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ABSTRACT
Recently, researchers have been increasingly focusing on microRNAs (miRNAs) 

with accumulating evidence indicating that miRNAs serve as a vital role in various 
biological processes and dysfunctions of miRNAs are closely related with human 
complex diseases. Predicting potential associations between miRNAs and diseases 
is attached considerable significance in the domains of biology, medicine, and 
bioinformatics. In this study, we developed a computational model of Personalized 
Recommendation-based MiRNA-Disease Association prediction (PRMDA) to 
predict potential related miRNA for all diseases by implementing personalized 
recommendation-based algorithm based on integrated similarity for diseases and 
miRNAs. PRMDA is a global method capable of prioritizing candidate miRNAs for all 
diseases simultaneously. Moreover, the model could be applied to diseases without 
any known associated miRNAs. PRMDA obtained AUC of 0.8315 based on leave-one-
out cross validation, which demonstrated that PRMDA could be regarded as a reliable 
tool for miRNA-disease association prediction. Besides, we implemented PRMDA on 
the HMDD V1.0 and HMDD V2.0 databases for three kinds of case studies about 
five important human cancers in order to test the performance of the model from 
different perspectives. As a result, 92%, 94%, 88%, 96% and 88% out of the top 50 
candidate miRNAs predicted by PRMDA for Colon Neoplasms, Esophageal Neoplasms, 
Lymphoma, Lung Neoplasms and Breast Neoplasms, respectively, were confirmed by 
experimental reports.

INTRODUCTION

Discovered in Caenorhabditis elegans at first, 
microRNAs (miRNAs) are a highly profuse class of short, 
with length of 21–24 nucleotides, endogenous single-
stranded non-coding RNAs (ncRNAs) [1, 2]. Due to the 
diversity in sequence and expression patterns, miRNAs 
play important roles in regulating genes in both animals 
and vegetation by targeting miRNAs for cleavage or 

translational repression [3, 4]. The first two detected 
miRNAs lin-4 and let-7 are considered to be unique when 
first described, which were found to control developmental 
timing in Caenorhabditis elegans. However, several 
following findings suggested that miRNA genes were 
probably one of the most phylogenetically numerous and 
miscellaneous classes of ncRNA genes [5–7]. Since the 
discovery of the first two miRNAs, thousands of miRNAs 
have been discovered in the eukaryote ranging from 
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fungus to mammals on the basis of copious experimental 
implementations and computational models in the past few 
years. With increasing genetic and bioinformatics analysis, 
researchers have found that  by yielding a negative impact 
on the expression level of their target genes, miRNAs 
work through two different mechanisms: the miRNAs 
could perfectly or near-perfectly bind to their binding 
sequences within the 3′ untranslated regions (UTR) of their 
target mRNAs to indirectly induce cleavage of mRNA or 
control gene expression at the translational phase through 
imperfect target matching [8]. Furthermore, more and 
more  evidences accumulated by substantial experiments 
indicate that miRNAs have a significant impact on 
various crucial cellular processes including propagation, 
differentiation, development, apoptosis, transduction, 
metabolism, viral infection and so on [4, 9–15]. Besides, 
plenty of studies have shown that miRNA mutations or 
mis-expression are closely related with various human 
cancers, indicating that miRNAs could perform as tumor 
suppressors and oncogenes [16]. For instance, Zhang 
et al. confirmed that downregulation of miRNA-181d, 
probably through reverse regulation on a microRNA-
181d gene (Na+/K+ transporting ATPase interacting 2), 
could suppress the development of pancreatic cancer 
cell lines [17]. MiRNA is also common in hepatocellular 
carcinoma, an example is that Au SL et al.’s finding 
suggests that enhancer of zeste homolog 2 (EZH2) exerts 
its prometastatic function through epigenetic silencing of 
multiple tumor suppressor miRNAs including miR-101, 
miR-139-5p, let-7c,  miR-125b, and miR-200b [18]. For 
lung cancer, one of the pivotal causes contributing to most 
cancer deaths in the United States, it has been verified 
that regular process of DNA methylation reinstatement, 
re-expression of methylation-silenced tumor suppressor 
genes, and inhibition of tumorigenicity was owing to the 
compulsory miR-29 expression in cell lines of lung cancer 
[19]. MiRNA expression was proved to be related to tumor 
formation, progression, development  as well as reaction 
to treatment by amassing experimental evidence, from 
which we could deduce that miRNA has the  potential 
practical application as biomarkers for diagnose, prognosis 
and prediction [20]. Lu et al. conducted a comprehensive 
analysis to the human miRNA-disease association 
database. As a result, the analysis unveiled significantly 
statistical patterns of miRNA-disease associations [21]. 
Taking a considerable number of biological databases 
related with miRNA into consideration, developing 
innovative and efficient computational models to 
identify possible miRNA-disease associations is urgently 
required. In Recent years, more and more new miRNAs 
and diseases have been discovered by researchers with 
the development of technology. Meanwhile, substantial 
number of associations between miRNAs and diseases 
remain to be identified. There is no doubt that prioritizing 
related-diseases and related-miRNAs for newly discovered 
miRNAs and diseases could effectively contribute to 

promoting disease biomarker detection for the prevention, 
diagnosis and treatment of human diseases [22]. It is 
also considered as a critical function for a method of 
identifying miRNA-disease associations. 

