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Simple Summary: Endophytic microbes that reside in roots are involved in resistance against various
environmental stresses including high soil salinity and mineral deficiency. To date, the extent of their
role in the plant host adaptation to arid, saline, and low nutrient environments such as coastal sand
dune ecosystems remains unclear. Here, we present the first characterization study of the bacterial
community associated with the roots of Spinifex littoreus and Calotropis gigantea, two plant species that
grow wild across different areas of Parangkusumo coastal sand dune, Indonesia. We correlated the
bacterial composition in the root with various soil properties and found that bacterial communities
in the root are responsive to changes in soil mineral composition, especially in soil Calcium (Ca),
Titanium (Ti), Cuprum (Cu), and Zinc (Zn) content. Some bacteria are also found to be sensitive
to soil salinity levels; among them, Bacillus idriensis has previously been reported to have a growth
promoting effect on plants. Our findings provided valuable information about the main factors that
modulate bacterial communities associated with coastal plants and potential bacterial species that
might be involved in plant resistance against stresses. Data from this study can be used as the basis
for future studies that assess the biological role of endophytic microbes in plant resistance against
environmental pressure.

Abstract: Soil salinity and mineral deficiency are major problems in agriculture. Many studies have
reported that plant-associated microbiota, particularly rhizosphere and root microbiota, play a crucial
role in tolerance against salinity and mineral deficiency. Nevertheless, there are still many unknown
parts of plant–microbe interaction, especially regarding their role in halophyte adaptation to coastal
ecosystems. Here, we report the bacterial community associated with the roots of coastal sand dune
halophytes Spinifex littoreus and Calotropis gigantea, and the soil properties that affect their composition.
Strong correlations were observed between root bacterial diversity and soil mineral composition,
especially with soil Calcium (Ca), Titanium (Ti), Cuprum (Cu), and Zinc (Zn) content. Soil Ti and Zn
content showed a positive correlation with bacterial diversity, while soil Ca and Cu had a negative
effect on bacterial diversity. A strong correlation was also found between the abundance of several
bacterial species with soil salinity and mineral content, suggesting that some bacteria are responsive
to changes in soil salinity and mineral content. Some of the identified bacteria, such as Bacillus idriensis
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and Kibdelosporangium aridum, are known to have growth-promoting effects on plants. Together, the
findings of this work provided valuable information regarding bacterial communities associated with
the roots of sand dune halophytes and their interactions with soil properties. Furthermore, we also
identified several bacterial species that might be involved in tolerance against stresses. Further work
will be focused on isolation and transplantation of these potential microbes, to validate their role in
plant tolerance against stresses, not only in their native hosts but also in crops.

Keywords: halophyte; sand dune; root microbiome; salt stress; soil mineral; soil fertility management

1. Introduction

Soil salinity and mineral deficiency are major abiotic stresses that affect global agricul-
tural production. In some crops, salt stress and mineral deficiency could reduce average
yields by more than 50% [1,2]. Soil salinization also leads to constant reduction of arable
lands, with around 800 million hectares of agricultural land currently affected by salt
stress [3]. High soil salinity could lead to both ionic and osmotic stress [4]. Ionic stress
is mainly caused by excessive intracellular sodium (Na+) accumulation that causes a
deficiency of essential ions such as potassium (K+), affecting protein synthesis and confor-
mation. Ionic stress also induces the production of reactive oxygen species (ROS) that lead
to cellular oxidative stress and damage. In addition to ionic stress, salt stress also induces
osmotic stress, which leads to reduced water uptake and dehydration [4,5].

