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Single-trial cross-area neural population dynamics
during long-term skill learning
T. L. Veuthey1,2,3,4,5, K. Derosier 1,3,4,5, S. Kondapavulur 2,3,4 & K. Ganguly 3,4✉

Mammalian cortex has both local and cross-area connections, suggesting vital roles for both

local and cross-area neural population dynamics in cortically-dependent tasks, like movement

learning. Prior studies of movement learning have focused on how single-area population

dynamics change during short-term adaptation. It is unclear how cross-area dynamics con-

tribute to movement learning, particularly long-term learning and skill acquisition. Using

simultaneous recordings of rodent motor (M1) and premotor (M2) cortex and computational

methods, we show how cross-area activity patterns evolve during reach-to-grasp learning in

rats. The emergence of reach-related modulation in cross-area activity correlates with skill

acquisition, and single-trial modulation in cross-area activity predicts reaction time and reach

duration. Local M2 neural activity precedes local M1 activity, supporting top–down hierarchy

between the regions. M2 inactivation preferentially affects cross-area dynamics and behavior,

with minimal disruption of local M1 dynamics. Together, these results indicate that cross-area

population dynamics are necessary for learned motor skills.
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The connectivity pattern of mammalian cortex, character-
ized by both local and cross-area connections1, suggests an
important role for interactions between population

dynamics compartmentalized locally and those coordinated
between regions. But it is unknown whether population dynamics
coordinated across multiple cortical areas contribute to long-term
skill learning. In the motor system, it has been shown that both
premotor cortex (M2)2–6 and motor cortex (M1)7–11 demonstrate
changes in local population dynamics with motor learning.
However, it remains unclear how cross-area dynamics between
M1 and M2 are coordinated and change with long-term skill
learning. Previous work on cross-area interactions during motor
learning has focused on macroscopic population activity, such as
local field potentials12–14 and wide-field calcium signals4,15.
However, such measures of aggregate activity collapse signals
from a heterogeneous population of neurons into a single signal,
making it difficult to resolve potentially important multiplexed
signals within that population16–18. Recent work has examined
cross-area dynamics during motor adaptation5, but this process is
fundamentally different from new skill learning19.

How can we examine cross-area population dynamics during
learning, especially when newly learned movements are still
variable? To avoid the limitations of analyzing trial-averaged
movement-related signals, we can instead build models by esti-
mating prevalent population patterns from signals concatenated
over time17,20,21. One common approach in well-trained animals
is to use dimensionality reduction methods such as Principal
Component Analysis (PCA) to capture patterns of dominant
covariance within local populations5,7,11,16,22–29. Those reduced
local signals can then be compared across regions5,16,30. However,
since PCA finds dimensions that maximize local variance, activity
patterns which do not dominate local variance are discarded.
Thus, this approach may dismiss as noise neural fluctuations
representing activity coordinated across areas31. Instead, cross-
area activity might be identified by directly detecting covariance
which is coordinated across regions5,18,32. Recent work has shown
that simultaneous recordings from two visual areas can be ana-
lyzed to identify a neural shared subspace defined by the activity
in each region that is maximally correlated with activity in a
partner region32. Two additional studies have also identified
widespread neural signals encoding facial movements18 and
thirst-based motivational states33. These findings suggest that
signals shared across brain areas may contribute to coordinating
diverse behaviors. But it remains unclear whether and how cross-
area dynamics evolve during learning. Understanding these
changes can help define the functional role of cross-area activity,
and provide new insight into learning mechanisms of distributed
networks.

Here, we aim to assess how population dynamics shared by M2
and M1 change during motor skill learning. We hypothesize that
M2–M1 shared dynamics coordinate information between the
regions and contribute to learning complex behaviors. To isolate
activity shared across areas, we perform simultaneous multisite
recordings in M2 and M1 and use the dimensionality reduction
technique Canonical Correlation Analysis (CCA) to define the
axes of maximal correlation between the M2 and M1 neural
populations34. By simultaneously reducing dimensionality and
optimizing for M2–M1 correlation, CCA can identify cross-area
signals that may be missed by methods that exclusively optimize
local variance. We use the term cross-area to refer to activity in
each area which is maximally correlated with activity in the
partner region. We thus aim to explicitly identify cross-area
dynamics during both early exploratory learning and late learned
execution of a skilled movement.

