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In this study, we collected genes related to energy metabolism, used gene expression

data from public databases to classify molecular subtypes of colon cancer (COAD)

based on the genes related to energy metabolism, and further evaluated the relationships

between the molecular subtypes and prognosis and clinical characteristics. Differential

expression analysis of the molecular subtypes yielded 1948 differentially expressed

genes (DEGs), whose functions were closely related to the occurrence and development

of cancer. Based on the DEGs, we constructed a 4-gene prognostic risk model and

identified the high expression of FOXD4, ENPEP, HOXC6, and ALOX15B as a risk factor

associated with a high risk of developing COAD. The 4-gene signature has strong

robustness and a stable predictive performance in datasets from different platforms not

only in patients with early COAD but also in all patients with colon cancer. The enriched

pathways of the 4-gene signature in the high- and low-risk groups obtained by GSEA

were significantly related to the occurrence and development of colon cancer. Moreover,

the results of qPCR, immunohistochemistry staining andWestern blot assay revealed that

FOXD4, ENPEP, HOXC6, and ALOX15B are over expressed in CRC tissues and cells.

These results suggesting that the signature could potentially be used as a prognostic

marker for clinical diagnosis.

Keywords: energy metabolism, colon cancer, genes, prognosis, survival

INTRODUCTION

Colon cancer is the fourth most common cancer worldwide and the third leading cause of cancer
death (1). In 2018, it was estimated that 97,220 new cases of colon cancer would be diagnosed. In
the same year, it is estimated that 50,630 people would die from colon and rectal cancers (2). The
rates of colon cancer have been falling: the incidence per 100,000 population decreased from 60.5
in 1976 to 46.4 in 2005 and to 40.7 from 2009 to 2013 (3, 4). In addition, from 1990 to 2007, colon
cancermortality decreased by nearly 35% (5). However, the annual death rate and number of deaths
from colon cancer remain high, and research on colon cancer and the development of treatment
strategies for colon cancer remain important.

One of the hallmarks of cancer is the change in cell metabolism (6). Recent studies have shown
that metabolic compartmentalization and heterogeneity exist in tumors. Autophagy in cancer (that
is, when the cell digests organelles to use catabolises for metabolism) is now considered to be the
driving force of tumorigenesis and cancer progression (7). It is well-known that cancer cells utilize

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2020.00595
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2020.00595&domain=pdf&date_stamp=2020-05-20
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:sp2082@shtrhospital.com
mailto:liangleilei10006@163.com
https://doi.org/10.3389/fonc.2020.00595
https://www.frontiersin.org/articles/10.3389/fonc.2020.00595/full
http://loop.frontiersin.org/people/859206/overview


Yuan et al. Four Survival Gene in CRC

both conventional oxidative metabolism and glycolytic anaerobic
metabolism. Energy metabolism is the basis of tumor cell
proliferation and invasion. This metabolism leads to epigenetic
and genetic changes, along with the emergence of a variety of new
cell phenotypes that enhance the proliferation and invasiveness
of cancer cells. An in-depth understanding of these metabolic
changes in cancer cells may lead to the development of new
therapeutic strategies that, when combined with existing cancer
therapies, may improve efficacy and overcome drug resistance
(8). In recent years, large-scale multi-group analysis has provided
us with the opportunity to search for potential prognostic
markers of cancer through data mining analysis. For example,
Kim et al. showed that the PAC-5 gene expression signature could
predict the prognosis of patients with pancreatic adenocarcinoma
through data mining (9). Xu et al. predicted a 15-gene signature
related to the prognosis and recurrence of colon cancer using
the GEO and TCGA databases (10). However, research on genes
that predict colon cancer recurrence remains limited, and further
research is needed.

In this study, genes related to energy metabolism were
collected, and gene expression data from public databases
such as TCGA and GEO were used to classify subtypes
of colon cancer (COAD) based on the genes related to
energy metabolism. The relationships between the molecular
subtypes and prognosis and clinical characteristics of patients
were further evaluated. The prognostic risk model constructed
with the differentially expressed genes among the COAD
subtypes can better evaluate the prognosis of COAD samples.
Furthermore, the GEO gene expression data set was used
to further verify the good performance of the prognostic
risk model.

MATERIALS AND METHODS

Data Download
We used the TCGA GDC API to download the latest clinical
follow-up information. The download date was 2019.1.10,
and Supplementary Table 1 contains a total of 231 cases of
stage I/II RNA-Seq data samples, with expression data in
Supplementary Table 2. The MINiML format GSE39582 chip
expression data was downloaded fromNCBI. GSE39582 contains
573 samples with clinical characteristics. The related data are
shown in Supplementary Table 3, and expression data are shown
in Supplementary Table 4.