Plenty of computational models for potential 
miRNA-disease association prediction have been 
proposed, based on the conjecture that miRNAs having 
similar function are likely to be related to phenotypically 
similar diseases [23–25]. For instance, Jiang et al. [26] 
developed a network-based computational approach to 
predict miRNA-disease associations by taking advantage 
of integration of  miRNA functional network, human 
phenome-miRNAome network, and known miRNA-
disease association network. However, the method 
only adopted local neighbor information, which greatly 
limited the performance. Moreover, depending on the 
postulation that target genes will perform abnormal 
regulation if miRNAs are included in a specific tumor 
phenotype , Xu et al. [27] devised a model according 
to the miRNA target-dysregulated network (MTDN) to 
infer new disease related miRNAs. What MTDN differs 
from other network-based model is that it identified 
dysregulated network edges (regulations) rather than 
dysregulated nodes (miRNAs) to assemble disease-
related signatures. But the MTDN only focused on 
prostate cancer, topological feature difference may result 
in improper outcomes when we applied MTDN to other 
diseases. Besides, Chen et al. [28] developed a method, 
HGIMDA, integrating various known heterogeneous 
databases including disease semantic similarity, miRNA 
functional similarity, Gaussian interaction profile kernel 
similarity and experimentally validated miRNA-disease 
associations into a heterogeneous network to identify 
potential miRNA-disease associations. HGIMDA was 
developed based on an iterative procedure to figure out the 
optimal solutions based on the integrated global network, 
where it inferred possible relationship between certain 
disease and miRNA by calculating all paths satisfying 
specific condition. However, the selection of decay factor 
in the model remains unresolved. Furthermore, Chen et 
al. [29] proposed a model of Within and Between Score 
for MiRNA-disease Association Prediction (WBSMDA) 
to predict potential miRNA-disease associations. 
WBSMDA calculated the Within-Score, finding miRNA 
achieving highest-similarity-score among miRNAs having 
relationship with the investigated disease, and Between-
Score, finding miRNA achieving highest-similarity-score 
among miRNAs without the known relationship with the 
investigated disease, to predict potential miRNA-disease 
associations. Nevertheless, result of WBSMDA shows 
that its performance is still not satisfying. By considering 
information of miRNA cluster and family , Xuan et al. 
[30] devised an approach of Prediction of microRNAs 
Associated with Human Diseases Based on Weighted k 
Most Similar Neighbors (HDMP). In the framework of 
HDMP, miRNAs in a cluster or family were assigned 
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higher weight while constructing miRNA functional 
similarity matrix to further calculate relevance score with 
investigated disease because of their higher probability 
to be related with similar diseases. In addition, random 
walk and its various variants have been broadly applied 
in bioinformatics, such as disease gene prediction [31], 
disease-related long non-coding RNAs prediction [32–34], 
drug-target interaction prediction [35, 36], disease-related 
miRNA-environmental factor interactions prediction [37] 
and disease-related microbiota prediction. Consequently, 
several miRNA-disease association prediction models 
were designed by implementing random walk to prioritize 
related miRNAs for diseases. Chen et al. [38] presented 
a method of Random Walk with Restart for MiRNA-
Disease Association (RWRMDA) by applying random 
walk with restart on the miRNA functional similarity 
network. RWRMDA made full use of global similarity 
network rather than local one, compared with previous 
models, which has been proved to improve performance. 
However, the main defect of the method is that it is not 
able to predict for diseases any known associated miRNA. 
Furthermore, another random-walk applied framework 
focusing on the functional connection between disease 
genes and miRNA targets in protein-protein interaction 
(PPI) networks at the systematic level was proposed 
by Shi et al. [39]. For the purpose of identifying the 
functional links, which was used to construct a bipartite 
miRNA-disease network, random walk analysis was 
implemented as a distance measure method. Recently, 
Xuan et al. [40] have also constructed a miRNA-disease 
association prediction model based on random walk. 
This model exploited nodes’ prior information and local 
topological structures of the different classes of nodes by 
constructing miRNA network based on paired miRNAs’ 
associated diseases information and assigning different 
weights to different nodes. Moreover, by involving protein 
information, Mork et al. [41] proposed scoring schemes 
that ranked miRNA-disease associations by combining 
protein-disease association scores and miRNA-protein 
association scores.

Apart from the aforementioned models, 
computational approaches deploying machine learning 
methods are becoming increasingly prevailing in 
bioinformatics [42–44]. Chen et al. [45] proposed a 
model of Regularized Least Squares for MiRNA-Disease 
Association (RLSMDA) to identify potential association 
between miRNAs and diseases, which is a global and 
semi-supervised method without need of negative 
samples. RLSMDA is capable of predicting potentially 
associated miRNAs for diseases without known related 
miRNAs. However, the performance is not satisfactory 
enough. Furthermore, a computational model of Restricted 
Boltzmann machine for multiple types of miRNA-disease 
association prediction (RBMMMDA) was devised in 
order to discern different  miRNA-disease association 
types [46]. RBM model is a bilayer undirected graphical 

model including layers of visible modules, disease, and 
invisible modules, unknown features describing miRNA-
disease associations, to predict both the miRNA-disease 
associations and its corresponding types. Nevertheless, 
parameter selection remains unresolved in RBMMMDA. 
In conclusion, previous models have the following 
limitations. First of all, some methods need negative 
samples, which is difficult to identify in miRNA-disease 
association network. Besides, the information provided 
by the known miRNA, disease and miRNA-disease 
networks has not been fully exploited. Furthermore, 
some models rely heavily on parameter selection, 
which remains unsolved at last. Therefore, a reliable 
and effective approach for predicting potential miRNA-
disease associations is eagerly necessitated. In order to 
clearly illustrate the input, output and limitation of each 
computational models aforementioned, we published a 
comparison table, Supplementary Table 1.

In this study, we proposed a novel computational 
method of Personalized Recommendation-based MiRNA-
Disease Association prediction (PRMDA). Recommendation 
algorithms, as a universal computational algorithm, has 
been applied in many aspects including bioinformatics [47]. 
The reason why we choose personalized recommendation 
algorithm is that among all recommendation algorithms, 
personalized recommendation algorithm is remarkably 
superior in dealing with data sparsity and scalability 
compared with other algorithms. Generally, in e-commerce 
system, personalized recommendation algorithm could 
effectively solve the data sparseness and cold start problems 
without much participation of users, which corresponds 
to our study of sparsely distributed data of miRNAs and 
diseases and prioritizing potentially associated miRNAs for 
new diseases without known related miRNAs. In our study, 
potential miRNA-disease associations are recommended 
with high priority by taking the information of related 
miRNAs and diseases into account for each miRNA-
disease pair respectively, as the name “personalized” 
suggests, to exploit the similarity network expansively. By 
integrating known miRNA-disease association network, 
miRNA-miRNA functional similarity network and disease-
disease semantic similarity network to predict potential 
miRNA-disease associations, PRMDA is a global method 
that is capable of prioritizing miRNAs for all diseases 
simultaneously. Besides, PRMDA could prioritize 
candidate miRNAs for diseases without any known 
related miRNAs. More importantly, we implemented 
personalized recommendation-based algorithm on 
integrated similarity network for miRNAs and diseases, 
based on miRNA functional similarity network, disease 
semantic network and Gaussian interaction profile kernel 
similarity, to remarkably reduce data sparseness. As a 
result, PRMDA showed superior performance in leave-
one-out cross validation by obtaining superior AUC 
result, which outperformed previous prediction models. 
Besides, in the case studies of a few important human 
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cancers, more than 80% out of top 50 predicted miRNAs 
for Colon Neoplasms (CN), Esophageal Neoplasms (EN), 
Lymphoma, Lung Neoplasms (LN) and Breast Neoplasms 
(BN) have been experimentally validated. We could draw 
a conclusion that PRMDA is an efficient and reliable 
miRNA-disease association prediction model.

