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Abstract: Bone is a peculiar tissue subjected to a continuous process of self-renewal essential to assure
the integrity of the skeleton and to explicate the endocrine functions. The study of bone diseases
characterized by increased or reduced bone mass due to osteoclast alterations has been essential to
understand the great role played by osteocalcin in the endocrine functions of the skeleton. The ability
of osteoclasts to regulate the decarboxylation of osteocalcin and to control glucose metabolism, male
fertility, and cognitive functions was demonstrated by the use of animal models. In this review
we described how diseases characterized by defective and increased bone resorption activity, as
osteopetrosis and osteoporosis, were essential to understand the involvement of bone tissue in whole
body physiology. To translate this knowledge into humans, recently published reports on patients
were described, but further studies should be performed to confirm this complex hormonal regulation
in humans.

Keywords: osteocalcin; osteoclast; bone diseases

1. Introduction

Bone is a very active tissue subjected to a continuous process of remodeling by which ischemic and
microfractured bone is replaced by newly mechanical competent bone. The bone remodeling activity
is also essential to regulate calcium and phosphate homeostasis. In recent years, it has been well
established that the skeleton represents an endocrine organ, able to regulate energetic metabolism [1],
insulin secretion [2,3], male fertility [4], muscle activity [5,6], cognitive functions, and behavior [7].

Bone remodeling is regulated by the concerted action of osteoblasts for bone formation and
osteoclasts involved in bone resorption. Osteoclasts are giant multinucleated cells derived from the
fusion of mononuclear precursors belonging to the monocyte/macrophage lineage [8]. Their activity to
resorb bone is an essential step of the remodeling cycle, where they collaborate closely with osteoblasts
in the basic multicellular unit [9–11]. The bone resorption activity consists of two sequential steps:
the acidification of resorbing lacuna to dissolve the mineral component hydroxyapatite (HA) and the
secretion of proteolytic enzymes to digest the organic part of the bone matrix. For the dissolution of
hydroxyapatite crystals, an acidic pH (pH~4.5) in the lacuna is required. Carbonic anhydrase II (CAII)
hydrates carbonic anhydride (CO2) to produce carbonic acid (H2CO3) that spontaneously dissociates
in bicarbonates (HCO3

–) and protons (H+). Hydrogen ions are vehicled in the resorption lacuna by the
vacuolar proton pump V-H+ATPase [12], while HCO3

– is switched with chloride (Cl–) by a HCO3
–/Cl–
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exchanger situated in the basolateral domain. Cl– ion is transported in the resorption lacuna by a
Cl–/H+ antiport, balancing the charge of ions across the membrane [13,14]. Dissolution of mineral
crystals exposes the collagen-rich matrix to proteolytic enzymes, principally the acidic hydrolases
such as cathepsin K, and matrix metalloproteinases (MMPs), including MMP9, which are released by
osteoclasts into the resorption lacuna [15].

To maintain the integrity of the skeleton, bone remodeling needs to be perfectly balanced with a
resorption phase followed by bone formation. When imbalance between bone resorption and formation
occurs, skeletal abnormalities are observed, leading to the onset of several bone diseases including
bone loss diseases i.e., osteoporosis, and increased bone mass disorders, such as osteopetrosis and
pycnodysostosis [16]. In this review we describe how the study of bone resorption-related diseases
has been important to understand the role of osteoclasts and bone resorption in the regulation of the
endocrine functions of the skeleton.

2. Disorders of Altered Bone Resorption

Physiological bone remodeling is a multistep process that can be altered by various factors,
including hormonal changes, age-related factors, drugs, and secondary diseases, leading to the onset
of bone-related disorders both in women and men.