Most major crops such as wheat, maize, and rice are sensitive to salinity and mineral
deficiency. Exposure to salt and mineral deficiency has been known to reduce germination
rates, seedling survival, and plant productivity [6,7]. On the other hand, halophytes
are salt-tolerant plants that can complete their life cycle in an environment with a salt
concentration above 200 mM NaCl [8,9]. The tolerance is mainly attributed to the genetic
makeup of the plants, which allows them to produce specific sets of proteins, transporters,
and anatomical and morphological modifications that enhance resistance to salinity [9–11].
In addition to plant adaptation, it is reported that the root microbiome could also promote
resistance to abiotic stresses, including salinity and mineral deficiency. Microbes can be
found both on the surfaces (epiphytic) and inside of the roots (endophytic). Together,
they constitute the overall microbiome composition in the root [12]. Different species of
epiphytic and endophytic bacteria associated with the roots of various halophytic plants
are reported to be able to ameliorate the negative effects of salinity and mineral deficiency
and promote growth [13–17]. It is suggested that root-associated bacteria could help plants
thrive in saline and nutrient-depleted environments by facilitating nitrogen fixation [18],
increasing nutrient availability and uptake [17], inducing antioxidant production [19,20],
and producing certain metabolites and hormones that have growth-promoting effects on
plants [21,22].

Interestingly, the beneficial effects of root bacteria are not restricted to their natural
hosts. Several publications have reported that bacteria isolated from the roots of halophytes
could also enhance tolerance to stresses and promote growth when inoculated into the
roots of crops. Sharma et al. (2016) reported that five bacterial isolates from the root of a
halophyte, Arthrocnemum indicum, are able to colonize the root of peanut and contribute to
maintaining ion homeostasis, reducing ROS production, and promoting growth under salt
stress [13]. In another study, Ullah and Bano (2015) showed that Bacillus sp. and Arthrobacter
pascens isolated from the rhizospheric soils of halophytes Atriplex leucoclada and Suaeda
fruticosa, respectively, could increase phosphate availability, induce the accumulation of
osmolytes, elevate antioxidant activity, and promote growth when inoculated into the root
of maize [14]. Similarly, Xiong et al. (2019) revealed that inoculation of Glutamicibacter
halophytocola isolated from the coastal halophyte Limonium sinense could increase osmolyte
content, enhance antioxidant activity, and improve ion homeostasis in tomato seedlings,
resulting in higher biomass and better growth under stress [15].
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All of those reports suggest that bacteria associated with the roots of halophytes could
be inoculated into crops to enhance resistance against salt stress and mineral deficiency.
Information about halophyte microbiomes and their association with soil physical and
chemical properties is pivotal for the identification of beneficial bacteria. Nevertheless,
data regarding root microbiomes in halophytic plants, especially from tropical coastal
areas, are still limited. Here, we studied the bacterial community in the roots of two
halophytes, Spinifex littoreus and Calotropis gigantea, growing in a coastal sand dune area of
Parangkusumo, Indonesia. Plants growing in the area are adapted to harsh environments,
characterized by frequent sand and wind blasting, low nutrient and water availability, high
temperature, lack of shade, salt spray, and high soil salinity [23–25]. We hypothesized that
halophytes in the Parangkusumo sand dune ecosystem host symbiotic bacterial species
that aid in adaptation to the arid, saline, and low-nutrient environment. To identify such
bacteria, we correlated root microbiome data with soil salinity, pH, organic and nutrient
content, and mineral composition. Strong correlations were observed between the root
bacterial diversity and soil mineral composition, especially with soil Calcium (Ca), Titanium
(Ti), Cuprum (Cu), and Zinc (Zn) content. Correlations between the abundance of various
bacterial species and soil salinity and mineral content were also discovered, indicating
that some bacteria may be sensitive to changes in soil salinity and mineral content. This
investigation thus shed light on the bacterial communities associated with the roots of sand
dune halophytes, the environmental factors that affect their composition, and potential
bacterial species involved in plant tolerance to stress.

2. Materials and Methods
2.1. Study Area and Sample Collection

Root and leaf samples were collected from S. littoreus and C. gigantea, which grow wild
in the sand dune area of Parangkusumo, Yogyakarta, Indonesia. Samples were collected
along latitudinal gradient starting from the shoreline from six different populations where
S. littoreus and C. gigantea were found living together. The populations were spread across
three different sand dune areas: the coastal area located along the shoreline (population
1), the middle area (population 2 to 5), and the transitional area (population 6, the border
between sand dune and farming area) (Figure 1 and Table S1). From each population, we
collected two S. littoreus and C. gigantea root samples for microbiome analysis. Soil samples
were also collected from 5 to 20 cm depth and kept in clean plastic bags. All samples were
immediately stored on dry ice upon collection and stored at −20 ◦C afterward.