RESULTS 

Performance evaluation

In order to evaluate the prediction accuracy 
of PRMDA, we implemented leave-one-out cross 
validation (LOOCV) based on verified miRNA-disease 
associations recorded in the HMDD V2.0 database 
[48], along with performance comparison among five 
advanced computational approaches for miRNA-disease 
association prediction: HGIMDA [28], RLSMDA [45], 
HDMP [30], WBSMDA [29], and RWRMDA [38]. For 
the procedure of LOOCV, each known disease-related 
miRNA was regarded as a test sample consecutively; and 
the training set was composed of all other 5429 known 
miRNA-disease associations. In each turn, a test sample 
was considered to be a successful prediction if its rank 
was higher than the given threshold, while compared with 
all the candidate miRNAs, having no verified association 
with the investigated disease. As for the disease with only 
one known related miRNA, which will have no related 
miRNAs in LOOCV, PRMDA could use constructed 
global network to infer the potentially associated miRNAs 
for the disease according to the verified related miRNAs 
of other similar diseases. In order to better illustrate the 
performance of PRMDA, Receiver operating characteristics 
(ROC) curve was drawn by plotting the true positive rate 
(TPR, sensitivity) against the false positive rate (FPR, 
1-specificity) according to different thresholds. Sensitivity 
measures the ratio of positives that are correctly identified, 
which denotes the proportion of the test miRNA-disease 
associations scoring points greater than the assigned 
threshold in this study. In contrast, specificity measures 
the ratio of negatives that are correctly identified, which 
indicates the proportion of negative miRNA-disease pairs 
scoring ranks less than the given threshold. We calculated 
Area under the ROC curve (AUC) to evaluate the forecast 
capability of PRMDA. Here, AUC = 1 suggests perfect 
prediction performance of the evaluated model, and AUC = 
0.5 means that the method makes the prediction randomly.

The performance comparison in terms of LOOCV 
results was shown in Figure 1. As a result, in the LOOCV, 
PRMDA, HGIMDA, RLSMDA, HDMP, WBSMDA, and 
RWRMDA achieved AUCs of 0.8315, 0.8077, 0.6953, 
0.7702, 0.8031, and 0.7891, correspondingly. It is apparent 
that the performance of PRMDA outperformed previous 
prediction models to a great degree based on known 
miRNA-disease associations. We can draw a conclusion 
that PRMDA has displayed accurate and credible 

prediction performance and possesses the practical value 
to uncover unknown miRNA-disease associations.

Case studies

In order to further demonstrate the reliability 
precision of PRMDA, we carried out case studies of 
several vital human cancers. Prediction results were 
confirmed by matching miRNA-disease associations 
verified by experimental reports to another two databases: 
miR2Disease [49] and dbDEMC [50]. We implemented 
three kinds of case studies in all. Firstly, for case studies 
of CN, EN and Lymphoma, we implemented PRMDA for 
prediction on all miRNA-disease associations recorded 
in the HMDD V2.0 database. In the second type of case 
study for LN, we removed all known related miRNAs 
with LN and then implemented PRDMA to infer potential 
related miRNAs for LN, which means that PRDNA could 
also work for diseases having no related miRNA. As for 
the case study of BN, we applied PRMDA to identify 
potential miRNA-disease associations based on the 
HMDD V1.0 database and matched the results with the 
data in miR2Disease, dbDEMC and HMDD V2.0.

As the most common type of gastrointestinal 
cancer, CN, poses great threaten to human’s lives 
[51, 52]. Owing to the intricacy of taking precautions 
against metastatic disease with apposite therapies, 
statistics indicate that half of the patients suffering 
from CN die of metastatic disease within 5 years after 
being diagnosed [53]. In the past few years, researchers 
managed to identify several related miRNAs for CN. For 
instance, Guo et al. found that an omnipresent absence 
of miR-126 in CN lines in comparison with normal 
human colon epithelia. Consequently, the experimental 
evidence proved that the down-regulation of miR-126 
weakens its function as growth suppressor in CN cells, 
which indirectly promotes CN development [54]. The 
miRNA hsa-mir-145 down-regulates the insulin receptor 
substrate-1 (IRS-1), an abutting protein for receptors, 
and inhibits the growth of CN cells [55]. In our case 
study of CN, PRMDA was implemented to select the 
highest-rank miRNAs from candidate miRNAs for CN 
(See Table 1).The result suggests that all of the top ten 
candidate miRNAs have been confirmed to be related to 
CN. Besides, 92% of top 50 prioritized miRNAs were 
confirmed to have association with CN. Taking miRNA 
has-mir-21 (rated 1st in prediction list) for example, 
numerous experiments validated the significantly higher 
expression of has-mir-21 in CN pathological tissue than 
adjacent common tissue [56, 57]. In addition, studies 
also confirmed that high expression of hsa-mir-155, 
ranked 2nd in prediction list, was closely correlated 
with lymph node metastases, which promoted CN tumor 
growth [58]. The miRNA hsa-let-7a, ranked 3rd in the 
list, was detected to perform down-regulation in clinical 
experiment for CN patients [59].
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Table 1: Prediction list of the top 50 prioritized miRNAs associated with Colon Neoplasms based 
on known associations in HMDD V2.0 database

miRNA Evidence Score miRNA Evidence Score
hsa-mir-21 dbDEMC, miR2Disease 0.403491 hsa-let-7d dbDEMC 0.331462
hsa-mir-155 dbDEMC, miR2Disease 0.392804 hsa-mir-127 dbDEMC, miR2Disease 0.326204
hsa-let-7a dbDEMC, miR2Disease 0.389646 hsa-mir-29a dbDEMC, miR2Disease 0.324617
hsa-mir-34a dbDEMC, miR2Disease 0.37374 hsa-mir-146a dbDEMC 0.323809
hsa-mir-20a dbDEMC, miR2Disease 0.373494 hsa-mir-221 dbDEMC, miR2Disease 0.32359
hsa-mir-200b dbDEMC 0.371881 hsa-let-7g dbDEMC, miR2Disease 0.321759
hsa-let-7b dbDEMC, miR2Disease 0.371038 hsa-mir-34c miR2Disease 0.319629
hsa-mir-125b dbDEMC 0.368865 hsa-mir-191 dbDEMC, miR2Disease 0.318579
hsa-let-7c dbDEMC 0.363012 hsa-mir-218 dbDEMC 0.316699
hsa-mir-18a dbDEMC, miR2Disease 0.36237 hsa-mir-9 dbDEMC, miR2Disease 0.311736
hsa-mir-143 dbDEMC, miR2Disease 0.359626 hsa-mir-10b dbDEMC, miR2Disease 0.310447
hsa-mir-200c dbDEMC, miR2Disease 0.357541 hsa-mir-34b dbDEMC, miR2Disease 0.309224
hsa-mir-19a dbDEMC, miR2Disease 0.352472 hsa-mir-25 dbDEMC, miR2Disease 0.309005
hsa-mir-16 dbDEMC 0.35214 hsa-mir-132 miR2Disease 0.308697
hsa-let-7e dbDEMC 0.35181 hsa-mir-30c dbDEMC, miR2Disease 0.306546
hsa-mir-19b dbDEMC, miR2Disease 0.34718 hsa-mir-106b dbDEMC, miR2Disease 0.305881
hsa-mir-141 dbDEMC, miR2Disease 0.338829 hsa-mir-29b dbDEMC, miR2Disease 0.30437
hsa-mir-92a unconfirmed 0.338446 hsa-mir-196a dbDEMC, miR2Disease 0.301877
hsa-let-7f dbDEMC, miR2Disease 0.33778 hsa-mir-429 dbDEMC 0.301279
hsa-mir-101 unconfirmed 0.336823 hsa-mir-222 dbDEMC 0.301203
hsa-mir-223 dbDEMC, miR2Disease 0.336049 hsa-mir-1 dbDEMC, miR2Disease 0.300921
hsa-mir-199a unconfirmed 0.335912 hsa-mir-205 dbDEMC 0.298187
hsa-mir-200a unconfirmed 0.335622 hsa-mir-192 dbDEMC, miR2Disease 0.296645
hsa-let-7i dbDEMC 0.333927 hsa-mir-107 dbDEMC, miR2Disease 0.296079
hsa-mir-125a dbDEMC, miR2Disease 0.333203 hsa-mir-210 dbDEMC 0.2941