Osteoporosis is a common disorder of bone remodeling characterized by reduced bone mass and
qualitative alterations of bone tissue, leading to increased risk of fractures [17]. It is an asymptomatic
condition until the first fracture occurs. The fractures are associated with substantial pain and suffering,
disability, and even death, along with substantial costs to society. Primary osteoporosis is associated
with estrogen deficiency in postmenopausal women. Moreover, several diseases and drugs may cause
secondary osteoporosis, such as glucocorticoid treatment, prolonged immobility, and tumors [18].
The pathogenesis of osteoporosis is complex and caused by increased bone turnover that leads to
continuous and progressive bone loss [19]. The goal of pharmacological therapy is to inhibit the
excessive bone resorption and enhance bone formation, in order to reduce the risk of fractures.
Approved therapies are based on antiresorptive drugs, such as bisphosphonates or the anti-RANKL
(receptor activator of nuclear factor kappa-B ligand) antibody denosumab, which help to preserve the
existing bone mass and increase the degree and homogeneity of mineralization; or anabolic agents,
such as teriparatide, abaloaratide and romosozumab, which stimulate bone formation [20–22].

Diseases associated with reduced bone resorption are less common and often display a genetic
basis. Osteopetrosis, firstly described in 1904 and called “marble bone disease” [23], represents a
group of heterogeneous, rare, genetic diseases characterized by increased bone mass, with an incidence
of up to 1:100,000, caused by the failure of bone resorption by osteoclasts. Three different types of
osteopetrosis are classified in humans, characterized by different way of inheritance and severity,
from asymptomatic to fatal [24]. In Table 1 the genes mutated in osteopetrotic patients are listed.

Table 1. List of genes mutated in osteopetrotic patients.

Osteopetrosis Genetic Transmission Gene Mutation Protein

ARO Autosomal recessive osteopetrosis TCIRG1 α3 subunit V-H+ATPase
CLCN7 Chloride channel 7
OSTM1 Osteopetrosis associated transmembrane protein

PLEKHM1 Pleckstrin homology domain containing family M, member I
SNX10 Sorting nexin 10

TNFSF11 Receptor activator for nuclear factor κB ligand
TNFRSF11A Receptor activator for nuclear factor κB

IRO Autosomal recessive osteopetrosis CAII Carbonic anhydrase
ADO Autosomal dominant osteopetrosis CLCN7 Chloride channel 7

Autosomal recessive osteopetrosis (ARO) is a particularly severe form of the disease due to
bone resorption defects because of osteoclast absence or dysfunction. Patients have increased bone
mineral density (BMD), ‘bone in bone’ appearance, growth retardation, eye protrusion, macrocephaly,
hydrocephaly, frontal bossing, deafness, and blindness due to cranial nerve compression, severe anemia,
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pancytopenia, and hepatosplenomegaly. Two different forms of the disease can be distinguished
by histological analysis: the osteoclast-rich, characterized by high number of osteoclasts, and the
osteoclast-poor where no osteoclasts are observed in bone biopsies [24–28]. Intermediate recessive
osteopetrosis (IRO) is milder than ARO and it is characterized by short stature, bone sclerosis,
pathological fractures, dental malformations, and jaw osteomyelitis. Autosomal dominant osteopetrosis
(ADO) is the adult form of osteopetrosis. Patients usually display thickness of the skull base, vertebral
end plates (sandwich vertebrae or Rugger–Jersey spine) and pelvis, and spontaneous fractures. ADO is
characterized by a heterogeneous range of clinical presentations, from asymptomatic to very severe,
and early death is rare [29,30]. Seventy percent of the cases are explained by mutations of the CLCN7
gene [25].

Another disease with increased bone mass is pycnodysostosis with some features similar to
osteopetrosis. However, the affected individuals have characteristic facies, beaked nose, blue sclera,
short stature, aplasia of the digits, and increase of bone mass, although not sufficient to obliterate
medullary canals [31,32]. Pycnodysostosis is an autosomal recessive disorder due to loss-of-function
mutations of the CTSK gene encoding the cysteine protease cathepsin K, which is responsible for
degradation of collagen type I and other bone proteins. Cathepsin K deficient osteoclasts can dissolve
the inorganic bone matrix but cannot degrade the organic part [33].

3. Osteocalcin

The relevance of bone resorption studies for the endocrine functions of the skeleton has been
demonstrated starting from the first paper showing the regulation of insulin secretion by osteocalcin [3].

