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Visual attention seems essential for learning the statistical regularities in our environment,
a process known as statistical learning. However, how attention is allocated when
exploring a novel visual scene whose statistical structure is unknown remains unclear.
In order to address this question, we investigated visual attention allocation during
a task in which we manipulated the conditional probability of occurrence of colored
stimuli, unbeknown to the subjects. Participants were instructed to detect a target
colored dot among two dots moving along separate circular paths. We evaluated
implicit statistical learning, i.e., the effect of color predictability on reaction times
(RTs), and recorded eye position concurrently. Attention allocation was indexed by
comparing the Mahalanobis distance between the position, velocity and acceleration
of the eyes and the two colored dots. We found that learning the conditional
probabilities occurred very early during the course of the experiment as shown
by the fact that, starting already from the first block, predictable stimuli were
detected with shorter RT than unpredictable ones. In terms of attentional allocation,
we found that the predictive stimulus attracted gaze only when it was informative
about the occurrence of the target but not when it predicted the occurrence of
a task-irrelevant stimulus. This suggests that attention allocation was influenced by
regularities only when they were instrumental in performing the task. Moreover, we
found that the attentional bias towards task-relevant predictive stimuli occurred at a
very early stage of learning, concomitantly with the first effects of learning on RT.
In conclusion, these results show that statistical regularities capture visual attention
only after a few occurrences, provided these regularities are instrumental to perform
the task.

Keywords: visual attention, eye tracking, statistical learning, implicit learning, selective attention

INTRODUCTION

One of the central functions of the human brain is the ability to predict the surrounding
dynamics and to optimize interactions with the environment (Clark, 2013; Little and
Sommer, 2013). Learning contingencies and regularities is a multi-faceted and elaborated
mechanism that allows the brain to perform predictions and optimization (Dayan et al.,
2000; Kruschke, 2003; O’Brien and Raymond, 2012). Attention is regarded as an important
mechanism involved in reducing perceptual uncertainty but its role in learning remains
controversial (Gottlieb, 2012). On the one hand, a model proposed by Pearce and Hall
(1980) suggests that unpredictable and surprising cues capture attention more than
predictable ones, supposedly because they provide new information about the environmental
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contingencies. This view is supported by experimental studies
that have showed that attention gets preferentially allocated to
conditioned stimuli with uncertain outcomes (Hogarth et al.,
2008). On the other hand, an alternative model (Mackintosh,
1975), which has also received recent experimental support
(Kruschke, 2001; Le Pelley et al., 2011), suggests the opposite
view, arguing that predictability attracts attention and that this
early attentional capture would be instrumental in learning.
Lately, an hybrid model integrating the two theories has been
proposed in order to conciliate these controversial experimental
findings, postulating the co-existence of two distinct attentional
systems, namely a controlled system processing the most
unpredictable stimuli in order to learn the dynamics of the
environment and an automatic one, exploiting information
already acquired and focusing on the stimuli essential to
perform the task at hand (Le Pelley, 2004; Pearce and
Mackintosh, 2010). A similar reading of the role of attention
in learning has been provided by Dayan et al. (2000), who
considered the Pearce–Hall model (Pearce and Hall, 1980)
as appropriate to explore and learn regularities in a new
environment whereas the Mackintosh model (Mackintosh,
1975) would drive behavior during the routine execution
of a task.

It is noteworthy that the above models were framed in the
context of associative learning, in which the predictive structure
of the stimuli is directly relevant to the task, being typically
associated to rewards or punishments. However, learning can
also occur in situations in which it is not useful to the task.
In the context of perceptual learning (i.e., the enhancement of
perceptual performance consecutive to repeated stimulation; Lu
et al., 2011), the importance of attention remains controversial.
On the one hand,Watanabe et al. (2001) found that subthreshold
task-irrelevant stimuli affected the discrimination of supra-
threshold stimuli, thus suggesting that attention is not needed
for perceptual learning to occur. On the other hand, other
studies showed opposite results: only task-relevant and actively
attended information was learnt (Shiu and Pashler, 1992;
Ahissar and Hochstein, 1993). In the context of ‘‘statistical
learning’’, a type of learning first coined by Saffran et al.
(1996) in the framework of language acquisition in infants,
statistical environmental contingencies can also be learned in
situations in which they are not useful to the task (Zhao
et al., 2013), and may sometimes remain entirely implicit
(Saffran et al., 1999; Fiser and Aslin, 2001; Perruchet and
Pacton, 2006). Statistical learning occurs also irrespective of
the perceptual modality; indeed, it has been reported in the
visual (Turk-browne et al., 2005, 2008), auditory (Saffran
et al., 1999) and tactile domains (Conway and Christiansen,
2005). Despite a wealth of studies investigating the general
mechanisms of statistical learning, its relation to attention
remains poorly understood. Previous studies have suggested
that attentional allocation is necessary for the learning to occur
(Toro et al., 2005; Turk-browne et al., 2005). Conversely, only
one study has addressed the effect of statistical learning on
attentional allocation (Zhao et al., 2013), arguing in favor
of the hypothesis that statistical regularities attract attention,
even when not task-relevant. However, in that study, only

