacterial fermentation3 or in soil associated with  
rhizosphere bacteria4,5. CO has high potential as an electron 
donor (E −524 to 558 mV for the CO/CO

2
 couple)6. Therefore, 

apart from its toxicity, CO represents a very favorable energy and  
carbon source for microbial growth. In this short review, we will 
address aspects of microbial metabolism allowing CO utilization 
through CO oxidoreductase enzymes. Historically, evidence for 

CO utilization by “methane bacteria” was noted by Kluyver and 
Schnellen in 19477 and by Schlegel8. The pathway for energy 
generation in phototrophic bacteria whilst growing anaerobi-
cally in the dark9 is now known to be a widespread metabolic  
capability in many species of bacteria and archaea as well as 
some fungi and algae. CO forms a remarkable metabolic network 
with many pathways (as shown in Figure 1A), including globally  
significant carbon cycling routes via acetogenesis and metha-
nogenesis, which both involve anaerobic pathways in which  
CO is a key intermediate10. The Wood–Ljungdahl (WL) pathway 
depicted in Figure 1B is a highly adaptable set of enzymes that 
allow acetate formation by acetogens as well as anaplerotic  
feeding through the production of acetyl-CoA in many 
autotrophic bacteria and archaea. Recently, microbial isolates and  
consortia that carry out hydrogenogenic carboxydotrophy have 
been identified and shown to be common in many environments. 
These organisms link energy-conserving hydrogenases with CO  
dehydrogenases.

Figure 1. Carbon monoxide (CO) metabolisms and the Wood–Ljungdahl pathway. (A) Potential fates of CO in microbial physiologies.  
(B) Wood–Ljungdahl pathway. The carbonyl pathway is shown in pink, and the role of the CODH complex is highlighted. The  
generalized methyl branch of the pathway used in acetogenic bacteria is shown in blue. The generalized methyl branch of the pathway  
used in methanogenic archaea is shown in green.
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The organisms: CO as the source of energy and fixed 
carbon
Early studies by Kistner yielded an aerobic bacterial isolate 
from sewage sludge that could oxidize CO11, and this physiology 
is now represented by a large and diverse group of aerobic  
CO-oxidizing bacteria that use molecular O

2
 as an electron 

acceptor, reviewed by King and Weber4. Carboxydotrophs are a  
diverse and eclectic set of organisms ranging from the Proteobac-
teria to the Firmicutes and some archaea. Anaerobic CO oxida-
tion in purple bacteria was described by Uffen9 in the 1970s and  
Kistner11 in the 1950s, leading to steady advances in the  
microbiology of CO metabolism. A large variety of coupled  
metabolic processes and synergistic microbial metabolic  
interactions have now been discovered. 

The substantial number of emerging bacterial and archaeal  
genomes containing CODH catalytic subunit encoding genes9 
reveal that many classes of bacteria use CO oxidation either as a  
standby energy conservation strategy or as their major carbon 
source. Table 1 shows a selection from these strains together with 
their major CO-utilization pathways9–21.

CO can fuel a number of metabolisms, including aerobic car-
boxydotrophy, acetogenesis, methanogenesis, and sulfate  
reduction. Many carboxydotrophic strains are capable of oxidizing 
CO with water to form CO

2
 and H

2
, known as the water–gas shift 

reaction, as follows: CO + H
2
O ⇔ CO

2
 + H

2
.

This physiology has been well studied in isolates capable of per-
forming hydrogenogenic carboxydotrophy, found in anaerobic 