In each region, we find that cross-area dynamics modulation is
proportional to single-trial reaching behavior, and that

modulation to reach initiation and reach duration is amplified
with learning. We additionally find that local activity in M2
precedes local activity in M1, consistent with a top–down hier-
archy between the signals more specific to M2 and M1. In line
with this top–down functional role, M2 inhibition in well-trained
animals impairs reach behavior and disrupts reach representation
in M1 cross-area signals. Together, our results indicate that cross-
area M2–M1 population dynamics represent a necessary com-
ponent of skilled motor learning.

Results
Learning increases movement-modulated neurons in M1 and
M2. We performed simultaneous recordings of population neural
activity in M2 and M1 (Fig. 1a, Supplementary Fig. 1) in rats
learning a cue-driven reach-to-grasp task, a well-established
model for skill learning27,35,36. Both M2 and M1 are required for
learning and execution of reach-to-grasp movements in both
rodents and primates37–39. Animals learned to successfully
retrieve pellets with training (hierarchical bootstrap, 104 shuffles
used here and hereafter, 27.28% ± 3.06 for Early, 57.64% ± 2.49
for Late, p < 0.0001, n= 5 rats). There were concomitant
improvements in movement duration (hierarchical bootstrap,
0.30 s ± 0.056 for Early, 0.20 s ± 0.040 for Late, p= 0.0027, n= 5
rats) and reaction time (hierarchical bootstrap, 32.23 s ± 24.58 for
Early, 0.89 s ± 0.18 for Late, p < 0.0001, n= 5 rats) (Fig. 1b,
Supplementary Fig. 2, Supplementary Table 1).

To examine relationships between single-neuron activity and
movements, we created trial-averaged peri-event time histograms
(PETHs) for both M2 and M1 in early and late learning. We used
a circular shuffle test to quantify whether each neuron was
significantly modulated (p < 0.000125) (Fig. 1c, d; Methods)40.
Over learning, significantly more neurons in both areas were
movement modulated (hierarchical bootstrap, n= 5 rats; M1:
59.83% ± 8.89 for Early, 94.32% ± 4.65 for Late, p < 0.0001; M2:
48.19% ± 13.40 for Early, 88.03% ± 5.81 for Late, p < 0.0001),
consistent with prior work arguing that learning engages and
amplifies representations in both regions4,10,27,41,42. However, as
PETHs represent neural activity averaged across trials, increased
PETH modulation can be driven by many neural and behavioral
factors. In addition, trial-averaged activity from both early and
late learning demonstrated evidence of sequential activation of
neurons in a task-dependent manner10,17,21,40,43,44. While visual
inspection of M1 and M2 PETHs in early and late learning
suggest changes in correlated firing between areas, trial-averaged
data, such as PETHs, inherently blur trial-by-trial variations in
neural activity which may correspond to trial-by-trial variations
in performance. Therefore, although PETHs from M1 and M2
may show temporal overlap, this does not indicate single-trial
correlated activity. PETHs also require time locking to a specific
aspect of movement. Thus, further analyses of single-trial data are
essential for distinguishing between these confounding variables.

Without modeling single-trial activity patterns, it is unclear
how movement signals in M2 and M1 correspond with single-
trial performance over learning, or how task-relevant activity is
coordinated between M1 and M2 on a moment-by-moment basis.
Moreover, studies on population dynamics have identified that
single-trial dynamics can be reliable and revealing about single-
trial behavioral variation in well-trained animals18,28,45,46. How-
ever, these findings raise the fundamental questions of whether
single-trial cross-area dynamics can inform our understanding of
cortical communication during learning.