Osteocalcin (Ocn or bone γ-carboxyglutamic acid (Gla) protein, BGP) is a small (49 amino acids in
humans) non-collagenous protein secreted by osteoblasts and partially stored in the bone matrix [34,35].
The protein was first isolated by Price et al. [36,37] from bovine and human bone and it is the most
abundant of the Gla-containing proteins in bone. For many years, osteocalcin was described as
a marker of bone formation and it was believed to regulate mineralization; however, this protein
has many features resembling a hormone. Osteocalcin is produced by osteoblasts as a pro-peptide
that is cleaved before its secretion to remove an endoplasmic reticulum signal sequence and the
pro-sequence [38]. In the circulation its concentration is ng/mL and its levels are regulated by a
circadian rhythm. In humans osteocalcin levels are very low in the morning, they started to raise in the
afternoon, and reach a peak in the night [39].

Osteocalcin contains three glutamate residues that can be γ-carboxylated; this modification allows
its binding to calcium and hydroxyapatite (Figure 1). This modification is catalyzed by a γ-glutamyl
carboxylase that utilizes vitamin K, CO2, and O2 as cofactors, supplied by the vitamin K cycle and
circulation [34,40]. The osteocalcin with a reduced degree of carboxylation on three glutamate residues
(undercarboxylated osteocalcin, Glu–Ocn) is available with less affinity for hydroxyapatite and easily
released to the circulation [41–43] (Figure 1).

Three decades ago, two observations revealed a complex regulation of osteocalcin structure
and release from the bone matrix: 1. Carboxylated osteocalcin (Gla–Ocn) bound to the mineralized
bone matrix via its Gla residues can be released upon resorption by osteoclasts [37,41,44,45]; 2. The
decarboxylation of proteins is a process that can be stimulated by acid pH (Figure 1) [45,46].

These notions led to investigate the role of osteoclasts for osteocalcin modification. The first
evidence was given from the paper of Ferron et al. [3] that demonstrated how bone resorption by
osteoclasts is essential for the undercarboxylation of osteocalcin stored in the bone matrix, and thus
released in the resorption lacuna (Figure 2).
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Figure 1. Representation of osteocalcin post-translational modification. Post-translational carboxylation
at three glutamic acid residues occurs by γ-glutamyl carboxylase that uses vitamin K, CO2, and O2 as
cofactors. The carboxylated form of osteocalcin (Gla–Ocn) can be converted into a form with a lower
grade of carboxylation (Glu–Ocn) by acidic pH.

Figure 2. Schematic representation of osteocalcin functions. Osteocalcin stored in the bone matrix
in the carboxylated form (Gla–Ocn) is decarboxylated by acidic pH in the resorption lacuna.
The undercarboxylated osteocalcin (Glu–Ocn) is released into the circulation and regulates muscle
function, male fertility, and insulin secretion by its binding to the GPRC6A receptor while it controls
cognitive functions through the GPR158 receptor.

Indeed, the ratio of undercarboxylated and carboxylated osteocalcin was significantly increased
when osteocalcin was exposed to pH 4.5. Interestingly, this value of pH was observed in the resorption
lacuna created by osteoclasts. To demonstrate that osteoclast resorption is essential for the activation of
osteocalcin, in vitro experiments were performed. Osteoclast precursors were plated on bovine cortical
bone and differentiated by treatment with the osteoclastogenic cytokine RANKL. The measurement
of the total, carboxylated, and undercarboxylated osteocalcin revealed an increase of the Glu–Ocn
form and a reduction of Gla–Ocn, leading to a 2-fold increase in the Glu/Gla ratio [3]. The relevance
of osteoclast activity in the regulation of osteocalcin was further confirmed by the observation of the
osteopetrotic oc/oc mice carrying loss-of-function mutation of tcirg1 (T cell immune regulator 1) gene
encoding α3 subunit V-H+ATPase; this animal was characterized by defective acidification of lacuna
and impaired bone resorption. The undercarboxylated osteocalcin in oc/oc was 30% of levels revealed in
wild type (WT) serum. To demonstrate that this alteration was secondary to the dysfunction of Tcirg1 in
osteoclasts, oc/oc fetal liver hematopoietic stem cells were transplanted into WT irradiated mice. A high
bone mass phenotype was observed in WT recipient mice for the inability of osteoclasts to resorb bone.
Interestingly, no alterations were revealed in the total levels of osteocalcin, while a reduction of the
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serum undercarboxylated form was observed. Finally, a reduction of the active form of osteocalcin
was measured in six patients affected by autosomal dominant osteopetrosis, characterized by defective
acidification ability of osteoclasts to acidify, as evidenced by assay with LysoSensor fluorescent pH
indicators [3].