Figure 1: Performance comparisons between PRMDA and five advanced disease-miRNA association prediction models 
(HGIMDA, RLSMDA, HDMP, WBSMDA, and RWRMDA) in terms of ROC curve and AUC based on the framework 
of LOOCV. As a result, PRMDA achieved AUC of 0.8315 in LOOCV, significantly outperforming all the previous computational models 
in prediction accuracy.
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Regarded as one of the most common cancer 
worldwide, EN is typically diagnosed at a partially advanced 
phase or at a phase involving lymph nodes. Besides, the 
general five-year survival rate of EN keeps at a low level, 
which requires novel miRNA-disease prediction for 
disease detection at an early stage. According to previous 
studies, miRNA deregulation are frequently detected in 
EN, suggesting that miRNAs are of great significance to 
tumorigenesis [60]. For instance, studies found that Notch-1 
specific miRNAs miR-21 and miR-34a are down-regulated 
during curcumin, a powerful inhibitor of EN growth, treatment 
[61]. And the upregulated expression of tumor suppressor let-
7a is an extremely important determining factor in reacting 
to chemotherapy by regulating IL-6/STAT3 pathway in 
esophageal squamous cell carcinoma [62]. In our case study of 
EN by implementing PRMDA (See Table 2), 8 out of the top 
10 predicted miRNAs have been validated to be EN-related by 
dbDEMC and miR2Disease datasets. Furthermore, 94% of the 
top 50 candidate miRNAs were verified.

Lymphomas are always classified into two 
types: Hodgkin Lymphomas (HL) and non-Hodgkin 

Lymphomas (NHL). HL, which is far more common 
than NHL, derives from preapoptotic germinal center B 
cells, where universal deficiency of B cell phenotype is 
distinguished [63]. NHL is treated mostly through local 
radiotherapy and chemotherapy treatment [64]. Recent 
studies found that PRDM1/blimp-1, a major regulator 
in terminal B-cell differentiation, is also a target for 
down-regulation mediated by miR-9 and let-7a in  HL 
cell line, which functionally targeted specific pairing 
position in the PRDM1/blimp-1 mRNA 3′ untranslated 
region and suppressed luciferase reporter liveness by 
repressing translation [65]. Besides, researchers also 
discovered that the distinct set of five miRNAs (miR-
150, miR-550, miR-518b, miR-124a and miR-539) was 
differentially expressed in gastritis in contrast with MALT 
lymphoma [66]. We implemented PRMDA on HMDD 
V2.0 database to prioritize related miRNAs for Lymphoma 
(See Table 3). As a result, 9 out of the top 10 candidate 
miRNAs for Lymphoma and 43 out of the top 50 miRNAs 
in the prediction list have been verified by the researches 
recorded in dbDEMC and miR2Disease databases.

Table 2: Prediction list of the top 50 prioritized miRNAs associated with Esophageal Neoplasms 
based on known associations in HMDD V2.0 database

miRNA Evidence Score miRNA Evidence Score
hsa-mir-200b dbDEMC 0.354477 hsa-mir-106a dbDEMC 0.288761
hsa-mir-17 dbDEMC 0.341267 hsa-mir-93 dbDEMC 0.288345
hsa-let-7f unconfirmed 0.335941 hsa-mir-191 dbDEMC 0.28728
hsa-let-7e dbDEMC 0.335759 hsa-mir-146b dbDEMC 0.286041
hsa-mir-18a dbDEMC 0.334254 hsa-mir-302b dbDEMC 0.281647
hsa-mir-125b dbDEMC 0.334037 hsa-mir-132 dbDEMC 0.28155
hsa-let-7d dbDEMC 0.329478 hsa-mir-302c dbDEMC 0.281246
hsa-mir-218 unconfirmed 0.324689 hsa-mir-142 dbDEMC 0.27999
hsa-let-7i dbDEMC 0.3231 hsa-mir-29b dbDEMC 0.279844
hsa-mir-10b dbDEMC 0.32263 hsa-mir-199b dbDEMC 0.273617
hsa-mir-16 dbDEMC 0.31715 hsa-mir-107 dbDEMC, miR2Disease 0.27071
hsa-mir-429 dbDEMC 0.31628 hsa-mir-181a dbDEMC 0.268884
hsa-let-7g dbDEMC 0.314976 hsa-mir-24 dbDEMC 0.268299
hsa-mir-19b dbDEMC 0.313096 hsa-mir-30a dbDEMC 0.266871
hsa-mir-125a dbDEMC 0.312709 hsa-mir-181b dbDEMC 0.265328
hsa-mir-9 dbDEMC 0.30476 hsa-mir-194 dbDEMC, miR2Disease 0.264892
hsa-mir-221 dbDEMC 0.304585 hsa-mir-182 dbDEMC 0.263903
hsa-mir-29a dbDEMC 0.302556 hsa-mir-20b dbDEMC 0.263734
hsa-mir-1 dbDEMC 0.297728 hsa-mir-195 dbDEMC 0.262951
hsa-mir-127 dbDEMC 0.297439 hsa-mir-30d dbDEMC 0.26244
hsa-mir-222 dbDEMC 0.297081 hsa-mir-204 unconfirmed 0.262031
hsa-mir-106b dbDEMC 0.296993 hsa-mir-373 dbDEMC, miR2Disease 0.256662
hsa-mir-7 dbDEMC 0.296578 hsa-mir-372 dbDEMC 0.254717
hsa-mir-18b dbDEMC 0.291515 hsa-mir-15b dbDEMC 0.250247
hsa-mir-30c dbDEMC 0.289068 hsa-mir-367 dbDEMC 0.249998
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We further compared PRMDA with another three 
recent miRNA-disease association prediction models, 
MCMDA [67], HGIMDA [28] and WBSMDA [29], in 
terms of the case studies of CN, EN and Lymphoma. 
The comparison was presented in Table 4. Besides, we 
conducted related-miRNA prediction and verification for 
more diseases, and the number of verified miRNA-disease 
associations are presented in Table 5.