Distinct cross-area dynamics versus single-unit interactions.
How then can we identify single-trial activity patterns shared
between M2 and M1? We used CCA, which finds linear
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combinations of simultaneous M2 and M1 activity that are
maximally correlated with each other, to measure cross-
area dynamics. The neuron weights obtained using CCA
define axes in the high-dimensional M1 and M2 population

spaces along which activity is most similar (see Methods). The
projections of high-dimensional neural activity onto these axes
provide a low-dimensional representation of shared signals
(Fig. 2a, b).
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Fig. 1 Motor skill learning is associated with increased cortical movement signals. a (Top) Rats were trained to perform the reach-to-grasp task.
(Bottom) Single-trial experimental paradigm. b Example reaches in early (left) and late (right) learning. (Top) Paw trajectories. White dot marks reach start
position. Black dot marks reach end position. (Bottom) Example consecutive single-trial representations of reaction time (green striped bars) and reach
duration (green bars). Right border of plot shows accuracy, with pellet retrieval success in gray and failure in black. c Population trial-averaged peri-event
time histograms (PETHs) for premotor cortex (M2) (top) and primary motor cortex (M1) (bottom) units in early learning (n= 5 rats). Significantly
modulated neurons are shown above the white line, ordered by the time of their peak modulation. Nonsignificantly modulated neurons are shown below
the white line, ordered by channel number. Firing rates are z-scored per-neuron for display only. d As in c, but for late learning.
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Our main analyses are done with CCA fit to neural data binned
at 100 ms, with no timelag between regions. For comparison, we
also fit models to data binned at 75 and 50 ms at timelags from
−500 to +500 ms. We found that for most datasets, models fit
using 100ms bins with no timelag resulted in the best general-
izability to held-out data (see Methods and Supplementary Fig. 3).
In addition, we found that neuron weights and axes generated by
CCA are different from those found with PCA, which instead
defines axes of maximal variance in single-area population spaces
(Supplementary Fig. 4). In each region, the angles between axes of
maximal local covariance (using PCA) and axes of maximal
cross-area correlation (using CCA) are significantly different
from zero, and did not change with learning (hierarchical
bootstrap, n= 4 rats; M2: 59.66° ± 4.57 for Early, 59.34° ± 3.83 for

Late, two-sided p= 0.92; M1: 49.84° ± 5.49 for Early, 59.47° ± 8.68
for Late, two-sided p= 0.43; in all cases, all bootstrap samples
were >30°, p < 0.0001).

To validate the stability of this CCA axis, we calculated ten sets
of CCA neuron weights from ten randomly selected subsets of
90% of timebins (held-out data was nonoverlapping). Across all
datasets, the range of weights for models using the full datasets
(mean ± std= 0.057 ± 0.16 a.u.) was much larger than the var-
iance in each neuron’s weights between subsets (weight from
subset−weight from full dataset, mean ± std=−2.37e−05 ±
0.02 a. u.). That CCA weights change by a small amount when fit
to different subsets of data suggests that the CCA model for
M2–M1 cross-area activity is robust (Fig. 2c). Further analyses
were conducted without data subsampling.
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To verify that the CCA-defined M2 and M1 cross-area activity
models represented behaviorally significant coordinated activity,
we compared the R2 between the cross-area activity to CCA
models fit on trial-shuffled data. We generated a reference
distribution of R2 values between the top M1 and M2 canonical
variables (CVs) from 104 iterations of trial-shuffled data. CVs fit
to the true dataset were considered significant if their R2 value
exceeded the 95th percentile of the reference distribution (see
Methods). Shuffling data between trials while maintaining within-
trial temporal structure preserved and controlled for coarse
activity fluctuations due to movement. We found that most
datasets had one to three significant CVs (Fig. 2d), confirming
that CCA identified low-dimensional activity shared across M2
and M1. For one animal, the early dataset had no significant CVs;
this animal was excluded from further analysis.

Finally, we examined whether CCA identifies cross-area
relationships equivalent to those identified using a single-
neuron functional connectivity measure, short-latency cross-
correlations13,44,47,48. Specifically, if CCA consistently assigns
high weights to M2 and M1 neurons which also have high cross-
correlation values, this would indicate that CCA finds M2–M1
activity shared by individual neurons in each region. However, if
the CCA weights of M2 and M1 neurons do not vary with cross-
correlation values, then CCA-defined activity instead reflects
distributed shared population dynamics not obvious at the single-
neuron level. We found there was a weak but significant
correlation between the mean CCA weights of M2–M1 neuron
pairs and their short-latency normalized cross-correlation values
(linear regression, R2= 0.0761, p= 5.98 × 10−89, t= 20.399, n=
5056 neuron pairs from four rats) (Fig. 2e, f). Therefore, M2 and
M1 CCA neuron weights capture aspects of short-latency
correlations but can also capture additional information about
cross-area dynamics (Fig. 2g). This suggests that communication
between cortical areas maybe be better modeled based on
population-wide activity patterns rather than based on interac-
tions between single neurons.