Data Pre-processing
TCGA Data Pre-processing
The RNA-seq data of 371 samples were pre-processed in the
following steps:

1) Samples without clinical data and with OS < 1 month
were removed.

2) Normal tissue sample data were removed.
3) Genes with FPKM of 0 in half of the samples were removed.
4) The expression profiles of genes related to energy metabolism

were maintained.

GEO Data Pre-processing
GSE39582 data were pre-processed in the following steps:

1) Normal tissue sample data were removed.
2) Samples with OS < 1 month were removed.
3) The mapping of chip probes to the human gene SYMBOL was

performed using the Bioconductor package.
4) The expression profiles of genes related to energy metabolism

were maintained.

Use of the NMF Algorithm to Identify
Molecular Subtypes
A non-negative matrix factorization (NMF) clustering algorithm
was used to cluster the COAD samples. For the NMF method,
the standard “brunet” option was selected and 50 iterations
were carried out. The number of clusters k was set as 2
to 10, the average contour width of the common member
matrix was determined through the R package “NMF,” and
the minimum member of each subclass was set as 10. The
cophenetic, dispersion and silhouette indicators were used
to determine the optimal clustering number, the optimal
clustering number selected was 4. Further, we calculated the
proportion of gene mutations in the different subtypes and
selected the top 20 genes with the highest mutation rates in
each subtype.

Comparison of the Clinical Characteristics
of the Molecular Subtypes
The gene sets related to energy metabolism were used to cluster
COAD into four subtypes, and the differences in the clinical
characteristics including T stage, stage, sex and age of the
four subtypes were compared. Further, the Tumor Immune
Estimation Resource (TIMER) was used to compare the immune
scores of the four subtypes.

Identification and Functional Analysis of
Differentially Expressed Genes
DESeq2 was used to calculate the differentially expressed genes
(DEGs) between the C2 and C1/C3/C4 molecular subtypes
with the best prognosis. A total of 2459 differentially expressed
genes (padj. < 0.05 and |log2FC|>1) shared by the two
groups were identified, and a total of 1,948 genes were
removed due to redundancy. Further, KEGG and GO functional
enrichment analysis was carried out on the 1948 DEGs through
the R package clusterProfiler, and the selection threshold
was p < 0.05.

Risk Model Construction in the Training Set
After pre-processing the stage I/II TCGA samples, randomly
allocate 50% of the 231 samples as the training set for model
building. To avoid deviation affecting the stability of the
subsequent modeling, we randomly generated 100 times of all
samples in advance with repeated sampling to ensure that the
age, stage and TNM staging distributions of the random samples
were in agreement with those of all the samples. A univariate Cox
proportional risk regression model was performed for each DEG
with survival data. The coxph function in the survival R package
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was used, and p < 0.01 was selected as the threshold. Finally,
there were 26 genes with significant differences in prognosis. We
selected 26 genes with significant clinical variables and carried
out feature selection using the randomForestSRC software
package. We also used the randomSurvivalForest algorithm to
rank the importance of prognostic-related genes (nrep = 100,
which indicates that the number of iterations in the Monte Carlo
simulation was 100; and nstep = 5, which indicates that the
number of steps forward was 5). We identified genes with a
relative importance >0.65 as the final signature.

Use of Multivariate Regression to Establish
a Prognostic Model
Further, we performed multivariate regression analysis on the
four genes obtained from the random forest algorithm. The
importance and relative importance of the coefficients, HRs,
confidence intervals, Z scores and out-of-bag estimates of the
four genes were determined. Then, a 4-gene signature was
established, and the model was as follows:

RiskScore4 = 0.893 ∗ expFOXD4+ 0.234 ∗ expENPEP

+0.173 ∗ expHOXC6+ 0.061 ∗ expALOX15B.

ROC Analysis of the Risk Model
The RiskScore of each sample is calculated according to the
expression level of the sample, and the RiskScore distribution
of the sample is drawn. Further, the R software package
timeROC was used to perform ROC analysis of the RiskScore
prognosis classification to analyse the classification efficiency of
the prognosis predictions for 1 year, 3 years and 5 years.

Internal and External Data Sets Verify the
Robustness of the 4-Gene Signature
To determine the robustness of the model, the same model and
the same coefficients as those in the training set were used in
the internal validation set. First, for the stage I/II validation
set samples, the expression level of each sample was calculated

TABLE 1 | Pathways related to energy metabolism in the Reactome database.