LN is considered to be responsible for considerable 
mortality worldwide. According to statistics, compared 
with never smokers, former smokers are far more likely 
to come down with LN [68]. Currently, diagnosing 
LN at an early stage remains difficult for the majority, 
meanwhile five-year survival rates are less than 15% after 
diagnosis. Recent studies suggested that using miRNA-
related methods for LN detection could be more effective 
than the main detecting method: screening computed 
tomography scans [69]. Many LN-related miRNAs 
were identified by researchers in the past few years. For 
instance, Takamizawa et al. issued the first report of 
reduced expression of miRNA let-7 in human LN and 

suggested the potential clinical and biological influence of 
miRNA dysfunction [70]. Besides, miRNAs miR-511 and 
miR-1297 act as LN tumor suppressor genes, which could 
suppress adenocarcinoma cell proliferation in vitro and in 
vivo by indirectly increasing CCAAT/enhancer-binding 
protein alpha expression [71]. Here, we implemented the 
second type of case study on LN by removing all known 
miRNA-LN associations (See Table 6). All of the top 10 
and 48 out of the top 50 prioritized miRNAs have been 
verified to be related to LN by experiments. In this way, 
PRMDA presented excellent prediction capability for 
diseases without known related miRNAs.

BN contributes most to cancer-caused deaths in 
women at the age of 40 and younger in developed countries 
[72]. Worse still, the survival rates of young women 
with BN remain lower than those of elder women [73]. 
Therefore, it is an increasingly urgent problem in low- and 
middle-income countries all over the world [74]. It has 
been acknowledged that gene-expression profiling exerts 
substantial influence on our comprehending of BN biology. 
In the past two decades, f innate molecular subclasses of 

Table 3: Prediction list of the top 50 prioritized miRNAs associated with Lymphoma based on 
known associations in HMDD V2.0 database

miRNA Evidence Score miRNA Evidence Score
hsa-mir-34a dbDEMC 0.394951 hsa-mir-10b dbDEMC 0.28162
hsa-mir-125b unconfirmed 0.392223 hsa-mir-181b dbDEMC 0.278209
hsa-let-7a dbDEMC 0.362083 hsa-mir-429 unconfirmed 0.277427
hsa-mir-145 dbDEMC, miR2Disease 0.351275 hsa-mir-182 dbDEMC 0.276958
hsa-mir-221 dbDEMC, miR2Disease 0.34684 hsa-mir-142 unconfirmed 0.275153
hsa-mir-223 dbDEMC 0.344073 hsa-mir-195 dbDEMC 0.273455
hsa-let-7d dbDEMC 0.329285 hsa-mir-146b unconfirmed 0.273431
hsa-let-7b dbDEMC 0.327671 hsa-mir-27a dbDEMC 0.273084
hsa-mir-9 dbDEMC 0.318525 hsa-mir-106a dbDEMC, miR2Disease 0.273011
hsa-let-7c dbDEMC 0.317094 hsa-mir-25 dbDEMC 0.272812
hsa-mir-29b dbDEMC 0.31624 hsa-mir-127 dbDEMC, miR2Disease 0.270926
hsa-mir-106b dbDEMC 0.315872 hsa-mir-141 dbDEMC 0.26861
hsa-let-7f dbDEMC 0.314598 hsa-mir-7 dbDEMC 0.260548
hsa-mir-222 dbDEMC 0.313115 hsa-mir-30e dbDEMC 0.259788
hsa-let-7e dbDEMC, miR2Disease 0.307227 hsa-mir-373 dbDEMC 0.255789
hsa-mir-29a dbDEMC 0.303588 hsa-mir-183 unconfirmed 0.255254
hsa-let-7i dbDEMC 0.300001 hsa-mir-302b unconfirmed 0.254974
hsa-mir-205 dbDEMC 0.29947 hsa-mir-339 dbDEMC 0.254438
hsa-mir-34b dbDEMC 0.297126 hsa-mir-30d dbDEMC 0.253573
hsa-mir-93 dbDEMC 0.293033 hsa-mir-30c dbDEMC 0.253055
hsa-mir-143 dbDEMC, miR2Disease 0.292999 hsa-mir-191 dbDEMC 0.251247
hsa-mir-199a dbDEMC 0.291715 hsa-mir-30a dbDEMC 0.250674
hsa-let-7g dbDEMC 0.287751 hsa-mir-192 dbDEMC 0.249858
hsa-mir-214 dbDEMC 0.287659 hsa-mir-302c dbDEMC 0.249705
hsa-mir-34c unconfirmed 0.285456 hsa-mir-148a dbDEMC 0.248657
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BN (Luminal A, Luminal B, HER2-enriched, Basal-like and 
Claud in-low) have been discovered and intensively studied 
[75]. A typical example is that miRNA let-7a represses BN 
cell migration and invasion through downregulation of C-C 
chemokine receptor type 7, which is critical in metastatic 
and chemotactic responses in numerous cancers including 
BN [76]. Here, in order to evaluate the performance, we 
also implemented PRMDA on the HMDD V1.0 database 
to predict candidate miRNAs for BN (See Table 7). As 
the result suggests, 100% of the top 10 candidate related 
miRNAs are proved to be BN-associated, and 44 out of the 
top 50 rated miRNAs are verified to be related with BN by 
HMDD V2.0, dbDEMC and  miR2Disease datasets.

The results of case studies and cross validation 
strongly indicate that PRMDA is a reliable and effective 
computational model for potential miRNA-disease 
association prediction referring to known associations. 
At last, we further applied PRMDA to predict related 
miRNAs for every disease and published the prediction 
lists of miRNA and disease pairs in supplementary 
table (See Supplementary Table 2) based on known 
miRNA-disease associations recorded in HMDD V2.0. 
The predicted pairs with higher ranks could be given 
reasonable priority for future researches. We also provided 
the score ranked by all miRNA-disease association pairs 
for each disease in Supplementary File 1.