bacteria and archaea22. A number of these thermophilic hydrog-
enogens are found within the genera Carboxydothermus,  
Thermincola, and Carboxydocella. Some other isolates such 
as Desulfotomaculum carboxydivorans can couple CO oxida-
tion to sulfate reduction. Other isolates such as Carboxydocella 
thermautotrophica23, Thermosinus carboxydivorans24, and Carbox-
ydothermus ferrireducens17 are able to link CO oxidation to metal 
reduction in addition to sulfate reduction. While both methanogens 
and acetogens employ CO as an intermediate in the WL pathway 
and use CO as a direct input into the pathway, a subset of these 
organisms can also produce CO directly25. Some methanogens, 
including Methanosarcina acetivorans, Methanosarcina barkeri, 
and Methanothermobacter thermautotrophicus, can grow on CO 
with methane production. M. acetivorans has a very versatile  
metabolic response, being able to grow on CO and produce acetate 
and formate as end products, rather than methane26. Acetogens 
such as Moorella thermoacetica can use CO as an input into the 
WL pathway for autotrophic growth and acetate production20,27. 
As genomic and metagenomic studies are increasingly used to  
inform physiology, it is likely that many more strains able to use 
CO will be identified.

Key enzymes: aerobic and anaerobic CO 
dehydrogenases and acetyl-CoA synthases
Oxidation of CO to CO

2
 is an exergonic reaction catalyzed in  

either anaerobic conditions (using many different electron  
acceptors) or aerobically (using molecular oxygen as the electron 
acceptor). Two fundamentally distinct classes of CO dehydroge-
nase catalyze globally significant metabolic reactions that result 
in CO transformation4,27. In anaerobes, the CODH active site 

Table 1. Representative carboxydotrophic microbial species and their physiological features.

CO-utilizing species Optimal 
temperature, °C

CO as energy 
source

CO as carbon 
source

Reference CO pathways

Rubrivivax gelatinosus 34 + − 12 Ech

Rhodospirillum rubrum 30 + − 28 Ech

Citrobacter sp Y19 35 + + 13 Ech

Carboxydothermus hydrogenoformans 
Z2901 72 + + 10 Ech, WL, R

Thermosinus carboxydivorans 60 + + 17 Ech, WL

Carboxydocella thermautotrophica 58 + + 16 Ech, WL

Caldanaerobacter subterraneus subsp. 
pacificus 70 + ? 15 Ech, WL

Thermococcus AM4 82 + − 18 Ech

Thermococcus onnurineus NA1 85 + − 19 Ech

Methanobacterium 
thermoautotrophicum 55 + + 19 WLa

Oligotropha carboxidovorans OM5 30 + − 29 Ox

Thermogemmatispora carboxidivorans 
PM5 55 + − 21 Ox

Thermomicrobium roseum 55 + − 22 Ox

CO, carbon monoxide; Ech, energy-conserving hydrogenase; Ox, oxygen as electron acceptor; R, redox reactive; WL, Wood–Ljungdahl. 
aThis methanogen strain can grow on CO, producing methane.
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contains sulfur-coordinated Ni in a cubane [Ni–4Fe–5S] center  
called the C-cluster30,31, whereas aerobes have heterotrimeric 
enzymes named CO dehydrogenase that belong to the xan-
thine oxidase family with an active site containing a binuclear  
cluster of Mo and Cu (MoCu–CODH)28,29. The CO dehydrogenase  
enzyme is a dimer of two heterotrimers, each composed of the 
coxL subunit (molybdenum protein), a flavoprotein, and an iron–
sulfur protein (FeSP). The CO dehydrogenase enzyme complex is  
monofunctional, resulting in rapid unidirectional conver-
sion of CO to CO

2
. In contrast, the anaerobic enzymes have a  

Ni catalytic site and are known as CODH. They are encoded by 
the CooS gene and catalyze the reversible conversion of CO and 
H

2
O to CO

2
. A FeSP serves as both electron acceptor and donor in 

the reaction—CO + H
2
O + FeSP ⇌ CO

2
 + FeSP2− + 2H+—where 

both the forward and the backward reactions are very impor-
tant, as they are central to anaerobic metabolic pathways of great  
biological significance. The CODH enzyme is found in many  
anaerobic and facultative microorganisms, both bacteria and 
archaea, but is absent in aerobic microorganisms. The coordi-
nation of nickel in the active site of all nickel-containing CO  
dehydrogenases appears to be very similar to that first revealed 
by Dobbek et al.31. Some anaerobic CODHs are monofunctional, 
producing CO

2
; others are bifunctional and form complexes 

with tightly bound accessory subunits, producing products  
including acetyl-CoA and H

2
31.