Metabolic pathways from Reactome PathwayID Gene count

Biological oxidations R-HSA-211859 221

Metabolism of carbohydrates R-HSA-71387 292

Mitochondrial Fatty Acid Beta-Oxidation R-HSA-77289 38

Glycogen synthesis R-HSA-3322077 16

Glycogen metabolism R-HSA-8982491 27

Glucose metabolism R-HSA-70326 92

Glycogen breakdown (glycogenolysis) R-HSA-70221 15

Glycolysis R-HSA-70171 72

Pyruvate metabolism R-HSA-70268 31

Pyruvate metabolism and Citric Acid (TCA)

cycle

R-HSA-71406 55

Citric acid cycle (TCA cycle) R-HSA-71403 22

Sum 881(unique:594)

separately. For the risk score, we used the R package timeROC
to perform ROC analysis to analyse the RiskScore prognostic
classification efficacy for 1, 2, and 3 years. Furthermore, we used
the same model and the same coefficients as those in the training
set in all colon cancer TCGA samples. We also calculated the
RiskScore of each sample according to the expression level of
427 samples, used the R software package timeROC to carry out
ROC analysis on the prognosis classification of the RiskScore
and analyzed the classification efficiency of the 1, 2, and 3-year
prognosis predictions.

To determine the robustness of the model, we used the same
model and the same coefficients as those in the training set in
GEO data sets (same steps as before).

Risk Model and Clinical Characteristic
Analysis
To assess the relationship between the prediction accuracy of the
risk model and the prediction accuracy of clinical features, we
analyzed the prediction relationship between age, sex, stage, T
stage, and RiskScore from the perspectives of single and multiple
factors and then constructed a nomogram model with clinical
features including age, sex, stage, T stage, and RiskScore.

GSEA-Enriched Pathways in the High-Risk
Group and the Low-Risk Group
GSEA was used on 231 TCGA training cases to analyse the
significantly enriched pathways in the high-risk group and the

TABLE 2 | Clinical information of the two data sets after pre-processing.

Characteristic TCGA training

datasets (n = 115)

TCGA validation

datasets (n = 116)

GSE39582

(n = 573)

Age(years) <=60 28 30 245

>60 87 86 328

Survival Status Living 100 102 150

Dead 15 14 66

Gender Female 56 49 256

Male 59 67 317

pathologic_T T 1 3 5 12

T 2 25 35 48

T 3 82 70 372

T 4 5 5 117

pathologic_N N 0 115 116 307

N 1 0 0 134

N 2 0 0 100

N 3 0 0 6

pathologic_M M 0 106 103 491

M 1 0 0 60

M X 8 12 0

Tumor stage Stage I 28 41 37

Stage II 87 75 265

Stage

III

0 0 208

StagIV 0 0 59
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FIGURE 1 | (A) Consensus map of NMF clustering; (B) heat map of energy metabolism-related gene expression of the molecular subtypes; (C) OS prognosis and

survival curves of the molecular subtypes; (D) the mutation landscape of the top 20 genes with the highest mutations in each subtype in each sample.

low-risk group. The selected gene set was c2.cp.Kegg. The GSEA
input file contains expression profile data standardized by the
TCGA training set as well as the sample labels of the 4-gene
signature. The sample labels mark the sample as belonging to
the high-risk group or the low-risk group. The threshold of the
enriched pathways was p < 0.05.

Sample Collection
CRC and adjacent tissues were collected from 30 patients
(all participants were older than 16 years, Minimum:46,
Maximum:85, SD:11.43, mean:62.3)immediately placed in liquid
nitrogen, and preserved at −80◦C. None of the colorectal cancer
patients received preoperative anti-tumor therapies. Patients
and their families in this study have been fully informed and
informed consent was obtained from the participants. This
study was approved by the Ethics Committee of Shanghai
Tongren Hospital.

Cell Culture
Human normal colorectal epithelial cell line (NCM460) and
CRC cell line, including SW480 and SW620, cells were obtained
from Shanghai Cell Bank of the Chinese Academy of Sciences
(Shanghai, China). NCM460, SW480, and SW620 cells were
cultured in 90% DMEM (Gibco) supplemented with antibiotics
(1 × penicillin/streptomycin100 U/ml, Gibco) and 10% heat-
inactivated fetal bovine serum (FBS) (Gibco, Grand Island, NY,
USA). The cells were incubated at 37◦C in a humidified and 5%
CO2 incubator.