2.2. DNA Extraction and Sequencing

Genomic DNA was extracted by homogenizing samples to powder in liquid nitrogen
using a mortar and pestle. DNA was extracted from homogenized tissue according to the
manufacturer’s instructions using a ZymoBIOMICS DNA Miniprep Kit (Zymo Research,
Orange, CA, USA). Quality-controlled genomic DNA was used to prepare amplicon se-
quencing libraries. In brief, following the Illumina PCR Quantification Protocol Guide,
30 ng DNA template and 16S rRNA V3-V4 primers were used for polymerase chain re-
action (PCR) (Illumina, San Diego, CA, USA). To complete library construction, all PCR
products were purified with Agencourt AMPure XP beads (Beckman Coulter, Brea, CA,
USA), dissolved in elution buffer, and finally labeled. Agilent 2100 Bioanalyzer was used
to measure the library’s size and concentration (Agilent Technologies, Palo Alto, CA, USA).
Two 300 bp paired-end runs were performed on qualified libraries on the Illumina HiSeq
2500 platform (San Diego, CA, USA).
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Figure 1. Halophyte habitats and sampling locations. (A) Calotropis gigantea at Parangkusumo sand 
dune and (B) its flowering part. (C) Spinifex littoreus at Parangkusumo sand dune and (D) its leaf 
morphology. (E) Six sampling locations across Parangkusumo sand dune area. 
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dune and (B) its flowering part. (C) Spinifex littoreus at Parangkusumo sand dune and (D) its leaf
morphology. (E) Six sampling locations across Parangkusumo sand dune area.

2.3. Bacterial Diversity Analysis

To investigate the biodiversity of the surveyed samples, the sequencing data were
analyzed using the QIIME 2 workflow [26]. After importing the raw sequencing data into
QIIME 2, the raw sequencing data were demultiplexed to remove primer sequences from
the reads. DADA2 was used to denoise and dereplicate the sequences [27]. Then, using the
VSEARCH plugin, the clean data were clustered into groups with 99 percent similarity to
the SILVA references [28,29]. Using online web tools https://bioinformatics.psb.ugent.be/
webtools/Venn/ (accessed on 20 October 2021, the samples' shared operational taxonomic
unit (OTU) was visualized. The sequence data were then classified using the classify-sklearn
method in conjunction with SILVA taxonomy data [30]. After being classified, the sequences
belonging to chloroplast and mitochondrial genomes were removed. Additionally, the
Shannon diversity index was used to evaluate the samples’ alpha diversity. Principal
component analysis (PCA) was performed using the ClustVis web tools http://biit.cs.
ut.ee/clustvis/ (accessed on 27 October 2021) with default settings [31]. The data of the
operational taxonomic unit of the surveyed samples were normalized to the total OTU
number before performing PCA. The PCAs were calculated using the default method of
singular value decomposition (SVD) with imputation.

2.4. Soil pH, Salinity, Organic Carbon, Nitrogen, and Phosphate Measurement

As much as 10 g of soil and 50 mL of deionized water were mixed together. The
mixture was then homogenized by vortexing for 30 min. The suspension was then used to
measure the pH and conductivity using a pH meter electrode (Starter300, Ohaus, NJ, USA)
and a conductometer (pHionLab PC10, H20 Rx, Artarmon, NSW, Australia), respectively.
The total organic carbon, nitrogen, and phosphate were measured according to the ASTM
D 5373-2002 standard.

https://bioinformatics.psb.ugent.be/webtools/Venn/
https://bioinformatics.psb.ugent.be/webtools/Venn/
http://biit.cs.ut.ee/clustvis/
http://biit.cs.ut.ee/clustvis/
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2.5. Measurement of Soil Mineral Composition

As much as 10 g of soil was analyzed using X-Ray Fluorescence NitonTM XL2 GOLDD
(Thermo Scientific, Carlsbad, CA, USA) to calculate Aluminium (Al), Silicon (Si), Phos-
phorus (P), Potassium (K), Calcium (Ca), Titanium (Ti), Vanadium (V), Manganese (Mn),
Ferrum (Fe), Cuprum (Cu), Zinc (Zn), Strontium (Sr), Zirconium (Zr), Barium (Ba), and
Rhenium (Re) content in the soil. The mineral content measurements were presented as
percentages of the weight of the soil.