covert attention allocation was assessed, during a task in which
statistical regularities were always irrelevant to the task being
performed.

In the current study, we addressed the issue of the relationship
between visual attention and statistical learning when the
statistical structure of the stimulus sequence is either relevant to
the task or not. We performed an experiment in which statistical
regularities were manipulated during a simple color detection
task, while recording eye movements. Specifically, we controlled
the conditional probability of occurrence of the different colors,
such that some colors allowed predicting the target occurrence
whereas the others did not. We evaluated statistical learning
by measuring reaction times (RTs) as a function of color
predictability (Abla and Okanoya, 2009; Barakat et al., 2013),
while visual attention allocation was estimated by comparing
the position, velocity and acceleration of the eyes with respect
to those of the stimuli. The aim of the current study was to
provide evidence in favor of one or the other aforementioned
model, by comparing the attentional allocation to both the
predictive and predicted stimuli in trials where a target was
present or not.

MATERIALS AND METHODS

Participants
Nineteen healthy participants (mean age = 24.4, SD = 2.98,
12 females) took part in the experiment. All of them reported
normal or corrected-to-normal vision. The experiments were
carried out according to the Declaration of Helsinki and were
approved by the Ethics Committee of the Université catholique
de Louvain. Written informed consents were obtained from all
the participants.

Experimental Design and Equipment
The experiment took place in a dim and quiet room, and lasted
for around 40 min. The participants were seated comfortably
on a chair in front of a 19′′ CRT screen, with a 75 Hz refresh
rate, with their head resting on a chinrest 58 cm from the
screen to ensure stability during the eye-tracking recordings. An
Eyelink© 1000 + eye tracker (SR Research Ltd., Kanata, Ontario,
Canada) monitored eye movements and blinks at a sampling
frequency of 500Hz. The task was implemented using the version
3.0.9 of the Psychotoolbox (Brainard, 1997) with Matlab 7.5
(The MathWorks, Natick, MA, USA).

The experiment consisted of a color detection task: the
participant had to click on a computer mouse with the right
index finger whenever one of the two dots (1◦ wide) moving
on the screen featured the target color. The experiment was
composed of eight blocks lasting 4 min each. Between the
4th and 5th block, the participants were allowed to have
a few minutes’ break, during which the light was turned
on. Blocks were composed of 108 trials, and a different
target color (n = 6) was designated every 18 trials, by
displaying a large dot (4◦ wide) of that color at the center
of the screen for 1500 ms. During each block, each of
the six possible dot colors was used as target color, in
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randomized order. Each correct detection was signaled by
a positive auditory feedback and associated to a monetary
reward of 2 cents, while each wrong answer was associated
with a negative auditory feedback and a negative reward
of−2 cents.

In each trial, the two colored moving dots were displayed
over a gray background (70% of the maximum luminance of
the screen) and moved along two circular paths (16◦ wide),
starting from the center of the screen and heading upwards,
such that the right dot moved clockwise toward the right
part of the screen, and the left one anticlockwise to the
opposite side (Figure 1A). The two dots always had the same
velocity (180◦/s), which was kept constant across trials; the
total duration of the circular displacement of the colored dots
was then 2000 ms. When the two moving dots were about
midway, between 700–1500 ms after trial onset (randomized

across trials), they both changed color simultaneously. Trials
were separated by a 300 ms interval during which the screen
remained gray. This particular design, i.e., the circular motion
of the stimuli, was chosen to elicit spontaneous eye movements
while driving the subject to fixate the center of the screen
between each trial, even though no fixation cross was displayed.
The six possible colors of the dots were red, blue, orange,
brown, green and purple, and the two dots never had the same
color.