Table 2 lists the multiple CO-linked pathways that have been 
described; in these pathways, CO oxidation results in many 
alternative end products, including hydrogen, acetate, formate,  
reduced metal species, ethanol, and butanol.

The free energy of reaction for these exergonic couples is shown. 
The large ΔG0 (151 kJ mole CO) resulting from methanogenesis 
from CO

2
 and H

2
 is notable. The bifunctional CODH responsible 

for this reaction has been characterized as part of the carbonyl 
branch of the WL pathway32 (Figure 1). Another key enzyme 
in WL pathways is the acetyl-CoA synthase (ACS), which  
catalyzes the reaction of CO and CH

3
 to produce acetyl-CoA32. 

CO can be generated in situ from CO
2
 via the CODH and chan-

neled to the ACS complex through direct interaction of the CODH  
and ACS via a gas tunnel inside the complex or directly input 
into the ACS in systems where CO is present33. The ACS com-
plex is reversible, and in acetoclastic methanogens, the process 
can run in reverse to split the acetyl-CoA into CoA, methylated  
tetrahydrosarcinapterin (CH3-M4MPT), and CO33,34. The WL  
pathway is a major contributor to carbon cycling in anaerobic  
environments and contributes to global carbon fixation along 
with the Calvin cycle and the reductive tricarboxylic acid cycle  
pathway. The WL pathway is the most ancient of the three35, 
although the other two pathways are more prevalent on modern  
Earth.

Phylogenetic analysis of the catalytic subunits of the monofunc-
tional and bifunctional enzymes has indicated that the enzyme 
phylogeny does not follow taxonomic distinctions35. There are a  
number of cases where non-related organisms have very similar 
catalytic subunits. Thorough analysis of genomes of carboxy-
dotrophs has established that the monofunctional CODH can be  
horizontally transferred, leading to a widely distributed gene  
cluster in both the bacteria and the archaea12. A study per-
formed in 2012 found that 6% of bacterial and archaeal genomes  

Table 2. Coupled reactions resulting from the activities of CODH 
enzymes, with the molar free energy of reaction.

Product Reaction 
Reactions from CO

ΔG0a, 
kJ mol CO−1

Formate CO + H2O à HCOO− + H+ −16

Hydrogen CO + H2O à H2 + CO2 −20

Ethanol 6CO + 3H2O à CH3CH2OH + 4CO2 −37

n-Butanol 12CO + 5H2O à CH3(CH2)3OH + 8CO2 −40

Acetate 4CO + 2H2O à CH3COO− + H+ + 2CO2 −44

Butyrate 10CO + 4H2 à CH3(CH2)2COO− + H+ + 6CO2 −44

Methane 4CO + 2H2O à CH4 + 3CO2 −53

Reactions from H2/CO

Methanol CO + 2H2 à CH3OH −39

Acetate 2CO + 2H2 à CH3COO− + H+ −67

Ethanol 2CO + 4H2 à CH3CH2OH + H2O −72

Butyrate 4CO + 6H2 à CH3(CH2)2COO− + H+ + 2H2O −80

n-Butanol 4CO + 8H2 à CH3(CH2)3OH + 3H2O −81

Methane CO + 3H2 à CH4 + H2O −151

aΔG0 values at standard temperature and pressure.
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contain genes for either a monofunctional or a bifunctional 
anaerobic CODH gene cluster, suggesting that these genes are 
widely distributed throughout the tree of life through horizontal 
gene transfer12. In a more recent study focused exclusively on the  
bifunctional CODH, this cluster was found in 143 bacterial 
genomes and 106 archaeal genomes12. This suggests that the CODH 
gene cluster has been disseminated by lateral gene transfer across  
broad taxonomic divides. These gene clusters have been found 
in many of the recently described candidate phyla identified  
through metagenomic assembled genomes (MAGs) and repre-
senting archaea that resist cultivation35. The “virtual” archaeal  
phyla, Thorarchaeaota and Lokiarchaeota, which are of particu-
lar interest as they have been proposed as close relatives of the  
eukaryotic ancestor, both contain CODH/ACS clusters36.