Correlation of cross-area activity is stable across learning. Does
learning change the correlation of cross-area dynamics? If
learning simply increases M1–M2 activity coordination, we would
expect the correlation of M1 and M2 cross-area activity to be
lower during early exploratory actions than during skilled beha-
vior. To address this, we correlated M1 and M2 cross-area activity
during three types of behavior: spontaneous behavior, exploratory
reaches in early learning, and directed reaches in late learning
(Fig. 3a). Surprisingly, there was no difference in the mean cor-
relation values (R2) of M1 versus M2 cross-area activity during

the different behaviors (mixed-effect model, 0.31 ± 0.04 for
Spontaneous, 0.34 ± 0.10 for Early, 0.30 ± 0.08 for Late; Sponta-
neous vs. Early: t(6)= 0.46, p= 0.66; Spontaneous vs. Late:
t(6)=−0.15, p= 0.89; Early vs. Late: t(6)=−0.74, p= 0.49;
n= 4 rats) (Fig. 3b). Thus, generally increased coordination
between M2 and M1 activity by itself seems unlikely to drive
performance gains.

Learning amplifies cross-area encoding of reach initiation. An
intriguing alternative is that learning is due to the modification of
task representations within cross-area dynamics. Specifically,
signals within the existing range of cross-area activity may be
remapped to represent information about the task. Thus, while
the overall range of M1–M2 cross-area signals may not change,
high amplitude cross-area activity may now be associated with a
particular behavioral state. As noted above, we observed that the
door open cue was more rapidly followed by reach initiation after
learning (Fig. 1b), suggesting that the timing of reach initiation
might be an important marker of learning. We thus explored
whether M1–M2 cross-area activity could account for this
change. To visualize this possibility, we plotted the M1 cross-area
activity versus the M2 cross-area activity during pre-reach and at
reach initiation (Fig. 4a). The histograms show the probability
density functions of the respective subspace activity before and
during reach initiation. Interestingly, the two behavioral states
were significantly more separable after learning (mixed-effect
model, M2: 0.31 ± 0.15 for Early, 1.29 ± 0.18 for Late, t(6)=
5.3806, p= 0.0017; M1: 0.27 ± 0.14 for Early, 1.09 ± 0.12 for Late,
t(6)= 6.7227, p= 0.00053; n= 4 rats) (Fig. 4b), suggesting that
high amplitude cross-area activity gained task relevance with
learning.

The increased task relevance of high amplitude cross-area
activity was also apparent on a single-trial basis. When viewed as
single-trial trajectories, peaks in cross-area activity became
associated with reach initiation after learning (Fig. 4c). We
quantified this association across trials by building a logistic
regression model to distinguish cross-area activity during two
seconds before reaching versus a 400 ms window at reach
initiation. Strikingly, detection of reach initiation based on this
cross-area activity model improved with learning (mixed-effect
model, 0.66 ± 0.03 for Early, 0.87 ± 0.02 for Late, t(6)= 9.77, p=
6.63 × 10−5, n= 4 rats) (Fig. 4d). Using the logistic regression
model, we could then probe the time course of reach initiation
prediction based on M1–M2 cross-area activity (Fig. 4e). On
average, while the time of reach initiation was not well predicted
during early trials, it became highly predictable after learning
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(hierarchical bootstrap, 0.12 ± 0.044 for Early, 0.30 ± 0.082 for
Late, p < 0.0001, n= 4 rats) (Fig. 4f).