Importantly, the probability distribution of the colors
appearance on the screen was not random. In the first part of the
trial, i.e., before the dot changed color, all the colors (including
the targets) appeared with the same probability, but in the
second part of the trial, the colors were conditional on the colors
displayed in the first part. In particular, the colors were randomly
split into two groups: two colors, selected pseudo-randomly

FIGURE 1 | (A) Experimental Design. The upper part is a schematic representation of a whole trial, while the lower part of the picture represents the successive
stages of a block. The dashed line represents the range of dot positions in which a change of color may occur. (B) An example of transition probabilities between
colors is represented. Two colors were always associated to each other (conditional probability = 1, predictable colors) while the remaining colors all shared a
conditional probability equal to 0.33 (unpredictable colors). The transition probabilities of the colors were pseudo randomized between subjects.
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between participants, predicted each other with a probability of
100%, while the remaining four colors predicted each other with
a probability of 33% (Figure 1B). Moreover, the colors had the
same overall frequency of occurrence, both in the first and second
part of each trial. At the end of the experiment, participants were
verbally asked if they had noticed any difference between the
first and second parts of the trial, the left and right spots, and
between colors. None of them reported any explicit bias in the
experiment.

Data Analysis
Reaction Time Analysis
First, we log-transformed the RTs in order to make their
distribution closer to normal and removed the outliers (over
±3 SD, around 1% of the data). Second, since we found that the
timing (700–1500 ms) of the color change affected the RTs for
color detection in the second part of the trial (negative correlation
between RTs and color change delay: R = −0.35, p < 0.0001),
we removed this effect by considering the residuals of this
regression. So the generalized linear mixed models (GLMM)
analyses described below included as dependent variable the
difference between the RT data and the predicted values obtained

from the regression, effectively removing this influence from
the data. There was no such effect in the first half of the
trials.

Eye Movement Analysis
By inspecting the data we determined that taking into account
only the distance between the eye and stimulus positions was
not an effective way to determine attention allocation. As shown
in Figure 2A, in trials in which the participants did not make
a saccade toward one of the stimuli, the mere distance between
the eyes and the two dots was poorly informative in terms of
the actual attentional allocation. In contrast, comparing also
the velocity and acceleration of the eyes with those of the
targets (Figure 2B) revealed more accurately on which dot
attention was allocated. This is consistent with the observation
that subjects can track moving stimuli while maintaining their
gaze confined in a narrow area and away from the stimuli (Hafed
et al., 2008). Therefore, we combined all these measures in a
single value, namely the Mahalanobis distance (Mahalanobis,
1936; De Maesschalck et al., 2000), to determine which dot
was being tracked by attention. Specifically, we computed
the Mahalanobis distance between the position, velocity and

FIGURE 2 | (A) Example of eye movements during a trial: the colored spots represent the beginning (green) and end (purple) of the eye trace. In this particular
example, the position of the eyes changed little throughout the trial. The red/orange and the blue/cyan traces are the paths of the two dots for the first/second part of
the trial. (B) The graph to the left shows the Mahalanobis distance between the eyes and the dots following the left (blue) and right (red) trajectories/paths in the first
half of the trial. The Mahalanobis distance with the two dots was relatively large in this particular trial (around 42) because the position and acceleration profiles of the
eyes differed strongly from the ones of the dots, as shown on the graphs on the right of the figure, which illustrate the normalized velocity, the position and the
normalized acceleration of the dots (blue—left, red—right) and gaze (black). The position is reported in pixel, whereas the trial-wise normalization of velocity and
acceleration was performed by dividing all values by the maximum of their absolute value. The velocity of the gaze, however, followed more closely the velocity of the
right dot, which indicated attention allocation to the right in this example trial.
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acceleration of the eyes and those of each of the two dots.
A binary variable representing attentional allocation to the
right/left was computed, assigning a value of one when the
distance to the right/left dot was smaller than the distance
to the left/right dot. This variable was then aligned either on
the trial onset, or on the color change occurring around the
middle of the trial and downsampled to 10 Hz in order to limit
the number of time bins to analyze. For each 100 ms time bin,
the total number of trials in which attention was allocated to the
left/right dot was computed and used as a binomial variable in
GLMM.