RNA Isolation and PCR Analysis
Total RNA from the CRC tissue specimens was extracted by
TRIzol reagent (Invitrogen, Thermo Scientific, Shanghai, China),
and RNAwas reverse transcribed into cDNAwith the QuantiTect
Reverse Transcription Kit (QIAGEN, Valencia, CA, USA). Real-
time PCR analyses were quantified with SYBR-Green (Takara,
Otsu, Shiga, Japan), and the levels were normalized to the level
of GAPDH.

Frontiers in Oncology | www.frontiersin.org 4 May 2020 | Volume 10 | Article 595

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Yuan et al. Four Survival Gene in CRC

Immunohistochemical Staining
Paraffin-embedded tissues were immunostained for FOXD4,
ENPEP, HOXC6, and ALOX15B proteins. The slides were
dried, deparaffinized and rehydrated. Then, the slides were
immersed in 3% hydrogen peroxide and labeled with antibodies
overnight. Anti-FOXD4 (1:200), anti-ENPEP (1:200), anti-
HOXC6 (1:200) and anti-ALOX15B (1:200) were purchased from
Abcam (Cambridge, UK). Image-Pro Plus 6.0 Software (Media
Cybernetics, USA) was used for the protein expression analysis.

Western Blot Assay and Antibodies
Western blot analysis was performed as previously described
(11). Antibodies against FOXD4 (dilution 1:3000, Abcam),
ENPEP (dilution 1:3000, Abcam), HOXC6 (dilution 1:3000,
Abcam,) and ALOX15B (dilution 1:3000, Abcam) were used.
The bands were visualized with ECL reagent (Thermo Fisher
Scientific, USA) and GAPDH (dilution 1:3000, Abcam) was used
as the loading control.

Statistical Analysis
Student’s t-test was used to examine the differences between
groups. A value of p < 0.05 was regarded as statistically
significant. All calculations were performed using SPSS software
version 13.0.

RESULTS

Source of the Genes Related to Energy
Metabolism
Human metabolism-related pathways were downloaded from
Reactome (https://reactome.org/), and a total of 594 genes related
to energy metabolism were collated from the 11 metabolic
pathways, as shown in Table 1.

Data Pre-processing
The statistical information of the pre-processed dataset is shown
in Table 2.

Molecular Typing Based on Energy
Metabolism Genes
Molecular subtypes were identified using the NMF algorithm.
According to the cophenetic, dispersion and silhouette
indicators, the optimal clustering number of 4 was selected
(Figure 1A, Supplementary Figure 1). The energy metabolism-
related gene expression of the four subclasses (Figure 1B)
can be seen from the diagram as parts with differences in gene
expression.We further analyzed the prognosis of the four groups.
The results show that C1 and C4 had the worst prognosis, C2 had
a better prognosis, and the 4 subtypes had significantly different
prognoses, as seen in Figure 1C (log-rank p = 0.052). Further,
we counted the proportions of genetic mutations according
to the different subtypes, selected the top 20 genes from each
subtype with the highest percentages of mutations, and obtained
45 gene mutations, suggesting that the gene mutations with the
highest frequency are largely different among the four subtypes.
The 45 gene mutations of each subtype are visually displayed in
Figure 1D,which shows various subtypes according to frequency

TABLE 3 | Clinical information statistics of the molecular subtypes.

Clinical features C1 C2 C3 C4

Event

Alive 24 45 64 71

Dead 2 1 13 10

T

T1 0 2 3 3

T2 2 13 21 24

T3 23 29 50 50

T4 1 2 4 3

Stage

I 2 15 24 28

II 24 31 54 53

Gender

Female 9 22 36 38

Male 17 24 42 43

Age

<=60 9 14 16 19

>60 17 32 62 62

differences of the 45 gene mutations. Each subtype of samples
has certain differences in gene mutation frequency.

The clinical characteristics of molecular subtypes were then
compared (Table 3). The gene sets related to energy metabolism
were used to cluster COAD into four subtypes. We compared
the differences in the clinical characteristics of T stage, stage, sex
and age among the four subtypes, and no significant differences
were observed (Supplementary Figure 2). Further, using the
TIMER (tumor immune estimation resource) tool, we compared
the immune scores of the four subtypes. The scores of five
immune cells (B cells, CD8T cells, neutrophils, macrophages and
dendritic cells) found in the C2 subtype were all lower than those
in the C1, C3, and C4 subtypes (Figure 2), while the scores of
the immune cells of the C1 samples were all significantly higher
than those of the other subtypes. This finding may indicate that
there is a complicated relationship between immune invasion and
prognosis in COAD patients. The score data of the six immune
cells of all samples are shown in Supplementary Table 5.