Learning amplifies cross-area encoding of reach duration. Does
M1–M2 cross-area activity only coordinate movement initiation,
or does it affect other aspects of reach performance? We exam-
ined whether single-trial M2–M1 cross-area dynamics were
informative about single-trial reach duration, and whether the
reach modulation of cross-area activity for movements of similar
duration changed with learning. To quantify reach modulation in
single-trial activity, we calculated a cross-area modulation metric
(CA-modulation), which compared neural activity during
reaching versus an equivalent baseline period for each trial
(Fig. 5a, b). This measure is equivalent to the d′ (d-prime) signal
sensitivity index used in signal processing (see Methods). To
directly test the relationship between behavioral performance and
M1 and M2 CA-modulation, we correlated CA-modulation with

reach duration on a trial-by-trial basis (Fig. 5c). Interestingly,
we found that CA-modulation reliably covaried with reach
duration, indicating that cross-area dynamics represent infor-
mation relevant to behavioral performance (mixed-effect model,
M2: log slope=−0.27, t(1531)=−14.43, p= 2.36 × 10−44; M1:
log slope=−0.23, t(1562)=−13.88, p= 2.05 × 10−41; n= 4
rats). In addition, both M1 and M2 CA-modulation increased
with learning (hierarchical bootstrap, n= 4 rats; M1: 0.45 ± 0.13
for Early, 1.97 ± 0.44 for Late, p < 0.0001; M2: 0.46 ± 0.12 for
Early, 2.57 ± 0.62 for Late, p < 0.0001; Fig. 5d). This modulation
increase was not simply due to overall improved reach perfor-
mance; instead, movements of similar duration in early and late
learning were more modulated in late learning, indicating
amplified representation of learned skills. Thus, the process of
learning appeared to enhance reach-specific signals in cross-area
population dynamics. Amplification of these task-specific signals
spanning multiple brain areas may be a mechanism for
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coordinating network-wide activity related to salient behaviors
during learning.

M2 local activity precedes M1 local activity. A prominent model
of M2–M1 interactions during learning proposes a strong
top–down influence from M2 to M13,4. While cross-area activity
may coordinate areas, we expected that local activity in each
region might reflect a M2-to-M1 top–down relationship. For
example, if M2-specific local activity temporally preceded M1-
specific local activity, it would suggest that M2 is more likely to
play a top–down role. To address this, we first defined local
activity as the population firing not accounted for in cross-area
activity. For each 100 ms time bin, we projected the population
firing rate vector onto the hyperplane orthogonal to the CCA
subspace, and used the magnitude of this vector as our local
activity value (Fig. 6a). We then quantified, on a single-trial basis,
the difference in median timing of M2 and M1 local activity in
early and late learning (Fig. 6b, c, see Methods). We found that
M2 local activity consistently preceded M1 local activity in both
early and late learning (Fig. 6d). These timing differences were
significant when quantified via permutation testing. Specifically,
we randomly assigned trial activity to either M1 or M2, computed
the timing differences of the permuted data (105 permutations),
and used these differences as a reference distribution to evaluate
the significance of the M2–M1 timing differences (p < 0.00001)
(Fig. 6e). We used a similar approach to evaluate the change in
M2–M1 temporal coupling. We thus randomly assigned M2–M1
timing differences to either early or late learning, computed the
means of the permuted datasets (105 permutations), and used the
difference of those means as a reference distribution to evaluate
the significance of the M2–M1 temporal coupling change with
learning. M2 and M1 local activity became more tightly coupled
with learning, as quantified by the significant decrease in the
timing gap between their local activities with learning (p <
0.00001) (Fig. 6f). These timing results are consistent with a M2
to M1 top–down hierarchical relationship.

M2 inhibition disrupts skilled reaching. Based on our results,
we expected M2 activity to be necessary for improvements in
behavior with learning, as well as for amplified representations of
learned movements in M1 cross-area activity. If activity shared
between M2 and M1 helped to shape M1 representations, then
disrupting M2–M1 cross-area activity should impact reaching
behavior. To test this, we inactivated M2 in well-trained animals
using the GABA agonist muscimol (Fig. 7a). Unlike control saline
infusions (Supplementary Fig. 5), M2 inactivation caused severe
performance deficits, with reaching behavior qualitatively similar
to early learning (Fig. 7b). M2 inactivation decreased success rate
(hierarchical bootstrap, 56.75% ± 5.16 for Baseline, 37.45% ± 6.88
for Muscimol, p= 0.0082, n= 6 rats), increased reaction time
(hierarchical bootstrap, 1.26 s ± 0.28 for Baseline, 3.23 s ± 0.74 for
Muscimol, p < 0.0001, n= 6 rats), and increased reach duration
(hierarchical bootstrap, 0.18 s ± 0.018 for Baseline, 0.29 s ± 0.035
for Muscimol, p < 0.0001, n= 6 rats). M2 saline did not decrease
success rate (hierarchical bootstrap, 54.81% ± 5.40 for Baseline,
57.84% ± 4.18 for Saline, p= 0.7453, n= 6 rats), but did cause
small but significant increases in reaction time (hierarchical
bootstrap, 1.60 s ± 0.37 for Baseline, 2.13 s ± 0.49 for Saline, p=
0.0021, n= 6 rats) and reach duration (hierarchical bootstrap,
0.20 s ± 0.024 for Baseline, 0.22 s ± 0.025 for Saline, p= 0.0452,
n= 6 rats).