2.6. Correlation Analysis between Bacterial and Soil Composition

Pearson correlation analysis was used to determine the relationship between bacterial
diversity, microbial species abundance, and soil variables by using GraphPad Prism version
9.0.0 for Windows https://www.graphpad.com/ (accessed on 27 October 2021). The scatter
diagrams were built on at least 6 data points for each pair of variables to observe the
linearity and calculate the correlation coefficient. Pearson values (r) at or close to zero
indicated no or a weak linear relationship, respectively; greater than +0.8 or less than −0.8
denoted a strong linear relationship. Factors with a strong linear relationship (|r| ≥ 0.8)
and statistical significance (p ≤ 0.05) were selected for further evaluation.

3. Results
3.1. Taxonomic Composition of the Root-Associated Bacteria

A total of 1231 bacterial OTUs were obtained from the root of C. gigantea, while
1419 OTUs were obtained from S. littoreus (Table S2). The assignment of bacterial OTUs
revealed 25 phyla, 66 classes, 157 orders, 228 families, and 344 genera in C. gigantea,
whereas 26 phyla, 62 classes, 137 orders, 205 families, and 332 genera were identified
in S. littoreus. The most abundant phyla in the root of C. gigantea were Proteobacteria
(38.25% reads), Actinobacteria (30.17% reads), Firmicutes (10.87% reads), and Bacteroidota
(5.68% reads), together representing 84.97% of total reads over all samples. In the root
of S. littoreus, the most abundant bacteria were Actinobacteria (41.13%), Proteobacteria
(31.33%), Bacteroidota (7.67%), and Patescibacteria (7.25%), representing altogether 87.4%
of the total reads (Table S2).

In C. gigantea, from population 2 to 6, the bacterial composition was quite similar at
phylum level, where the roots were mainly colonized by Proteobacteria and Actinobac-
teria. A different composition was observed from population 1 that was located on the
shoreline where Firmicutes was identified as the most dominant phylum. Among OTUs
that could be assigned to species level, differences at species level could also be observed
between population 1 and the other populations. Bacillus idriensis was found to be the most
abundant species in population 1, while in other populations, Actinosynnema pretiosum and
Actinophytocola timorensis were the two most abundant species (Figure 2 and Figure S1).

For S. littoreus, in all populations, the roots were mainly colonized by Proteobacteria,
Actinobacteria, Bacteroidota, and Patescibacteria. However, in population 6, which was
located in the transitional zone between sand dunes and farming areas, a higher abundance
of Firmicutes was observed. Looking at the species level, population 6 was also distin-
guishable from the other populations since it had higher bacterial diversity (Table 1 and
Figure S1). Various bacterial species, including Kibdelosporangium aridum, Pseudonocardia
zijingensis, A. timorensis, Pseudonocardia eucalypti, and Bacillus aryabhattai, could be identi-
fied from population 6, while in other populations the bacterial composition was mainly
composed of A. pretiosum (Figure S1).

https://www.graphpad.com/
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Figure 2. Bacterial taxonomic composition and relative abundance at phylum level. (A) Relative
abundance of bacteria associated with the root of S. littoreus across six different sampling popula-
tions at phylum level. (B) Relative abundance of bacteria associated with the root of C. gigantea
across six different sampling populations at phylum level. Abbreviations of sampled populations:
P—Population (Population 1 to 6, P1 to P6), CG—C. gigantea, SL—S. littoreus.

Table 1. Species alpha diversity in sampling populations as measured by Shannon Index.