The presence of the CODH gene cluster in both bacteria and  
archaea has been used to suggest an ancient origin of CODH. 
Recently, the WL pathway was proposed as the ancestral carbon 
fixation pathway in the last universal common ancestor (LUCA)37. 
However, it is important to note that the WL pathway can oper-
ate both catabolically and anabolically and current data do not 
allow us to conclude that the CODH/ACS in LUCA was of the 
anabolic variety. CODH has been coupled to a variety of other  
metabolic processes in addition to the CODH/ACS complexes. 
The CODHs in hydrogenogenic carboxydotrophs have the abil-
ity to interact with a membrane-bound energy-conserving  
hydrogenase that is capable of generating hydrogen and extracel-
lular protons35. Other coupled systems have linked CO oxidation 
to the production of reducing equivalents by driving the reduc-
tion of NAD (P) to NAD (P)H, coping with oxidative stress38,  
and providing electrons for metal reduction14. Many of these 
biochemical linkages are also reflected in the genetic proximity 
of cooS to the functional genes in clusters that enable coregula-
tion of the coupled functions and thus guides to the annota-
tion of the coordinated metabolic pathways. However, there 
are many cases in which the cooS gene has been found in the 
genome unaccompanied by annotated functional genes for CO 
metabolism14,17. The function of many lone cooS genes remains  
unknown12.

Genomes often encode more than one CODH12. The multiplicity 
of CODHs within the genome in many species hints at the diver-
sity of metabolic processes that could be linked to CO. CODH  
homologs must couple to their functional partners through 
exclusive protein–protein interactions, thus requiring different  
catalytic subunits for each functional pathway in the cell. The 
binding surfaces must evolve to assemble into enzyme com-
plexes in orderly folding pathways. The CODH–ACS complexes  
have evolved remarkable structures with precision joining of tun-
nels for conduction of reactant molecules between the active  
sites12, thus maintaining the rapid turnover of substrates and  
cofactors. The versatile carboxydotroph Carboxydothermus  
hydrogenoformans encodes five CODH gene clusters39, and 
although this record number of CODH gene clusters was thought 
to be an anomaly, recent genomic work has indicated several 
other organisms that encode equal numbers of paralogs of 
CODH genes. C. hydrogenoformans has the ability to regulate 
the distribution of CO into different pathways by gene regulation 

through two different CO-binding CooA proteins that bind 
CO and induce CO gene clusters differentially at different CO  
concentrations14.

Another aspect of CODH function is the maturation of the  
enzyme, which involves the correct insertion of Ni and Fe into 
the active site40. Although it is clear that CODH depends on the 
accessory protein CooC (a 30 kDa ATPase) for maturation, the  
mechanisms and accessory proteins/chaperones involved in the 
maturation of C-cluster are emerging from recent studies41. These 
studies suggest that the maturation of the active site cubane  
Ni cluster may differ from one enzyme to another. In most 
cases, the maturation of CODH in recombinant production  
systems is dependent on the specific maturase activity of cooC 
gene product and the proteins must be co-expressed in order to  
produce CODH into which Ni is fully delivered42. Mutations in 
the CooC protein that cripple ATPase activity cause a deficiency  
in CO-dependent growth that is reversed only when high con-
centrations of Ni are added to the culture medium to compensate  
for the deficient maturation pathway43.