DISCUSSION

The prominent performance of PRMDA could 
be attributed to several following factors. First of all, 

PRMDA implemented personalized recommendation-
based algorithm on integrated similarity for both 
miRNAs and diseases. Moreover, as one of the most 
prevailing recommendation algorithm, personalized 
recommendation-based algorithm could remarkably 
improve data sparseness especially for diseases and 
miRNAs with few known related miRNAs and diseases, 
in which the content of associated miRNAs and diseases 
are taken into consideration for each miRNA-disease 
pair respectively, as the name “personalized” implies, 
to utilize the similarity network expansively. Secondly, 
PRMDA is a global method, which could prioritize 
miRNAs for all diseases simultaneously. Compared with 
the previous model, the significantly increasing amount 
of verified miRNA-disease associations involved in 
our model further ensures the credibility of prediction 
results. Last of all, the success of PRMDA gives credit 
to integration of miRNA-disease association network, 
disease semantic similarity, miRNA functional similarity, 
and Gaussian interaction profile kernel similarity, 
which promotes the precision and diminishes bias 
caused by incomplete database simultaneously during 
prediction. Furthermore, Sun et al. [77] proposed 
a model of MiRNA-Disease Association based on 
Network Topological Similarity (NTMSDA). NTMSDA 
constructed 2 novel adjacent matrixes according to 
miRNA and disease network topological similarity 
matrix. Nevertheless, NTMSDA failed to prioritize 
miRNAs for diseases without known related miRNAs 
due to its strict topological dependence. NTMSDA is 
also a recommendation-based method, the difference 

Table 4: Comparison between PRMDA, MCMDA, HGIMDA and WBSMDA of the case studies
Disease PRMDA MCMDA HGIMDA WBSMDA

Colon Neoplasms 46 42 45 45
Esophageal Neoplasms 47 31 44 29
Lymphoma 44 39 45 42

The second, third, fourth and fifth column record the number of verified miRNA-diseases associations among top 50 prioritized 
associations by PRMDA, MCMDA, HGIMDA and WBSMDA respectively.

Table 5: Prediction results of several human diseases
Disease TOP 10 TOP 20 TOP 50

Glioblastoma 1 10 27
Lung Neoplasms 8 15 31
Colonic Neoplasms 8 15 38
Breast Neoplasms 8 15 40
Prostate Neoplasms 9 18 43
Kidney Neoplasms 8 17 44
Colon Neoplasms 10 18 46
Esophageal Neoplasms 8 18 47

The second, third and fourth column record the number of verified miRNA-disease associations based on known associations 
in HMDD V2.0 database out of top 10, top 20 and top 50 respectively.



Oncotarget85576www.impactjournals.com/oncotarget

from PRMDA lies in several aspects: firstly, the way 
building new rating matrix for miRNAs and diseases was 
totally different. Secondly, NTMSDA requires parameter 
selection during the process of incorporating the two 
new integrated adjacent matrixes. Lastly, compared 
with NTSMDA, PRMDA integrated more similarity 
information in the last step of ranking. With more and 
more discoveries of new diseases, which do not have 
related miRNAs, PRMDA could perfectly work for 
such diseases, as well as prioritizing diseases for newly 
identified miRNAs with no related diseases. 

However, there are still some existing limitations that 
could be ameliorated in the future. Firstly, the completeness 
of miRNA-disease association network remains to be 
enriched with more experimental validations. Secondly, 
the performance of PRMDA may be improved by 
integrating more datasets which provide other information 
about miRNAs, diseases and associations between them. 
Finally, the personalized recommendation-based algorithm 
implemented by PRMDA may cause some bias for diseases 

with more related miRNAs, based on the hypothesis that 
miRNAs performing function similarly are more probable 
to be interacted with diseases with similar phenotypes. 

MATERIALS AND METHODS

Human miRNA-disease associations

Human miRNA-disease associations investigated 
in PRMDA were downloaded from the HMDD V2.0 
database (http://www.cuilab.cn/files/images/hmdd2/
alldata.txt) containing 5430 human miRNA-diseases 
associations confirmed by experimental reports, 383 
diseases, and 495 miRNAs. To better demonstrate known 
miRNA-disease associations, we denoted the association 
network by the adjacency matrix A, where the entity A 
(i, j) equals 1 if there is supporting experimental evidence 
that miRNA m(j) is related to disease d(i), otherwise it 
equals 0. Besides, we used nm and nd to represent the 
number of miRNAs and diseases involved in this study.

Table 6: Prediction list of the top 50 prioritized miRNAs associated with Lung Neoplasms by 
removing all known miRNAs related with Lung Neoplasms in HMDD V2.0 database
miRNA Evidence Score miRNA Evidence Score
hsa-mir-21 dbDEMC,miR2Disease,HMDD 0.392142 hsa-mir-199a dbDEMC,miR2Disease,HMDD 0.332737
hsa-let-7a dbDEMC,miR2Disease,HMDD 0.383318 hsa-mir-125a dbDEMC,miR2Disease,HMDD 0.330086
hsa-mir-145 dbDEMC,miR2Disease,HMDD 0.377187 hsa-mir-9 miR2Disease,HMDD 0.329039
hsa-mir-34a dbDEMC 0.376841 hsa-mir-93 dbDEMC,miR2Disease,HMDD 0.324393
hsa-let-7b miR2Disease,HMDD 0.372622 hsa-mir-101 dbDEMC,miR2Disease,HMDD 0.323704
hsa-let-7d dbDEMC,miR2Disease,HMDD 0.365874 hsa-mir-210 dbDEMC,miR2Disease,HMDD 0.321786
hsa-mir-125b miR2Disease HMDD 0.364603 hsa-mir-223 unconfirmed 0.319515
hsa-mir-155 dbDEMC,miR2Disease,HMDD 0.362776 hsa-mir-200a dbDEMC,miR2Disease,HMDD 0.318552
hsa-mir-17 miR2Disease,HMDD 0.358777 hsa-mir-7 miR2Disease,HMDD 0.318257
hsa-let-7c dbDEMC,miR2Disease,HMDD 0.355499 hsa-mir-92a unconfirmed 0.318223
hsa-mir-34b dbDEMC 0.352716 hsa-mir-10b dbDEMC 0.31628
hsa-let-7e miR2Disease HMDD 0.352674 hsa-mir-221 dbDEMC 0.315655
hsa-mir-34c dbDEMC 0.348275 hsa-mir-214 dbDEMC,miR2Disease,HMDD 0.315203
hsa-mir-200c dbDEMC,miR2Disease,HMDD 0.348273 hsa-mir-196a dbDEMC 0.31437
hsa-mir-126 dbDEMC,miR2Disease,HMDD 0.347795 hsa-mir-1 dbDEMC,miR2Disease,HMDD 0.313729
hsa-let-7f miR2Disease HMDD 0.34451 hsa-mir-146b miR2Disease HMDD 0.313125
hsa-mir-205 dbDEMC,miR2Disease,HMDD 0.343288 hsa-mir-27a dbDEMC 0.312186
hsa-mir-18a dbDEMC,miR2Disease,HMDD 0.342298 hsa-mir-146a dbDEMC,miR2Disease,HMDD 0.311986
hsa-mir-200b dbDEMC,miR2Disease,HMDD 0.342297 hsa-mir-143 dbDEMC,miR2Disease,HMDD 0.30695
hsa-mir-20a dbDEMC,miR2Disease,HMDD 0.341235 hsa-mir-25 dbDEMC 0.306837
hsa-mir-218 dbDEMC,miR2Disease,HMDD 0.341204 hsa-mir-29b dbDEMC,miR2Disease,HMDD 0.306497
hsa-let-7g dbDEMC,miR2Disease,HMDD 0.339591 hsa-mir-16 dbDEMC,miR2Disease,HMDD 0.302916
hsa-let-7i dbDEMC 0.33887 hsa-mir-222 dbDEMC 0.301147
hsa-mir-19b dbDEMC 0.337602 hsa-mir-30d dbDEMC 0.301058
hsa-mir-19a dbDEMC,miR2Disease,HMDD 0.336874 hsa-mir-29a dbDEMC,miR2Disease,HMDD 0.301033
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MiRNA functional similarity