Statistical Methods
All the analyses were performed with the SAS 9.3 Software
(SAS Institute, Cary, NC, USA), by means of GLMM. We ran
GLMM on log-transformed RT data, modeled as a normally
distributed variable. In this case the variables included were
PREDICTABILITY, differentiating the predicted from the non-
predicted colors, PART, which considered if the target was in the
first or in the second part of the trial, and BLOCK, a continuous
variable from 1–8. The SUBJECT factor was considered in the
random models, along with all the other factors.

We ran several GLMM on the eye position data as well. In
all of them, eye position was modeled as a binomial variable
(see above). In the first GLMM we analyzed whether attention
was more likely to be allocated on the target dot in trials where
it was present (see Figure 4A). This analysis was performed
mostly to confirm the validity of the Mahalanobis distance used
in the present study, since we expected a strong attentional bias
toward the target dot. The explanatory variables were TARGET-
SIDE and TIME-BINS, the first one being representative of
the position of the target (right or left side), the second one
indicating the bin order (from 1 to 5, i.e., from 0 to 500 ms
following stimulus display for the first half, and following color
change for the second half). The residual covariance structure
of the successive time bins was modeled with different variance
parameters for each bin (variance component), in order to
account for the correlations between successive bins. Because of
limitations due to lack of convergence of the fitting algorithm
used to optimize the GLMM, these analyses were performed
separately for the first and second PART of the trials. In the
second GLMM, we evaluated the allocation of attention to the
predictive color when displayed together with a non-predictive
color, while none of the stimuli were targets (see Figure 4B).
The dependent variable in this case was the attentional allocation
to the predictive color, and the independent variables were
SIDE and TIME-BINS (same convention as before). Finally,
in the last GLMM, we compared the trials in which a target
shown in the second part of the trial was either predicted or
non-predicted, while non-predictive colors were displayed on
the other side. In this case the dependent variable indicated
attentional allocation to the target, and the explanatory variables
were PREDICTABILITY and TIME-BINS (from 1000 ms before
the color change to 500 ms after the color change; see
Figure 4C).

Finally, in order to investigate the timing of the effect of
the color predictability, we also performed analyses on RT

and attentional allocation restricted to the first block of the
experiment, in which we split the first block in three sub-blocks
of 36 trials each. Here the dependent variable was either the
log-transformed and subject-wise normalized RT or the average
of the attentional allocation variable over the whole duration
of the first half of the trial. The explanatory variables were
PREDICTABILITY and SUB-BLOCK.

RESULTS

Reaction Time Analysis
The results of the GLMM analysis on RTs revealed a significant
main effect of the factors PREDICTABILITY (F(1,18) = 5.46,
p = 0.0313), and BLOCK (F(7,126) = 6.90, p< 0.0001). Specifically,
the BLOCK effect consisted of a decrease in the RTs across
blocks, as showed in Figure 3 (Figure 3A shows RT from
the first part of the trial, Figure 3B from the second part),
while the PREDICTABILITY effect consisted of faster responses

FIGURE 3 | (A) The upper figure shows the reaction times (RTs) in ms for the
two predictability conditions in the first part of the trials (red predicted colors,
blue unpredicted colors). The blocks are represented on the x-axis.
(B) The lower figure shows RTs as a function of the blocks for the second part
of the trials (red predictable colors, blue unpredictable colors). In both panels,
error bars represent standard errors of the mean computed within each block.
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FIGURE 4 | (A) Overt attention allocation for the trials in which a target occurred either in the first half (blue line) or in the second half (green line) of the trial. Time is
shown along the x-axis, the proportion of trials in which targets attracted attention is on the y-axis. The 0 value on the x axis corresponds either to the beginning of
the trial (first half) or to the change of color (second half). A schematic depiction of the analyzed conditions is shown on the right. The target could appear either in the
first part (blue “T”) or in the second part (green “T”). (B) Overt attention allocation to predicted/predictive stimuli when not task-relevant. On the x-axis time is in ms,
on the y-axis the proportion of trials in which predictive colors attracted attention is shown, indicated as the difference between the predicted and the non-predicted
dots. A value of 0 on x-axis corresponds either to the beginning of the trial (first half) or to the change of color (second half). On the right, the predicted (“P”) and non
predicted (“nP”) conditions are illustrated. (C) Overt attention allocation to the predicted stimulus when task relevant. On the x-axis time is in ms, while on the y-axis
there is the relative proportion of trials in which attention is captured by the predictive stimulus when the target is either predictive or not. A value of 0 on the x-axis
corresponds to the time of the change of color. The two conditions are illustrated on the right of the panel: in the first case the target is preceded by a predictive color
(red “T”), whereas in the second case the target is preceded by a non-predictive color (blue “T”).