Up to now two different receptors were identified for osteocalcin belonging to the G protein-coupled
receptor family C: GPRC6A and GPR158. In human, chimpanzee, and small species GPRC6A
is expressed in hepatocytes, pancreatic β-cells, Leydig cells, skeletal muscle myocytes, kidney
proximal/distal tubules, and placenta. At least two signaling pathways were induced after the
binding of osteocalcin to the receptor: 1. the IP3 (inositol 1, 4, 5-trisphosphate)-Ca2+ pathway activated
by the action of phospholipase C (PLC); 2. the adenylyl cyclase-cAMP-PKA (protein kinase A) pathway
that leads to the activation of the MEK (mitogen-activated protein kinase)–ERK (extracellular signal
regulated kinase) cascade [47,48]. Three isoforms for the receptor with differential expression were
known (1365, 853, and 1165 bp). Isoform 1 is expressed in many tissues including pancreas, testis, brain,
liver, kidney, placenta, and skeletal muscle while the other two isoforms are less abundant [47,49].
The binding of undercarboxylated osteocalcin to this receptor stimulates the production and the release
of insulin from pancreatic beta cells and enhances testosterone synthesis in Leydig cells [50].

GPR158 receptor is expressed in the cortex, hippocampus, midbrain, brainstem, and cerebellum.
The binding of osteocalcin to GPR158 stimulates the histone-binding protein RbAp48, which in turn
regulates GPR158 and BDNF (brain-derived neurotrophic factor) [51,52]. Interestingly, reduction
of RbAp48 expression is a molecular hallmark of memory loss correlated with aging in humans
and mice [53]. It was demonstrated that osteocalcin/GPR158/RbAp48 signaling acts on the dental
gyrus/CA3c and CA3a brain area to modulate fear discrimination and completion, respectively.
The activation of this pathway in aged subjects alleviates the cognitive impairment associated with
aging [52].

4. Glucose Metabolism

The oc/oc mice are characterized by reduced serum level of undercarboxylated osteocalcin, reduced
levels of insulin, and glucose intolerance. To confirm that this phenotype was due to defective osteoclast
function, Ferron et al. transplanted oc/oc fetal liver hematopoietic stem cells into WT irradiated mice;
an increase of bone mass, and reduced levels of undercarboxylated osteocalcin and insulin with an
increase of glucose levels strengthened the concept that bone resorption is essential for the regulation
of glucose metabolism [3].

Indeed, ADO patients showed decreased levels of undercarboxylated osteocalcin and insulin [3].
These data were important to demonstrate that osteocalcin with a reduced level of carboxylation is
relevant for the regulation of whole-body glucose metabolism.

Moreover, mice with a deletion of RANKL decoy receptor osteoprotegerin (Opg) were characterized
by increased bone resorption activity and the osteoporosis phenotype due to loss of the inhibitory
signal for osteoclasts; these animals displayed improved glucose tolerance and enhanced insulin
sensitivity. These results clearly showed that bone resorption is beneficial for glucose metabolism,
and increased bone resorption activity should be associated with better glucose control [3].

The notion that bone resorption is tightly linked to glucose homeostasis is clinically important,
since most of the drugs used in the treatment of bone disease patients target this aspect of bone
remodeling. Specifically, high levels of fasting plasma glucose are measured in osteoporotic women
treated with bone resorption inhibitory drugs, and there is a significant and positive correlation between
undercarboxylated Ocn and urinary cross-linked N-telopeptides of type I collagen (NTX) [54,55].

Moreover, the use of anti-resorptive drugs should increase the risk of insulin resistance and
diabetes due to reduced levels of undercarboxylated osteocalcin. However, epidemiological and
clinical trials concluded that the use of anti-resorptive drugs was not associated with alterations of
plasma glucose, insulin resistance, and diabetes development, but was associated with a decreased
risk of diabetes, especially for long-term treatments [56–61].
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In a recently published paper, Urano et al. [62] performed a study including 1691 Japanese
postmenopausal women; 371 subjects were treated with bisphosphonates. Serum osteocalcin levels were
significantly correlated with HbA1c levels among postmenopausal women. Moreover, they showed
that a decrease (<6.1 ng/mL) of serum osteocalcin was associated with future development of type
2 diabetes mellitus. However, the authors concluded that there was no trend of increase in incident
diabetes rate in bisphosphonate-treated patients [62]. Further studies should be performed to unravel
the association between bisphosphonate treatment and type 2 diabetes mellitus onset.