MiRNA functional similarity was calculated by 
MISIM [25], which was composed of four procedures: 
identifying miRNA-related diseases, calculating sematic 
values of diseases, calculating sematic similarity for disease 
pairs and determining miRNA functional similarity based 
on sematic similarity of related diseases. We downloaded 
miRNA functional similarity scores from http://www.
cuilab.cn/files/images/cuilab/misim.zip in January 2010. 
Similarly, we built the miRNA functional similarity matrix 
MS, in which the entity MS (m(i), m(j)) indicates the 
functional similarity between miRNA m(i) and m(j).

Disease semantic similarity model 1

We downloaded MeSH descriptors from the 
National Library of Medicine (http://www.nlm.nih.gov/) 
to construct disease semantic similarity model. Disease-
disease associations were depicted into a Directed Acyclic 
Graph (DAG). DAG (D) = (D,T(D),E(D)) represents the 

disease D, where T(D) is the node set containing node 
D’s ancestor nodes and itself, and E(D) denotes the 
corresponding edge set comprising the direct edges from 
parent nodes to child nodes. The semantic value of disease 
D is calculated as follows:

1
( )

( ) 1 ( )D
d T D

SV D D d
∈

= ∑  (1)

{ }' '

1 ( ) 1

1 ( ) max ( )
D

D D

D d if d D

D d D d d childrenof d if d D∗

= =
 = ∆ ∈ ≠

 (2)

where ∆ is defined as the semantic contribution 
factor. For a specific disease D, the contribution of D to 
the semantic value of disease D is considered to equal 1. 
Furthermore, the contribution is inversely proportional to 
the distance between D and other diseases. Consequently, 
disease nodes in the same level are believed to contribute 
the same to the semantic value of disease D.

Based on the assumption that larger shared part 
between two diseases in DAGs indicates larger semantic 
similarity, we used DS to represent the disease semantic 

Table 7: Prediction list of the top 50 prioritized miRNAs associated with Breast Neoplasms based 
on known associations in HMDD V1.0 database

miRNA Evidence Score miRNA Evidence Score
hsa-let-7e dbDEMC, HMDD 0.342426 hsa-mir-99b dbDEMC 0.215248
hsa-let-7b dbDEMC, HMDD 0.331861 hsa-mir-30e unconfirmed 0.214727
hsa-let-7i dbDEMC, miR2Disease,HMDD 0.325423 hsa-mir-32 dbDEMC 0.213762
hsa-let-7c dbDEMC, HMDD 0.317913 hsa-mir-611 unconfirmed 0.212971
hsa-mir-16 dbDEMC, HMDD 0.313056 hsa-mir-583 dbDEMC 0.212971
hsa-mir-92a HMDD 0.304199 hsa-mir-602 dbDEMC 0.212971
hsa-let-7g dbDEMC, HMDD 0.301935 hsa-mir-615 dbDEMC 0.212971
hsa-mir-223 dbDEMC, HMDD 0.29829 hsa-mir-654 dbDEMC 0.212971
hsa-mir-191 dbDEMC, miR2Disease,HMDD 0.272251 hsa-mir-486 dbDEMC, HMDD 0.212971
hsa-mir-126 dbDEMC, miR2Disease,HMDD 0.271694 hsa-mir-769 unconfirmed 0.212971
hsa-mir-101 dbDEMC,miR2Disease,HMDD 0.268627 hsa-mir-557 dbDEMC 0.212971
hsa-mir-18b dbDEMC, HMDD 0.255543 hsa-mir-601 dbDEMC 0.212971
hsa-mir-106a dbDEMC 0.2538 hsa-mir-642 unconfirmed 0.212971
hsa-mir-92b dbDEMC 0.251822 hsa-mir-518c dbDEMC 0.212971
hsa-mir-181a dbDEMC, miR2Disease,HMDD 0.241862 hsa-mir-324 HMDD 0.212971
hsa-mir-373 dbDEMC, miR2Disease,HMDD 0.237108 hsa-mir-608 dbDEMC, HMDD 0.212971
hsa-mir-29c dbDEMC, miR2Disease,HMDD 0.236599 hsa-mir-662 dbDEMC 0.212971
hsa-mir-203 dbDEMC, miR2Disease,HMDD 0.231891 hsa-mir-596 unconfirmed 0.212971
hsa-mir-142 unconfirmed 0.226825 hsa-mir-185 dbDEMC 0.212971
hsa-mir-130b dbDEMC 0.219054 hsa-mir-600 dbDEMC 0.212971
hsa-mir-24 dbDEMC, HMDD 0.218864 hsa-mir-622 dbDEMC 0.212971
hsa-mir-15b dbDEMC 0.218328 hsa-mir-629 dbDEMC, HMDD 0.212971
hsa-mir-575 dbDEMC 0.217562 hsa-mir-638 dbDEMC, HMDD 0.212971
hsa-mir-128b miR2Disease 0.217551 hsa-mir-637 dbDEMC 0.212971
hsa-mir-197 dbDEMC, HMDD 0.217169 hsa-mir-612 dbDEMC 0.212971
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similarity matrix, where the semantic similarity between 
diseases d (i) and d (j) was calculated as follows:
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The disease semantic matrix calculated by the model 
1 is provided in Supplementary Table 3.

Disease semantic similarity model 2

Here, we also calculated disease sematic similarity 
in another way. Since diseases in the same level of 
DAG(D) may appear different times in the other disease 
DAGs, the disease semantic similarity model 1 may result 
in bias of assigning the same contribution for all diseases 
in the same level. We could conclude that the disease 
appearing in less disease DAGs is more specific and 
should be given higher contribution.