Analysis of Differentially Expressed Genes
Among the Subtypes
We first identified the differentially expressed genes. DESeq2
was used to calculate the differentially expressed genes
(DEGs) between the C2 and C1/C3/C4 molecular subtypes
with the best prognosis. A total of 2459 differentially
expressed genes (padj. < 0.05 and |log2FC|>1) shared
by the two groups were identified, and a total of 1,948
genes were removed for redundancy. A volcano plot
of the upregulated and downregulated differentially
expressed genes (C2∼C1, C2∼C3, and C2∼C4) is shown
in Figures 3A–C. As shown in the figure, the differentially
downregulated genes between the C2 and C1 subtypes are
redundant and upregulated, and of the main differentially
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FIGURE 2 | (A,B) cell scores of the molecular subtypes; (B) CD4 cell scores of the molecular subtypes; (C) CD8 cell scores of the molecular subtypes; (D) neutrophil

scores of the molecular subtypes; (E) macrophage scores of the molecular subtypes; (F) dendritic cell scores of the molecular subtypes.

FIGURE 3 | (A) Volcano map of the differentially expressed genes between the C2 and C1 subtypes; (B) volcano map of the differentially expressed genes between

the C2 and C3 subtypes; (C) volcano map of the differentially expressed genes between the C2 and C4 subtypes.
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expressed genes between the C2 and C3 subtypes and the
C2 and C4 subtypes, less are upregulated and more are
downregulated; the differentially expressed genes are shown in
Supplementary Table 6.

Then, we performed functional analysis of the differentially
expressed genes. Further, we conducted KEGG and GO
functional enrichment analysis on these 1948 DEGs with the
R package clusterProfiler and the selected threshold of p<0.05.
The results are shown in Supplementary Tables 7, 8. The DEGs
were enriched in 69 KEGG pathways and 1109 GO terms.
The top 20 GO terms are shown in Figure 4A, including
angiogenesis, leukocyte migration and positive regulation of

epithelial cell proliferation. The top 20 enriched pathways are
shown in Figure 4B, and the most significant pathways were
the PI3K-Akt signaling pathway, calcium signaling pathway,
AGE-RAGE signaling pathway in diabetic complications and
other cancer-related pathways.

Construction of a Prognostic Risk Model
Based on the DEGs
First, the risk model was constructed with the training
set. According to the above method, we obtained the
training set sample (as shown in Table 2), which contained

FIGURE 4 | (A) Results of GO enrichment of the top 20 differentially expressed genes; (B) KEGG enrichment of the top 20 genes.

FIGURE 5 | (A) Error rate for the data as a function of the classification tree; (B) out-of-bag importance values for the predictors.

TABLE 4 | Four genes significantly associated with overall survival in the training set patients.

Symbol Coef HR Lower 95% CI Upper 95% CI Z-score Importance Relative importance

FOXD4 0.8934 2.443 1.154 5.175 2.333 0.0147 1

ENPEP 0.23431 1.264 1.003 1.593 1.985 0.0126 0.8567

HOXC6 0.17337 1.189 1.009 1.402 2.063 0.0116 0.7913

ALOX15B 0.06069 1.063 0.907 1.245 0.751 0.0098 0.6657
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a total of 26 genes with significant prognostic differences
(Supplementary Table 10). Further, the randomForestSRC
R software package was used for feature selection. We
identified genes with a relative importance <0.65 as the
final signature. Figure 5A shows the relationship between the
error rate and the number of classification trees, and Figure 5B

shows the order of the out-of-bag importance of the first
four genes.

Then, we established a multivariate regression model for
prognosis. We performed multivariate regression analysis on
the four genes obtained from the random forest algorithm, and
the importance and relative importance of the coefficients, HRs,
confidence intervals, Z scores and out-of-bag estimates of the
four genes are shown in Table 4.Then, a 4-gene signature was
established, and the model was as follows:

RiskScore7 = 0.893 ∗ expFOXD4+ 0.234 ∗ expENPEP+

0.173 ∗ expHOXC6+ 0.061 ∗ expALOX15B

Then, ROC analysis of the risk model was carried out. The
expression level of the risk score of each sample is calculated,
and the RiskScore distribution of samples is drawn. As shown
in Figure 6A, compared with low risk scores, high risk scores

can be seen from the diagram of OS, suggesting that the samples
with high RiskScores have worse prognosis. In different samples,
the change in the gene expression of FOXD4, ENPEP, HOXC6,
and ALOX15B increased the risk value and therefore, the high
expression of these genes was identified as a risk factor. Further,
we used the R software package timeROC to conduct ROC
analysis on the prognosis classification of the RiskScore. We
analyzed the classification efficiency of the prognosis prediction
for 1, 3, and 5 years, as shown in Figure 6B. It can be seen
that the model has a high AUC offline area, the AUC is
above 0.8 and the AUC offline area for the 3-year prediction
reaches 0.95. We calculated the Gordon index as the cut-
off (2.563985) for the sample group based on the AUC value
of the 3-year prediction and found that the samples were
clearly divided into high-risk and low-risk groups. The KM
curves were drawn (as shown in Figure 6C), and a markedly
significant difference of p < 0.0001 was observed between
the groups.

Internal and External Data Sets Verify the
Robustness of the 4-Gene Signature
First, we used the internal data set to verify the robustness of
the 4-gene signature. As shown in Figure 7A, the model has a
high AUC offline area for the 1- and 3-year predictions, while

FIGURE 6 | (A) Risk score, survival time, survival state and expression of the 4 genes in the training set; (B) ROC curve and AUC of the 4-gene signature

classification; (C) distribution of KM survival curves of the 4-gene signature in the training set.
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FIGURE 7 | (A) The internal validation set contains only stage I/II samples for the 4-gene signature classification ROC curve and AUC; (B) stage I/II samples for the

4-gene signature KM survival curve; (C) the internal validation set contains stage I, II/I, and II/IV samples for the 4-gene signature classification ROC curve and AUC;

(D) stage I, II/I, and II/IV samples for the 4-gene signature KM survival curve.

the AUC for the 5-year prediction is above 0.65. Similarly, we
calculated the cut-off value (1.751732) with the Gordon index
for the sample groups based on the AUC value of the 1-year
prediction, divided the samples into high-risk and low-risk
groups and drew KM curves, as shown in Figure 7B. It can be
seen that there is a markedly significant difference between them,
with p= 0.0086.

Further, we used the same model and the same coefficients
as those in the training set to calculate the risk score in 427
colon cancer TCGA samples. The results are shown in Figure 7C,
which shows that the AUC line area of the model is above 0.6.
Similarly, we calculated the cut-off value (1.232182) with the
Gordon index for the sample groups based on the AUC value,
divided the samples into high-risk and low-risk groups and drew
the KM curves, as shown in Figure 7D. It can be seen that
there is a markedly significant difference (p < 0.0001) between
the groups.

Finally, we verified the robustness of the 4-gene signature
with an external data set. We adopted the same model and

the same coefficients as those in the training set in a set
of GEO data sets. As shown in Figure 8A, the annual AUC
of the model is above 0.67. Similarly, we calculated the cut-
off value (5.989193) with the Gordon index for the sample
groups based on the AUC value of the 1-year prediction,
divided the samples into high-risk and low-risk groups and
drew the KM curves, as shown in Figure 8B. It can be seen
that there is a markedly significant difference between the two
groups (p= 0.034).

Further, we used the same model and the same coefficients as
those in the training set to calculate the risk score in 573 colon
cancer samples. As shown in Figure 8C, the AUC offline area of
the model for the one-year prediction is above 0.62. Similarly,
we calculated the cut-off value (5.53358) with the Gordon index
for the sample groups based on the AUC value of the one-
year prediction, divided the samples into high-risk and low-risk
groups and drew the KM curves, as shown in Figure 8D. It can
be seen that there is a marginally significant difference between
the groups (p= 0.053).
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FIGURE 8 | (A) Risk score, survival time, survival state and expression of the 4 genes in the external verification set; (B) ROC curve and AUC of the 4-gene signature

classification; (C) distribution of KM survival curves of the 4-gene signature in the training set. (D) Stage I, II/I, and II/IV samples for the 4-gene signature KM survival

curve.

Risk Model and Clinical Characteristic
Analysis
To assess the relationship between the prediction accuracy of
the risk model and the prediction accuracy of clinical features
(Table 5), we analyzed the prediction relationship between age,
sex, stage, T stage, and RiskScore from the perspectives of
single factor and multiple factors. The final results are shown in
Supplementary Table 9.

Clinical characteristics including age, sex, stage, T stage and
RiskScore were used to construct a nomogram model, as shown
in Figure 9A. Further, the prediction accuracy of the nomogram
was assessed by ROC analysis, and the results showed that the
AUCs of the nomogram for the 1, 3, and 5-year predictions
were 0.98, 0.85, and 0.86, respectively (Figure 9B). Figure 9C
shows the comparison between the 3-year nomogram model and
the ideal model, and the results show that some indices of the
3-year nomogram model are basically consistent with those of
the ideal model, indicating that the accuracy of our model is
relatively high.