Species Population Shannon Index

C. gigantea

P1CG 3.39
P2CG 5.11
P3CG 5.27
P4CG 5.91
P5CG 4.14
P6CG 5.82

S. littoreus

P1SL 5.34
P2SL 6.07
P3SL 5.99
P4SL 5.90
P5SL 5.91
P6SL 7.34
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Since soil chemical and physical properties differed between populations, these results
suggest that bacterial composition in the roots of halophytes was strongly influenced by soil
properties. Interestingly, contrasting responses were observed between bacteria associated
with the roots of C. gigantea and S. littoreus. Bacteria in the root of C. gigantea were strongly
influenced by the shoreline environment, while S. littoreus was strongly influenced by the
transitional zone environment that was furthest away from the shoreline.

3.2. Population-Specific OTUs and Core Microbiome

From 1231 OTUs identified in the root of C. gigantea, 17 OTUs were shared between
all populations. In S. littoreus, across 1419 identified OTUs, 40 were shared between all
populations, suggesting the existence of a core microbiome in the root of C. gigantea and
S. littoreus. Additionally, for both species in each population, population-specific OTUs
were detected, indicating specific environmental effects on each population (Figure 3).
Comparing OTUs from both plant species, 12 OTUs were found to be shared across all
C. gigantea and S. littoreus populations, corresponding to genera: Mycobacterium, Lecheva-
lieria, Streptomyces, Bacillus, Dongia, Bosea, Devosia, Sphingomonas, Acidibacter, and three
genera from the family Microscillaceae, Rhizobiaceae, and Sphingomonadaceae (Figure 3 and
Table S3). These results infer that some taxa have been well adapted to sand dune ecosys-
tems and can colonize the roots of different plant species that grow in different sand
dune areas.
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3.3. Diversity and Structure of Bacterial Community Associated with Halophyte Roots

For C. gigantea, the bacterial diversity in population 1, which was located on the
shoreline, was lower compared to that of the other populations. This might be due to
higher soil salinity in population 1 that negatively affected bacterial diversity (Table 1,
Tables S4 and S5). The highest diversity was found in population 4, but it was comparable
with that of the other populations. Similarly to C. gigantea, the bacterial diversity in the
root of S. littoreus was also lowest in population 1. On the other hand, bacterial diversity in
population 6 was considerably higher compared with that of the other populations. This
result suggests that the transition from sandy soil to farming soil might have positive effects
on bacterial diversity associated with the root of S. littoreus (Table 1). Results from alpha-
diversity and taxonomic composition analysis were reflected in the way the population
clustered in PCA. In S. littoreus, population 6 was visibly separated from the rest of the
populations, in accordance with the higher bacterial diversity observed in this population.
However, in C. gigantea, populations 1, 2, and 6 were separated from the others (Figure 4).
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In C. gigantea, population 1 was separated due to lower bacterial diversity (Table 1), while
population 2 and 6 were separated due to the high number of unique OTUs identified in
these two populations. There were 88 OTUs that were exclusively found in population 2,
while in population 6, there were 184 unique OTUs (Figure 3).
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3.4. The Effect of Soil Properties on the Bacterial Community Associated with the Roots of C.
gigantea and S. littoreus

To evaluate whether soil chemical and physical properties affect the composition and
abundance of the bacterial community associated with the roots of sand dune halophytes,
we measured various soil properties across the six sampled populations. Detailed values of
the measured soil properties are shown in Tables S4 and S5. Pearson correlation analysis
was used to determine correlations between soil properties and alpha diversity. Although
lower bacterial diversity was observed in population 1, which had higher soil salinity,
in both plant species we did not find a statistically significant correlation between alpha
diversity and soil salinity (p < 0.05). We also did not find a significant correlation between
alpha diversity and soil pH, organic carbon, nitrogen, or phosphorus content (Table 2).
These results suggest that none of those factors had a significant impact on overall diversity.
Nevertheless, we found strong correlations between soil mineral composition and bacterial
diversity. In C. gigantea, a strong positive correlation was observed between alpha diversity
and soil Zn level (r = 0.914, p < 0.05). Similarly, in S. littoreus, a positive correlation was also
observed between bacterial diversity and soil Zn (r = 0.881) and Ti (r = 0.829) content. On the
other hand, soil Ca (r = −0.907) and Cu (r = −0.823) levels seemed to have a negative effect
on the diversity of bacteria associated with the root of S. littoreus (Table 2). These results
showed that soil mineral composition, especially Zn, Ti, Ca, and Cu content, was the main
factor influencing bacterial diversity associated with the roots of sand dune halophytes.