The environment: distribution of CO-related genes in 
the environment
Carboxydotrophs can be found in most thermal environments44 
and in some non-thermal terrestrial habitats45. Whereas the initial  
characterization of CO utilization was in mesophilic organ-
isms, subsequent isolations, particularly from thermal environ-
ments, have uncovered diverse carboxydotrophic microbes. The 
concentrations of CO in volcanic exhalations range from 50  
to 110 ppm in Italy4; however, it is likely that biogenic CO in  
dense microbial consortia (that is, hot spring or hydrothermal 
vent mats) is much higher, as sulfate-reducing bacteria can accu-
mulate up to 600 ppm in culture during late stationary phase46.  
Significantly, CO in the Earth’s atmosphere, though between 
50 and 160 ppb, is increasing regionally in the areas with  
large-scale anthropogenic inputs3.

In addition to these cultured members, molecular analysis of 
thermal environments has indicated that carboxydotrophic  
metabolisms and CO-related genes are commonplace in these 
thermal settings. One recent study used stable isotope prob-
ing to inventory the anaerobic carboxydotrophs in geothermal  
springs2. The authors found that relatives of Thermincola,  
Desulfotomaculum, Thermolithobacter, and Carboxydocella 
were commonly co-labeled using 13C isotopically labeled CO. 
This finding suggests that the ability to use CO is common in hot  
springs and many of the relatives of isolated carboxydotrophs 
are active players in these geothermal settings. Another recent 
study demonstrated that, in some hot springs, CO was actively  
consumed under anaerobic conditions during incubation, sug-
gesting an active carboxydotroph community47. Additionally, 
the abundance of a specific cooS gene was quantified by using  
quantitative polymerase chain reaction. This work demonstrated 
that this cooS gene was present in some hot springs at greater 
than 104 copies per gram of sediment. Although the copies of  
bacterial and archaeal 16S rRNA genes were often two orders 
of magnitude more abundant than the cooS gene, in some hot  
springs the cooS gene abundance was the same as the 16S rRNA 
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gene abundance. These findings combine to suggest that in  
volcanic thermal settings CO is actively consumed by an 
abundant group of anaerobic carboxydotrophs.

Although the presence of CO-based metabolism is widely accepted 
in hot spring and deep-sea volcanic vent settings, the abun-
dance of carboxydotrophs and CO-related genes in non-thermal 
locations is under-appreciated. Recent work has indicated that 
CO-associated genes are common in deep-sea sediments48. 
This could be due in part to the presence of CO-related genes 
in members of these uncultivated phyla present in the deep 
ocean49. Another recent study detected the presence of CooS 
genes throughout surface sediment in the oceans as well as in  
subsurface sediments down to 390 m36.

Rock-hosted subsurface ecosystems are also heavily influ-
enced by microbes that encode CO-related genes. Environments  
influenced by serpentinization, the aqueous alteration of iron-
rich mantle rocks, commonly generate hyperalkaline conditions  
with copious reduced gas, including CO. Metagenomic analysis 
of serpentinite-hosted ecosystems has indicated the presence  
of CO-related genes49,50. Because these systems are limited in 
dissolved inorganic carbon, it is suggested that these organ-
isms are able to use CO as both an electron donor and a carbon  
source51.

However, the presence of carboxydotrophs and CO-related 
genes is not limited to conventional extreme environments. 
Oddly, genes involved in the CODH/ACS pathway in serpen-
tinite systems have close homologs in metagenomes of the 
microbiome of the termite hindgut51. Like serpentinite habitats, 
the termite hindgut is an extremely alkaline milieu. Many of 
the recovered CooS genes were implicated in homoacetogenic  
metabolism52.

These findings combine to suggest that microbial CO metabo-
lism is more widespread than previously thought. However, many 
of the locales in which carboxydotrophs have been found have  
sparingly low concentrations of CO. In some settings where  
CO is produced through abiotic processes, the role of carboxy-
dotrophic microbes may be to provide a strategy for detoxifica-
tion. Carboxydotrophs can remove CO, which is toxic to many  
consortium members at high concentrations, and produce CO