TABLE 5 | Cox regression analysis.

Characteristic p-value HR Low 95%CI High 95%CI

4-gene risk socre 2.41E-05 2.718 1.709 4.324

Age 0.004167561 1.123 1.037 1.216

Gender 0.458536522 1.492 0.518 4.297

Height 0.95664815 1.002 0.939 1.069

Weight 0.239722298 0.966 0.912 1.023

BMI 0.206292748 0.974 0.936 1.014

StageI-vs-II 0.965867387 0.967 0.207 4.508

T2-vs-T3 0.92519835 1.107 0.133 9.235

GSEA Reveals the Pathways Enriched in
the High-Risk Group and the Low-Risk
Group
GSEA was used in 342 TCGA training cases to analyse the
significantly enriched pathways in the high-risk group and the
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FIGURE 9 | (A) Nomogram; (B) ROC curve of the nomogram; (C) calibration plots for predicting 3-year OS. The nomogram-predicted aim-listed probability of survival

is plotted on the x-axis. The actual survival is plotted on the y-axis.

low-risk group. The selected gene set was c2.cp.Kegg. The
GSEA input file contains expression profile data standardized
by the TCGA training set and the sample labels of the
4-gene signature. The sample labels mark the sample as
belonging to either the high-risk group or low-risk group.
The threshold value of the enriched pathways was p < 0.05,
and the obtained significantly enriched pathways are shown in
Supplementary Table 10.

For example, the B cell receptor signaling pathway, JAK STAT
signaling pathway, small cell lung cancer and other pathways
were significantly enriched in the high-risk group, as shown in
Figure 10.

FOXD4, ENPEP, HOXC6, and ALOX15B
Expression Is High in CRC Tissues
Next, we examined the expression of the oncogenes (FOXD4,
ENPEP, HOXC6, and ALOX15B) by qPCR in 30 pairs of
clinical samples from CRC patients. According to the qPCR
results, the oncogenes were expressed at high levels in
CRC tissues (Figure 11A). Correspondingly, immunostaining
analyses of the oncogenes (FOXD4, ENPEP, HOXC6, and
ALOX15B) were performed in the cancerous and normal
tissues, and immunostaining demonstrated that the expression
of oncogenes (FOXD4, ENPEP, HOXC6, and ALOX15B) was

high in the cancerous tissue (Figure 11B). The results of
Western blot assay showed that the expression of FOXD4,
ENPEP, HOXC6, and ALOX15B are over expressed in CRC
cells (SW480 and SW620 cells) compare with NCM460 cells
(Figure 11C).

DISCUSSION

Colon cancer is a malignant tumor with poor prognosis.
Currently, non-metastatic colon cancer can be treated
with surgery or adjuvant chemotherapy (12). However,
chemotherapy has considerable toxicity (13–15). Energy
metabolism is the basis of tumor cell proliferation and
invasion, and most tumor cells show deviation from the
normal energy metabolism state so that they can survive
and eventually grow under challenging microenvironmental
conditions (16). However, the relationship between energy
metabolism genes and the prognosis of tumor cells is
still unclear.

We used GEO and TCGA public gene expression data.
Based on the 594 energy metabolism-related genes for early
COAD classification, the samples can be classified into four
subtypes, with significant differences in prognosis between the
subtypes. The analysis of the expression differences between the
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FIGURE 10 | Pathways enriched in the high- and low-risk groups according to the 4-gene signature. (A) Network map mapped by the GSEA enrichment gene set

(red represents the high-risk group); (B–D) results of significantly enriched pathways in the high-risk group by GESA. Enrichment scores (ES, green line) indicate the

degree to which the genome is overexpressed at the top or bottom of the list of sequenced genes. The black bars represent the positions of genes belonging to the

set of genes in the list of sequences included in the analysis. Positive values indicate a higher correlation with patients in the high-risk group, while negative values

indicate a higher correlation with patients in the low-risk group.