Despite having no effect on overall diversity, soil salinity might have significant effects
on the abundance of specific bacteria. To test this hypothesis, we performed a Pearson
correlation analysis between soil properties and species relative abundance. In C. gigantea,
we observed a strong positive correlation between the abundance of B. idriensis and soil
salinity (r = 0.961) and phosphorus (r = 0.915) content, suggesting that this bacterium can
thrive in saline soil with high phosphorus concentrations (Table 3). In S. littoreus, the only
species that correlated with salinity was Pseudolabrys taiwanensis, which showed a negative
correlation (r = −0.871) (Table 4).
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Table 2. Correlation Analysis Between Bacterial Diversity and Soil Properties.

Soil Properties Correlation C. gigantea (R) Correlation S. littoreus (R)

pH −0.305 −0.588
Salinity −0.704 −0.613

Organic carbon 0.394 0.118
Nitrogen −0.0379 0.532

Phosphorus −0.682 −0.665
Calcium (Ca) −0.792 −0.907 *
Titanium (Ti) 0.759 0.829 *
Cuprum (Cu) −0.467 −0.823 *

Zinc (Zn) 0.914 * 0.881 *
Asterisk represent significant correlation at p < 0.05 (Pearson correlation coefficient).

Table 3. Correlation between Bacterial Abundance Associated with the Root of C. gigantea and
Soil Properties.

Species Salinity (R) Carbon (R) Phosphorus (R) Calcium (R) Titanium (R) Cuprum (R) Zinc (R)

A._timorensis −0.201 −0.103 −0.082 −0.161 0.269 0.020 0.156
Actinosynnema_pretiosum −0.273 0.206 −0.393 −0.157 0.143 0.009 0.146

B._idriensis 0.962 * −0.521 0.915 * 0.571 −0.420 0.433 −0.685

Asterisk represent significant correlation at p < 0.05 (Pearson correlation coefficient).

Table 4. Correlation Between Bacterial Abundance Associated with the Root of S. littoreus and
Soil Properties.

Species Salinity (R) Carbon (R) Phosphorus (R) Ca
(R)

Ti
(R)

Cu
(R)

Zn
(R)

Rhizobium lusitanum −0.062 0.873 * 0.046 0.160 −0.368 0.388 −0.432
Pseudonocardia eucalypti −0.310 −0.181 −0.387 −0.868 * 0.815 * −0.943 * 0.845 *
Pseudolabrys taiwanensis −0.871 * 0.182 −0.791 −0.673 0.659 −0.135 0.637
Mitsuaria chitosanitabida 0.016 0.898 * 0.098 0.202 −0.408 0.404 −0.490

Dongia mobilis −0.776 0.097 −0.850 * −0.560 0.566 −0.170 0.590
Actinophytocola

timorensis −0.321 −0.175 −0.396 −0.878 * 0.827 * −0.937 * 0.851 *

Bacillus aryabhattai −0.325 −0.183 −0.402 −0.866 * 0.809 * −0.947 * 0.851 *
Pseudonocardia zijingensis −0.311 −0.181 −0.388 −0.870 * 0.817 * −0.942 * 0.847 *

TM7 phylum 0.586 −0.448 0.462 0.551 −0.416 0.185 −0.394
Amycolatopsis
australiensis −0.724 −0.374 −0.705 −0.449 0.421 −0.450 0.709

Ralstonia mannitolilytica −0.346 −0.049 −0.267 0.321 −0.439 0.160 −0.079
Kibdelosporangium

aridum −0.384 0.205 −0.418 −0.811 * 0.665 −0.771 0.679

Actinosynnema pretiosum 0.459 0.102 0.551 0.837 * −0.723 * 0.943 * −0.857 *

Asterisk represent significant correlation at p ≤ 0.05 (Pearson correlation coefficient).