for predicted targets. Although the PART factor revealed no
significant difference between the first and second part of the trial
(F(1,18) = 1.30, p = 0.2683), the interaction between the factors
PREDICTABILITY and PART was significant (F(1,18) = 6.20,
p = 0.0228), revealing, as confirmed by pairwise comparisons,
a difference between the predicted and non-predicted colors
only in the second part of the trials (Figure 3B; t(1,18) = 3.14,
Tukey-Kramer adjusted p = 0.0266). This last result confirmed

that the participants learnt implicitly the color association
between the stimuli displayed in the first and second parts of
the trials, and that learning this association helped them to react
faster to the occurrence of the target color when appearing in the
second part. The lack of significant interaction between BLOCK
and PREDICTABILITY (p > 0.1) suggested that statistical
learning occurred very early during the experiment, as already
reported in a previous study (Turk-browne et al., 2009).
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Attention Allocation Analysis
As expected, when analyzing target trials, we found a progressive
allocation of attention to the target (see Figure 4A; main
effect of TIME-BINS: first PART: F(4,72) = 27.31, p < 0.0001;
second PART: F(4,72) = 41.38, p < 0.0001), irrespective of
whether it was displayed on the left or right side of the screen
(main effect of TARGET-SIDE: first PART: F(1,18) = 2.53,
p = 0.13; second PART: F(1,18) = 0.87, p = 0.36; interaction:
first PART: F(4,72) = 0.55, p = 0.70; second PART: F(4,72) = 0.62,
p = 0.65). Tukey-corrected pairwise comparisons for the first
part of the trial showed that the preferential allocation of
attention to the target was significant only for the last bin
(all comparisons between 5th bin and other bins: p < 0.001),
whereas for the second part, all pairwise comparisons were
significant (p < 0.05) except between the 1st and 2nd, 3rd
and 4th and 4th and 5th bins. Overall, these results highlight
the attentional capture by the target both in the first and
second part of the trial, confirming the validity of the attention
allocation measure used in the current study. Moreover, they
suggest that participants were slower in allocating attention to
the target in the first part of the trial (5th bin, around 450 ms)
than in the second part (from the 3rd bin on, starting around
250 ms). However, we cannot exclude that this unexpected
discrepancy could also be explained by the fact that, early in
the first part of the trial, targets were closer from each other
than during the second part of the trial. This larger proximity
between the stimuli could have hampered the sensitivity of
our measure to detect differential attentional allocation to the
target side.

We then looked at the allocation of attention to the predictive
stimuli when no target was present on the screen. We failed
to find any significant change in attentional allocation to the
predictive stimulus over time (see Figure 4B; main effect of
TIME-BINS: first PART: F(4,72) = 0.07, p = 0.99; second PART:
F(1,18) = 0.13, p = 0.7196), irrespective of the stimulus side (main
effects and interactions with the SIDE factor: all p > 0.15).
The intercept of the model, representing the overall allocation of
attention on the predicted stimulus irrespective of both TIME-
BINS and SIDE was not significantly different from zero (p > 0.7
in both PARTS). These results suggest that regularities, when
they were not instrumental to the task at hand, did not capture
attention.