5. Male Fertility

Since osteocalcin knock-out mice showed reduced male fertility due to Leydig cell hypoplasia
and hypotestosteronemia, Karsenty’s group demonstrated that the undercarboxylated osteocalcin
is able to bind its receptor GPRC6A expressed by Leydig cells and stimulate the testosterone
synthesis [4,63]. To evaluate the relevance of the bone resorption activity in the regulation of male
fertility, Ctsk–Cre;DTAfl/+ mice were generated. These animals derived from the crossing of CtskCre/+

mice, which express Cre recombinase under the control of the cathepsin K locus, with diphtheria toxin
A (DTA)fl/+ mice that express a flox–stop–flox DTA cassette under the control of the Rosa26 locus.
Cre-mediated removal of the stop cassette in mature osteoclasts leads to the selective death of these
cells. This animal model was characterized by very dense bones and the absence of incisor eruption
due to severe impairment of bone resorption, and died at 2–3 weeks of age. Due to premature death of
mice, the Ctsk–Cre;DTAfl/+ fetal liver hematopoietic stem cells were transplanted into WT animals.
An increase of bone mass with high number of osteoclasts was observed in the transplanted animals.
Moreover, a reduction of undercarboxylated osteocalcin levels was revealed in these animals with a
parallel decrease of sperm count, testis weight, testosterone levels, and expression of StAR, Cyp11a,
Cyp17, and 3β-HSD genes encoding enzymes required for testosterone biosynthesis. These defects
related to male fertility were corrected after treatment for 30 days with recombinant osteocalcin [4].

The osteocalcin-mediated regulation of male fertility was further confirmed by osteoporotic opg–/–
mice that presented a huge increase in osteoclast number [4]. In this mouse model, the serum level
of active osteocalcin was increased with the testosterone level; in addition, testes, seminal vesicles,
and epididymal weights, and the sperm count were also increased. Thus, these mouse models showed
the importance of bone resorption in the regulation of male fertility mediated by active osteocalcin [4].

The association between osteocalcin and male fertility has also been investigated in human.
A positive association was revealed between osteocalcin and testosterone serum concentrations along
with serum C-terminal telopeptides of type I collagen (CTX) [64].

Furthermore, in a different study on type 2 diabetic patients, the levels of circulating
undercarboxylated osteocalcin positively correlated with testosterone, confirming the direct action of
osteocalcin on testosterone production [65]. These results are in contrast with a previous report showing
no associations between testosterone serum levels, osteocalcin, and CTX in 40 middle-aged healthy
men and 80 osteoporotic patients [66]. Moreover, Liu et al. performed a meta-analysis to compare the
osteocalcin with testosterone concentrations in primary osteoporotic males and age matched controls.
No significant alterations were observed between serum total Ocn and testosterone levels. However,
there were some limitations of this study concerning the low number of case-control studies (n = 5) and
the evaluation of the total osteocalcin instead of undercarboxylated form [67]. Therefore, well-designed
studies should be performed for a better understanding of the complex regulation between osteocalcin,
bone resorption, and male fertility.