Soil mineral content, especially of soil Ca, Cu, Ti, and Zn, seems to have a strong
effect on the abundance of several bacterial species associated with the root of S. littoreus.
Soil Ca and Cu had a negative correlation with the abundance of P. eucalypti, A. timorensis,
B. aryabhattai, and P. zijingensis. On the other hand, the four bacteria showed strong
positive correlations with soil Ti and Zn. Interestingly, A. pretiosum, the most abundant
bacterium found in the root of S. littoreus, showed a completely opposite trend; it was
positively correlated with Ca and Cu but negatively correlated with Ti and Zn (Table 4).
Altogether, these results suggest a highly unique and specific effect of each mineral on
bacterial abundance.

4. Discussion

Plants growing in the coastal sand dune area of Parangkusumo, Indonesia, are fre-
quently exposed to high soil salinity, high temperature, low nutrients, and limited water
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availability [23–25]. The harsh soil and environmental conditions in the area provide
interesting models to study the role of root microbiota in plant adaptation to high soil
salinity and nutrient deficiency. Using models C. gigantea and S. littoreus populations in
their natural habitat, we studied the dynamics of the root microbiota along a latitudinal
gradient and changes in soil physicochemical properties.

We found that the overall most abundant phyla in both plants were Proteobacteria
and Actinobacteria; this result was in accordance with previous studies of rhizospheric
microbiota in coastal [32] and desert soils [33], suggesting that members of these phyla
can thrive in arid environments. In both plants, the most abundant identified species was
A. pretiosum; this bacterium was first isolated from leaf surface of Carex sp. and is known
to produce ansamitocin, a potent antibiotic and antitumor compound [34,35]. A. pretiosum
is also reported to be associated with the root of Putterlickia verrucosa, a shrub that is
distributed in the coastal areas of South Africa, Eswatini and Mozambique [36]. Most of
the studies regarding A. pretiosum have been focused on its culture strategies, metabolic
pathways, and ansamitocin producing ability [37–42]; however, there is still no information
regarding the role of A. pretiosum in plant growth and response to environmental stresses.
Since A. pretiosum was abundantly found in the root of halophytic C. gigantea and S. littoreus,
it would be interesting to evaluate whether its association with halophyte roots contributes
to plant tolerance against salinity and nutrient deficiencies. Beside A. pretiosum, several
bacteria with known plant growth promoting activity, such as K. aridum, B. idriensis, and
B. aryabhattai, were also detected in high abundance in the roots of C. gigantea and S. littoreus.
These bacteria can produce 1-aminocyclopropane-1-carboxylic acid deaminase (ACCD) and
a range of phytohormones that have a positive effect on plant growth [43,44]. Nevertheless,
their biological role in plant tolerance against salinity and nutrient deficiency has never
been investigated before.

Our data showed that soil physicochemical properties along the coastal sand dune
latitudinal gradient clearly shaped the composition and diversity of the root-associated
microbial community. In both plants, soil Zn content was positively correlated with root
microbial diversity. In accordance, Pan et al. (2020) also reported a positive association
between soil Zn level and soil bacterial diversity. One hypothesis is that a high level
of Zn in soil might induce the emergence of zinc-tolerant bacteria, resulting in higher
diversity [45,46]. Besides Zn, bacterial diversity in the root of S. littoreus was also affected
by soil titanium (Ti), copper (Cu), and calcium (Ca) content. Like Zn, we also found that
Ti had a positive effect on root bacterial diversity. In contrast to our findings, previous
studies reported that the application of Ti into soil did not affect soil bacterial diversity in
pitaya [47] and wheat [48] fields, while in grape field, application of Ti was reported to
decrease bacterial diversity [47]. Ti can either stimulate or inhibit plant growth, depending
on the plant species [49]. Since Ti's effect on plant physiology occurred in a species-specific
manner, the effect of Ti on soil and root microbial diversity may also depend on the host
plant species. In contrast to Zn and Ti, soil Cu and Ca levels were negatively associated
with root microbial diversity. The negative effect of Cu on microbial diversity is well known.
Excess levels of Cu are toxic to bacteria because membrane-bound Cu can catalyze the
formation of free radicals [50,51]. Calcium can have positive or negative effects on microbial
diversity depending on the environmental setting. In acidic soil, increasing Ca could have a
positive effect on microbial diversity [52,53], but in saline or karst environments, Ca could
negatively influence microbial diversity due to excess salinity and soil pH [54].