2
 

and H
2
, gases which cross-feed to other pathways such as 

methanogenesis and sulfate reduction53. Therefore, an alterna-
tive model is one in which carboxydotrophs act in a form of  
currency exchange between organisms that can produce CO and  
CO-utilizing organisms. There is strong evidence that sulfate 
reducers and methanogens can produce CO as an end prod-
uct of their metabolism, similar to fermentation end products in  
heterotrophic microbes. For example, as mentioned previously, 
the sulfate reducer Desulfovibrio vulgaris produces high levels 
of CO and certain mutants produce up to 600 ppm of CO during  
stationary phase3. Some methanogens produce CO during  
growth3. In mat or biofilm communities, locally high levels of 
CO may accumulate while the bulk CO levels remain low. Our  
conceptual models would suggest that biogenic CO can be used 
by carboxydotrophic microbes to fuel their metabolism and  
produce compounds such as H

2
, CO

2
, or acetate which are able 

to fuel other metabolisms such as methanogenesis and sulfate  

reduction. This form of inter-species currency exchange via CO  
or detoxification of CO suggests a central role for carboxydo-
trophs in many anaerobic ecosystems.

Biotechnology and industrial applications
Adapting carboxydotrophs to create novel and interesting 
large-scale processes has been increasing rapidly. Discoveries  
that CO can be not only used to generate H

2
 but also converted 

directly into a variety of liquid fuel components and chemical  
feedstocks, including ethanol, N-butanol, and acetone, have  
sparked a new field of research. There are several pilot-scale  
projects under way using large fermenters sparged with  
industrial flue gases, responding to incentives related to reduced 
carbon emissions. Some are coupled to hydrogen production;  
however, the acetogenic gas fermentation can be adapted to  
produce solvents from syngas or refinery flue gases in many 
geographic regions without competing for food or land. The  
production of ethanol or butanol26 and other chemical feedstocks 
by pilot installations using carboxydotrophs is now quite well 
established54. The application of metabolic engineering to adapt  
the mesophilic acetogen Clostridium autoethanogenum55 to 
large-scale gas fermentation using a range of industrial effluent 
gas streams is becoming sophisticated and production is now  
coming on stream56.

Another aspect is the development of gas sensors based on  
immobilized thermostable enzymes55. Biosensors with CO-
inert electrodes combined with immobilized CO oxidoreductase 
from the thermophile Pseudomonas thermocarboxovorans using  
phenazine ethosulfate as the electron acceptor (with a K

m
 of  

3.8 µM) have shown potential for CO detection within the ppm  
to ppb range with durability and rapid response57.

Conclusions and future directions
CO-based metabolism is surprisingly common in extremo-
philic and non-extremophilic organisms and is widely distributed  
throughout the tree of life. Furthermore, there is good evidence 
that the WL pathway is the most ancient carbon fixation route,  
making CO-based metabolism an ancestral physiology58. 
Diversification of the pathway during evolution allowed CO  
oxidation to be coupled to various metabolic processes ranging 
from energy conservation to carbon acquisition, metal reduction/ 
detoxification, and coping with oxidative stress. As burgeon-
ing metagenomic data have revolutionized our understanding of  
microbial ecology, CO-related genes have been commonly 
found in MAGs throughout the world. This widely distributed  
metabolism also has great potential for recently invented industrial 
applications aimed at alleviating carbon emissions and mitigating 
climate change.

There is still much to be clarified regarding the mechanism of 
CO-based metabolisms. Although both monofunctional and  
bifunctional CODHs have been found scattered throughout the  
tree of life, the mechanisms of metabolic coupling to CODHs are 
still partially explored and the electron transfer coupling routes 
are in many cases not clear. Genomic synteny often underscores  
potential linkages; however, more biochemical characteriza-
tion of monofunctional CODHs is required in order to better 
predict the function of CODH from genomic data, especially for 
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CODHs that are found in MAGs or single amplified genomes 
(SAGs) from uncultivated microbes. However, biotechnol-
ogy innovation is now being vigorously applied to use CO as 
a feedstock in novel large-scale bioengineering applications in 
major carbon-emitting countries, potentially lowering the carbon  
footprint of some heavy industries like steel production and  
potentially curbing the relentless trend of global warming.
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