Finally, we compared trials in which a target appearing in the
second part was either predicted or not by the color shown in
the first part of the trial. Here the TIME-BINS factor included
15 bins, ranging from 1000 ms before to 500 ms after target
onset. Since the target could appear as early as 750 ms after the
trial onset, the bins ranging between −1000 ms and −700 ms
contained slightly fewer trials than the later bins. We found
that attention was preferentially allocated to the target when it
was predicted (main effect of PREDICTABILITY: F(1,18) = 4.81,
p = 0.042; see Figure 4C). There was also a significant effect of
TIME-BINS (F(14,252) = 14.56, p < 0.0001), merely indicating
the progressive allocation of attention to the target location,
but no significant interaction (F(14,252) = 0.21, p = 0.99). This
lack of interaction suggested that attention might have been
driven towards the predictive stimulus already in the first part

of the trial. In order to confirm this hypothesis, we tested the
same model but restricted to the first part of the trials (i.e.,
the first 8 bins) and still found a significant PREDICTABILITY
effect (F(1,18) = 5.71, p = 0.028), with no significant interaction
(F(7,126) = 1.43, p = 0.20). This confirms that attention was biased
during the first part of the trial toward the colored dot, which
predicted target occurrence in the second part.

Temporal Dynamics of Learning and
Selective Attention in the First Block
In order to determine when statistical learning effects started to
influence the RT, we performed a GLMM restricted to the data
from the first block only and considering the SUB-BLOCK (n = 3,
36 trails each) and PREDICTABILITY as factors. We found
no main effect of SUB-BLOCK (F(2,29) = 0.67, p = 0.5193) or
PREDICTABILITY (F(1,17) = 3.80, p = 0.0678), but a significant
interaction between these two factors (F(2,251) = 5.31, p = 0.0055).
The difference between the two PREDICTABILITY conditions
became significant from the second sub-block (see Figure 5A,
Tukey-corrected pairwise comparisons, all p≤ 0.05; t(251) = 3.10,
p = 0.0260). In Conclusion, around 72 trials seem to be enough
to learn the color association between predictive and predicted
colors.

Finally, we analyzed the effect of PREDICTABILITY on
the allocation of attention to the target, restricted to the first
block (and to time bins preceding the target onset; Figure 5B).
We found again only a significant effect of PREDICTABILITY
(F(1,18) = 7.15, p = 0.015), showing that the preferential allocation
of attention to the predicted location of the target occurred very
early.

DISCUSSION

In the current study we investigated the influence of statistical
regularities on the allocation of visual attention in a color
detection task. To do so, we manipulated the conditional
occurrence of a sequence of colored stimuli, while recording
the RT and eye position. None of the participants reported
any awareness of the conditional occurrence manipulation,
suggesting that it remained implicit during the whole
experiment. As previously reported in the literature (Turk-
browne et al., 2005; Dale et al., 2012), despite being implicit,
the temporal predictability of the targets affected markedly the
behavioral results, as revealed by shorter RTs in the detection
task. Strikingly though, we found that this behavioral advantage
was already measurable after a few dozen of trials, proving its
remarkable efficacy.

Regarding visual attentional allocation, we report that
predictability biases attention only when regularities are
instrumental to the execution of the task. In other words,
attention was biased by the regularities only when the target
was predicted, whereas when the predicted stimulus was not
the target, and therefore the statistical structure of the sequence
was not helpful to perform the task, both predictive (first part
of the trial) and predicted stimuli (second part of the trial)
failed to either attract or divert attention. These findings are in
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FIGURE 5 | (A) RTs restricted to the first block (red predictable colors, blue
unpredictable colors). On the x-axis, the three sub-blocks are, on the y-axis
the log-transformed and normalized RTs are represented. (B) Attention
allocation restricted to the first block (red predictable colors, blue
unpredictable colors).

agreement with the model proposed by Mackintosh (1975), in
which predictable stimuli, when either rewarding or related to
the behavior of the agent, attract attention.

In the context of the associative learning field, attention
is considered as having different possible functions (Gottlieb,
2012): attention for learning, attention for action and attention
for liking. Attention for learning drives attention towards
uncertain stimuli, in order to learn new regularities in the
environment. Attention for action refers to the allocation of
attention in order to optimize the achievement of a certain
goal, while attention for liking is attracted to pleasurable and
rewarding stimuli. Our finding that regularities attract attention,
when they predict the target appearance, is in accordance with
the concept of attention for action. On the other hand, predictive
stimuli did not attract attention when they were predicting the
occurrence of a distractor, even though they allowed inferring
that the target would not appear on that side. This may be
explained by the implicitness of the learning, which could have
prevented participants to make such inference (Custers and
Aarts, 2011). The attentional allocation to stimuli predicting the
target appearance is also in accordance with attention for liking,
since finding the target was always associated to a reward.