Although no statistically significant correlation was observed between soil salinity
and root microbial diversity, significant associations were found between the abundance
of several bacterial species and salinity. In C. gigantea, a strong positive correlation was
observed between B. idriensis and soil salinity, suggesting that this bacterium has salt-
tolerant properties. Afzal et al. (2017) showed that B. idriensis isolated from the wild shrub
Dodonaea viscosa L. could promote root growth when inoculated into canola [21], but its
role in enhancing tolerance to salt has never been investigated before. Besides affecting
microbial diversity, the abundance of several bacterial species was also strongly influenced
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by soil Zn, Ti. Cu, and Zn content. We observed the antagonistic effect of these four minerals
on different bacterial species. Ca and Cu exhibited a negative influence on the abundance
of P. eucalypti, A. timorensis, B. aryabhattai, and P. zijingensis, while Zn and Ti showed an
opposing effect. Among these bacteria, B. aryabhattai has been reported to promote plant
growth and tolerance against heat stress [55]. Interestingly, the effect of Zn, Ti, Cu, and Zn
was completely reversed for A. pretiosum; it had a positive correlation with Ca and Cu and
a negative correlation with Ti and Zn. It is well known that soil minerals can affect bacterial
growth in a taxon-specific manner. These mineral-associated bacteria might influence
the biogeochemical cycling of the associated minerals and nutrient availability for the
host plants [56–58]. Further work is required to evaluate whether P. eucalypti, A. timorensis,
B. aryabhattai, P. zijingensis, and A. pretiosum could together regulate Zn, Ti, Cu, and Zn
availability in coastal sand dune soil and affect the growth of host plants.

Note that in this study, potential bacteria were listed from correlation analysis between
bacterial abundance and soil salinity level or mineral content. Further work is required
to validate the biological role of these root-associated bacteria in plant tolerance against
stresses. Previous studies have shown that bacteria isolated from the roots of halophytes
could enhance plant tolerance against salt stress when inoculated into crops, possibly
by helping plants maintain osmotic balance and reduce cellular oxidative stress [13–15].
Due to its strong positive correlation with soil salinity level, we expect B. idriensis to
serve similar functions. Thus, future work will be focused on the isolation, culture, and
transplantation of potential bacteria identified in this study, to confirm that colonization
of roots by these bacteria could provide plants with improved tolerance against salinity
and nutrient deficiency. Overall, the information gathered from this study can be used as a
basis for further validation experiments and biotechnological applications, especially for
amelioration of abiotic stresses in plants using beneficial microbes.

5. Conclusions

Soil salinization and mineral deficiency are major abiotic stresses that can decrease
plant productivity. Several studies have shown that root-associated microorganisms can
enhance tolerance to salt stress and increase nutrient availability through multiple mecha-
nisms. Our exploratory work showed that the bacterial community in the roots of coastal
sand dune halophytes S. littoreus and C. gigantea was strongly influenced by soil physico-
chemical properties, especially by soil salinity and Zn, Ti, Cu, and Ca content. Based on
correlation analysis between bacterial abundance and soil properties, B. idriensis was identi-
fied as a potential salt-tolerant bacterium that might be involved in plant tolerance against
salt stress, while P. eucalypti, A. timorensis, B. aryabhattai, P. zijingensis, and A. pretiosum were
identified as taxa that were responsive to soil Zn, Ti, Cu, and Ca content. Future work will
focus on the isolation, culture, and transplantation of these potential bacteria to validate
their involvement in nutrient cycling and resistance against salinity.
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