molecular subtypes resulted in 1948 differentially expressed genes
(DEGs), and the function of the DEGs are closely associated
with cancer development. Based on the DEGs, we built a four-
gene prognostic risk model and evaluated its validity. Based
on the dataset containing 371 TCGA samples, we identified
potential prognostic marker genes (FOXD4, ENPEP, HOXC6,
and ALOX15B). When highly expressed, all four genes are
risk factors associated with a high risk of developing colon
cancer. According to previous reports, FOXD4 induces the
progression of colorectal cancer by regulating the SNAI3/CDH1
axis and can be used as a marker of colorectal cancer (17).
When ENPEP is silenced, the occurrence of breast cancer can
be inhibited (18); moreover, both in vitro and in vivo, ENPEP
silencing and impaired ENPEP activity reduce the proliferation,
migration and drug resistance of colorectal cancer (19). HOXC6
is a classic cancer-related gene. In cervical cancer, enhanced
HOXC6 expression leads to cervical cancer cell proliferation,
cell cycle progression, colony formation anchoring and xenograft

tumor growth (20). In nasopharyngeal carcinoma, HOXC6 is
an independent prognostic parameter for NPC patients, and
HOXC6 expression is positively correlated with the Ki-67
proliferation index (21). In prostate cancer, the upregulation
of HOXC6 can not only participate in the process of PCa
but also serves as an independent prognostic indicator of
cancer (22). In gastric cancer, the upregulation of HOXC6
can increase the migration and invasion ability of gastric
cancer cells, while the interference of HOXC6 expression can
inhibit the migration and invasion of gastric cancer cells.
The upregulation of HOXC6 expression can enhance MMP9
expression, while the downregulation of HOXC6 can reduce
MMP9 gene expression. The increased expression of HOXC6 in
gastric cancer cell lines significantly activated extracellular signals
regulating kinase signal transduction and MMP9 upregulation,
which promoted the migration and invasion of gastric cancer
cells (23). In HCC, HOXC6 may promote the invasion of HCC
by driving epithelial-mesenchymal transformation (EMT) (24).
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FIGURE 11 | The expression of the oncogenes is up-regulated in CRC. According to the qPCR results (A), FOXD4, ENPEP, HOXC6 and ALOX15B were up-regulated

in CRC tissues. (B) Immunostaining demonstrated that FOXD4, ENPEP, HOXC6, and ALOX15B were up-regulated in CRC tissues compared with normal tissues. (C)

The results of Western blot assay showed that the expression of FOXD4, ENPEP, HOXC6, and ALOX15B are over expressed in CRC cells. *P < 0.05.

ALOX15B may promote the development of non-small cell
lung cancer and female breast cancer (25, 26). Further, the
Tumor Immune Estimation Resource (TIMER) was used to
compare the immune scores of the four subtypes. In previous
research, FOXD4, ENPEP, HOXC6, and ALOX15B are closely
related to the immune system. For example, FOXD4 have
been implicated in at least four familial human diseases, and
differential expression may play a role in a number of other
pathologies-ranging from metabolic disorders to autoimmunity
(27). ENPEP is known to be associated with inflammatory or
immune response that may be associated with mechanisms of
major depressive disorder (28). HOXC6 is related to overall
survival and intestinal immune network of the right-sided colon
cancer (29). ALOX15B activity is associated with inflammation
and immune regulation in the pathogenesis of inflammatory
lung disorders (30). In addition to these gene markers, our

study also identified significantly enriched pathways, including
the B cell receptor signaling pathway, JAK STAT signaling
pathway, and small cell lung cancer, which are significantly
related to the occurrence and development of cancer. The JAK
STAT signaling pathway has been indicated to be related to
the progression and prognosis of colon cancer in a variety of
studies (31–33).

Subsequently, 573 colon cancer samples from the GEO
database were used as the verification set to prove that this
4-gene signature has strong robustness and a stable predictive
performance in data sets from different platforms. This gene
signature is not only stable in early stage colon cancer patients
but also in all colon cancer patients. The pathways enriched
in the high- and low-risk groups obtained by GSEA for the
4-gene signature were significantly related to the occurrence
and development of colon cancer, suggesting that this signature
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could potentially be used as a prognostic marker for clinical
diagnosis. Moreover, the results of qPCR, immunohistochemistry
staining and Western blot assay revealed that FOXD4, ENPEP,
HOXC6, and ALOX15B are over expressed in CRC tissues
and cells.The advantage of this study is that we identified a
prognostic 4-gene signature that had relatively high AUCs for
1/3/5-year survival rate predictions in the training and validation
data sets. However, the study had some limitations. Such as,
the 4-gene signature lacks experimental validation. Despite the
high quality of RNA-seq data in TCGA, further experimental
validation in vitro and vivo of these four genes in colon cancer
are needed.

In summary, our study revealed a 4-gene signature associated
with prognosis in colon cancer patients. The signature can be
used as a potential candidate biomarker and therapeutic target
for colon cancer patients.
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