Here, we defined the contribution of disease d to the 
semantic value of disease D in DAG(D) as follows.
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where ndt is the number of DAGs containing disease d.
Similarly, we calculated the semantic similarity 

between diseases d (i) and d (j) was calculated as follows:
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The disease semantic matrix calculated by the model 
2 is provided in Supplementary Table 4.

Gaussian interaction profile kernel similarity for 
diseases

Based on the assumption that functionally similar 
miRNAs are more likely to be associated with phenotypically 
similar diseases, Gaussian interaction profile kernel similarity 
for diseases was calculated by taking into consideration the 
topologic information of known miRNA-disease association 
network. Firstly, we denoted the interaction profiles of disease 
d(i) with a binary vector IP(d(i)) by checking whether disease 
d(i) is associated with each miRNA or not, that’s to say, the 
value of ith row in association adjacency matrix A. Then, 
based on the interaction profiles, Gaussian kernel similarity 
between disease d(i) and d(j) was calculated as follows:

2( ( ), ( )) exp( ( ( )) ( ( )) )dKD d i d j IP d i IP d jγ= − −  (7)

where the parameter γd controls the kernel 
bandwidth and is obtained through the normalization of 
a new bandwidth parameter γ′d by the average number of 
known related miRNAs for all the diseases. 

Thus, γd was defined as follows:
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At last, KD was the Gaussian interaction profile 
kernel similarity matrix for diseases, where the entity 
KD(d(i),d( j)) was the Gaussian interaction profile kernel 
similarity between disease d(i) and disease d(j).

Gaussian interaction profile kernel similarity for 
miRNAs

Similar to Gaussian interaction profile kernel 
similarity calculation for diseases, miRNA Gaussian 
interaction profile kernel similarity matrix could be 
calculated in a similar way:

2( ( ), ( )) exp( ( ( )) ( ( )) )mKR m i m j IP m i IP m jγ= − −  (9)
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In the equations above, the interaction profile IP(m(i)) 
for miRNA (m(i) is determined by whether miRNA m(i)  
is associated with each disease or not. γm was obtained by 
normalizing a new bandwidth parameter  γ'm by the average 
number of associated diseases for all the miRNAs.

Integrated similarity for miRNAs and diseases

Integrated miRNA similarity matrix Sm  and 
integrated disease similarity matrix Sd  were established 
by combining miRNA functional similarity, disease 
semantic similarity, and Gaussian interaction profile kernel 
similarity, respectively. The similarity matrix was defined 
as below:

( ( ), ( )) ( ) ( )
( ( ), ( ))

( ( ), ( ))m

RS m i m j m i and m j has functional similarity
S m i m j

KR m i m j otherwise


= 


 (11)

( ( ), ( )) ( ) ( )
( ( ), ( ))

( ( ), ( ))d

DS d i d j d i and d j has semantic similarity
S d i d j

KD d i d j otherwise


= 


 (12)

where the semantic similarity between disease d(i) 
and disease d(j) was calculated as follows:

1 2( ( ), ( )) ( ( ), ( ))( ( ), ( ))
2

DS d i d j DS d i d jDS d i d j +=  (13)

PRMDA

In this study, we proposed a novel computational 
model of personalized recommendation-based MiRNA-
Disease Association prediction (PRMDA) to predict 
potential miRNA-disease associations. The core idea 
for PRMDA is to construct a new rating matrixes by 
implementing personalized recommendation-based 
algorithm on the integrated miRNA similarity matrix 
and integrated disease similarity matrix. The flowchart 
of PRMDA was shown in Figure 2. The source code of 
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PRMDA could be downloaded from http://www.escience.
cn/system/file?fileId=89408.

First of all, we built a new rating matrix for known 
miRNA-disease association network, which measures the 
importance of miRNA to disease and disease to miRNA 
for each miRNA-disease pair. The new rating matrix 
was derived from two submatrices for diseases and 
miRNA, respectively, we illustrated how one submatrix 
for diseases, denoted by Zd, was built. In order to clearly 
demonstrate the process of constructing Zd, we took the 
calculation of entity Zd (i, j) for example, which represents 
the new association score between disease d(i) and 

miRNA m(j). Before building new rating matrixes, we 
calculated two matrixes: integrated miRNA similarity 
matrix, denoted by Sr, and integrated disease similarity 
matrix, denoted by Sd. Then, we got the related-miRNA 
set RMi for d(i), which means that RMi contains all d(i)-
related miRNAs m(k) that satisfies A(i, k) = 1, where A is 
the miRNA-disease association adjacency matrix. Then, 
we counted the number of related diseases d(t) for d(i), 
satisfying Sd (d(t), d(i)) > 0, and denoted the number by 
variable na. Next, we defined the dimension variable 
Na as the total number of miRNAs. In the next step, we 
calculated the variable ntal. ntal representing the number of 

Figure 2: Flowchart of PRMDA model to prioritize potential related miRNA for diseases based on the HMDD V2.0 
database. 
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miRNAs m(k), which also had relationship with m(j), in 
RMi, in other words, Sm (m(k), m(j))>0. The less ntal is, 
the more specific the m(j) is. The personalized weight 
matrix for disease, Wd, was established, where Wd (i, j), 
the personalized miRNA m(j) weight for disease d(i), was 
calculated as follows:

( , ) log( )a
d tal

a

NW i j n
n

= ×  (14)

Then, for the new rating submatrix for disease: 
Zd, the entity Zd (i, j) was defined as below according to 
personalized weight:
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Similarly, the new rating submatrix for miRNA, 
denoted by Zm, was constructed in the same way with 
Narepresenting the number of diseases. In summary, 
the new rating submatrices for miRNA and diseases 
quantified the importance of disease for miRNA and 
miRNA for disease regarding each miRNA-disease 
association pair, respectively, by taking miRNA-related 
miRNAs and disease-related diseases information into 
consideration. After the construction of submatrices 
for both miRNA and disease, we normalized Zm and 
Zd to get final integrated rating matrix Z. We defined 
Z as follows:
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where Z was considered to be the new rating matrix 
for miRNA-disease association network, which took both 
personalized weight for diseases and personalized weight 
for miRNAs into consideration.

Furthermore, we got Km and Kd by multiplying 
integrated similarity for miRNAs and integrated 
similarity for diseases with miRNA-disease association 
adjacency matrix respectively, based on the assumption 
that miRNAs with similar functions tend to be related 
with diseases with similar phenotypes And we calculated 
matrix K, as the addition of normalized Km and Kd, as 
follows: 

( , ) ( , )( , )
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m d

m d

K i j K i jK i j
K i K i

= +  (17)

Finally, the prediction matrix R was defined as 
below:

( , ) ( , )( , )
( ) ( )

K i j Z i jR i j
K i Z i

= +  (18)

where R (i, j) represents the rating for disease d(i) 
and miRNA m(j) association calculated by PRMDA.
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