6. Brain Functions

An unexpected peripheral effect of osteocalcin is its central role in the regulation of cognitive
function. In an elegant paper published by Oury et al., it was demonstrated that circulating osteocalcin
is able to cross the blood–brain barrier and to bind the GPR158 receptor, regulating cognitive functions
and anxiety-related behavior [7].
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Recent papers revealed an association between osteoporosis and cognitive impairment and
dementia [68,69]. In the Framingham study, Tan et al. found that lower BMD was associated with
the risk of developing Alzheimer’s disease [70]. Moreover, in a longitudinal study, 64 participants,
aged 34–87 years old (62.78 ± 9.27), were recruited and cognitive and clinical examinations were
registered at baseline and after 3 years. A significant association between BMD and lean body mass
and memory abilities was revealed [71]. Structural analysis of bone health and neuropsychological
functions suggested that lower BMD is associated with lower cognitive performance, particularly in
post-menopausal women. Zhou et al. showed relationships between BMD and Alzheimer’s disease
and cognitive decline, particularly in older women [72]. Furthermore, a recent study on obese and
control subjects found that lower Ocn was associated both with higher body mass index (BMI) and with
worse cognitive performance and brain microstructural changes [73]. Puig et al. calculated that serum
Ocn independently explained 10% of the variation in cognitive performance [73]. A cross-sectional
study including 225 elderly (52% women, age: 74.4 ± 3.3 years) and 134 young (52% women, age:
23.4 ± 2.7 years) participants revealed that osteocalcin levels were positively associated with measures
of executive functioning and global cognition in the older women [74].

Further longitudinal studies investigating bone remodeling (as well as BMD) and cognitive
performance in older women are needed to elucidate the relationship between bone health
and neuromodulation.

7. Conclusions

Bone was considered for long time to be an inert structure necessary for calcium homeostasis,
mobility, and maintenance of the hematopoietic niche. The pioneering studies of the Karsenty group on
osteocalcin as a hormone revealed a more complex role of the bone as regulator of the whole organism.
However, many of the functions associated with osteocalcin still need to be confirmed in humans [75].
First of all, it should be considered that murine and human osteocalcin show a different pattern of
carboxylation. Osteocalcin is γ-carboxylated on the glutamic acids (GLU) at positions 13, 17, and 20 of
protein in mouse, and on GLU 17, 21, and 24 in humans [34]. Moreover, the possibility to use Glu–Ocn
as a prognostic or pathogenic marker for metabolic–endocrine disorders remains to be confirmed since
no universal standardized method exists for its measurements; osteocalcin should be evaluated by HA
binding assay, by electro-chemiluminiscence immunoassay, or by ELISA.

The HA-based measurement of osteocalcin is based on the lower binding affinity for HA of the
undercarboxylated osteocalcin compared to the carboxylated form. This binding assay uses HA to
bind and to sequester carboxylated osteocalcin; the resulting supernatant is used to measure the
undercarboxylated Ocn by immunoassay [76,77].

Such analysis of undercarboxylated osteocalcin represents a semi-quantitative method that does
not precisely quantify the serum concentration of undercarboxylated or carboxylated forms. Therefore,
measurement of Glu–Ocn is not straightforward and the available methods do not discriminate the
number and position of uncarboxylated Glu residues; these limitations must be considered in the
interpretation of results. Moreover, the circadian alterations of osteocalcin differ, and should be
evaluated, between mice and humans. In mice, Ocn levels reach a peak during the light period and are
very low during the dark hours, whereas in humans, the levels fall in the early morning and rise in the
afternoon with a peak at night [39]. These changes may be associated with modulation of glucocorticoid
levels. Heshmati et al. showed that in humans, the rise of serum cortisol in the morning is responsible
for the daytime nadir of serum osteocalcin levels and that the nocturnal increase of osteocalcin, then,
is a consequence of the declining cortisol levels in the evening and nighttime hours [78]. In rodents,
corticosterone levels are constant from early morning to afternoon; a significant elevation is revealed at
20:00 in the evening [79]. Therefore, the time point at which samples are collected should be taken into
account for the extrapolation of results from mouse studies into the human setting.

However, the studies published in the last 10 years have hugely revolutionized the knowledge
about bone tissue, making the skeleton a survivor organ during evolution. Indeed, bone tissue made
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possible the transition of life from water to land, from an external calcium rich environment to a
habitat where it was necessary to have an internal reservoir of this ion; since it cooperates with muscles
in the regulation of walking and running, bone enabled animals to escape danger and to find food.
At the same time, through its endocrine functions, bone may have supported the survival in hostile
environments. This evolutionary theory could explain the reason for the central role of the skeleton in
the regulation of the whole body physiology. The study of bone diseases characterized by increased or
reduced bone mass is very important to understanding the endocrine functions of the skeleton and
will allow identification of new roles of bone in inter-organ communication.
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