Regarding attention for learning, we found that, when
focusing on the first block, only 72 trials were necessary for the
RT effect to emerge. Similarly, the bias in visual attention toward
the predictive stimuli reached significance in the first block as
well. These findings seem to indicate that both effects appeared
concurrently, in apparent contradiction with the hypothesis
that attention would be biased towards potential sources of
relevant information such as statistical regularities before any
behavioral advantage emerges (Hogarth et al., 2008; Holland and
Maddux, 2010), thus being causal in the development of this
advantage. This suggests instead that both the faster detection of
predicted targets and the preferential allocation of attention to
the predicted targets are part of the same underlying statistical
learning phenomenon. Obviously, it could also be argued that
no temporal dissociation between the attentional allocation and
the learning processes was found in the present study because of
a lack of sensitivity either of our design or of our measurement
method. Possibly, a more complex statistical design, requiring a
longer learning time, could allow us to dissociate the time course
of the attentional allocation from the behavioral signature of
learning.

Nevertheless, how this statistical learning process develops
during the early stage of the task, either before or after attention
becomes preferentially allocated to the statistical structure,
remains unanswered. It could be proposed that statistical
learning occurs pre-attentively, i.e., in the absence of attentional
allocation (Li, 2000; Zénon et al., 2009a). But since attention
is thought to be necessary for the learning of the statistical
regularities to occur (Turk-browne et al., 2005), it is likely that
during the early phase of the task, learning takes place when,
thanks to the random exploration of the scene by visual attention,
attention is allocated by chance to the relevant location.

In the context outlined by our design, it seems that attention
allocation is mainly biased by the optimization of the task’s
performance. This is in accordance with past computational
studies proposing that visual selection is a mechanism involved
in solving the inference problem of predicting the evolution of
the environment to optimize task performance (Dayan et al.,
2000; Kruschke, 2003). However, this conclusion is at odds
with the one from a recent study showing that, even when
irrelevant to the task, regularities attracted covert attention
(Zhao et al., 2013). It is noteworthy that in Zhao’s study, the
difference between attentional allocation on informative and
non-informative stimuli was small, and most importantly, the
regularities were present in a stimulus feature that was irrelevant
to the task. In contrast, in our experiment, regularities involved
the main feature used during the task, even when no target
was present, i.e., the color of the dots. In addition, Zhao et al.
(2013) investigated specifically covert attention by looking at
discrimination performance while participants maintained their
gaze on a central fixation point. In contrast, we evaluated
attentional allocation by looking at eye position, speed and
velocity with respect to stimulus position, speed and velocity.
This novel measure of attention allocation does not allow to
dissociate overt from covert attention because, even tough, it
relies on eye movements, it measures also attentional allocation
to peripheral stimuli. In some instances, our measure indexes
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the fixation of gaze on one of the targets (i.e., overt attention),
whereas in other cases we highlight attentional allocation to
one specific peripheral location while the gaze remains fixed
on a central position, corresponding to covert attention (Filali-
Sadouk et al., 2010; Zénon et al., 2014). The choice of using
the eye velocity and acceleration signals, in addition to their
position, to track the allocation of attention, was driven by
the observation that observers can track moving stimuli while
maintaining their gaze away from them. As reported in a
study by Hafed et al. (2008), non-human primates are able
to track an imaginary point located between two moving
stimuli while maintaining the moving stimuli in peripheral
vision. In our experiment, as illustrated in Figure 2, even
when the position of the eyes was kept at the center of the
screen, the velocity profile revealed clearly that the subject was
in fact actively tracking one of the two dots, thus revealing
preferential attentional allocation. We confirmed the validity of
our approach based on velocity and acceleration in the present
study by showing, as expected, a strong bias to the target
stimulus when displayed on the screen. More experiments will
be needed to determine whether the discrepancy between our
findings and the ones reported in the study of Zhao et al.
(2013) is caused by the different attentional measures (covert
vs. overt) or by the task-relevance of the visual features guiding
attention.

To summarize, this study shows how implicit learning, as
many other cognitive processes (Graf Estes et al., 2007; Brady
et al., 2009; Zénon et al., 2009b; Umemoto et al., 2010),
affects visual attention in a target detection task. When stimuli
become predictable through the manipulation of conditional
occurrences, these statistical regularities are learned very rapidly,
and visual attention gets attracted to the informative stimuli
when they are instrumental to the task at hand.
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