M2 inhibition preferentially disrupts M1 cross-area activity. To
examine the influence of M2 inactivation on M1 neural repre-
sentations, we performed simultaneous recordings in M1 and M2
during baseline performance and during M2 inactivation on the
same day in well-trained animals. This approach allowed us to
define the M2–M1 cross-area activity space with M2 intact, then
track the effects of M2 disruption on single-unit M1 activity, M1
cross-area dynamics, and M1 local dynamics. First, we compared
movement modulation of M1 single neurons during baseline
reaches and M2 inactivation. Remarkably, not only did M2
inactivation disrupt M1 single-neuron movement modulation
(hierarchical bootstrap, 48.43% ± 16.93 for Baseline, 24.88% ±
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17.01 for M2 Muscimol, p= 0.0137, n= 3 rats) (Fig. 7c), but the
M1 neurons which contributed most to M2–M1 cross-area
activity (i.e., with the highest magnitude CCA weights) experi-
enced greater drops in movement modulation (linear regression
on log(CCA weight mag.), R2= 0.12, t= 2.81, p= 0.0067, n= 60
neurons from three rats) (Fig. 7e). This result is consistent with

the model that M2 population activity shapes M1 population
activity through M2–M1 cross-area signals.

Our data predicted that M2 inactivation might preferentially
affect M1–M2 cross-area population dynamics, thereby removing
top–down influence on M1, with minimal disruption of local
M1 computations. Intriguingly, we found that M2 inactivation
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disrupted movement modulation of M2–M1 cross-area activity
significantly more than the movement modulation of local M1
activity (Fig. 8a). We quantified this by computing single-trial
peak-to-trough values on a 1-s interval centered on reach start for
both cross-area and local signals. We found that across animals,
both cross-area and local signals had decreased modulation with
M2 inactivation, but that the decrease was significantly greater for
cross-area signals (hierarchical bootstrap; M2 muscimol resulted
in a 58.19% ± 8.71 decrease in peak-to-trough amplitude for M1
cross-area signals, and a 26.52% ± 7.20 decrease for M1 local
signals, p= 0.0042, n= 3 rats). These results indicate a degree of
independence between cross-area and local dynamics. This
decoupling may provide a mechanism for resilience of local
dynamics, improving robustness in the event of distant network
damage.

M2 inactivation resulted in a small but significant drop in
firing rate across the M1 population (hierarchical bootstrap,
24.65 Hz ± 2.73 for Baseline, 19.15 Hz ± 4.64 for M2 Muscimol,
p < 0.0001, n= 3 rats). However, histological analysis confirmed
that this was not a direct effect of the muscimol itself, which did
not reach M1 (Supplementary Fig. 6). Instead, this effect may be
due to loss of M2 inputs49. Furthermore, mean M1 local
covariance did not change, indicating stability in local M1
functional connectivity (two-sided hierarchical bootstrap, 0.24 ±
0.063 shared variance/total variance for Baseline; 0.19 ±
0.043 shared variance/total variance for M2 Muscimol, p= 0.28,
n= 3 rats, see Methods).

M2 inhibition disrupts M1 representation of movement. We
found that M2 inactivation decreased M1 cross-area modulation
during reach initiation (Fig. 8b–e). We quantified this by com-
paring the difference in median M1 activity along the cross-area
activity axis before reach and at reach initiation during baseline
trials and M2 inhibition trials (Fig. 8b–d). We found that the
difference between M1 cross-area neural activity during pre-reach
and reach initiation was significantly smaller during M2 inhibi-
tion (mixed-effect model, 0.35 ± 0.06 for Baseline, 0.03 ± 0.09 for
M2 Muscimol, t(4)=−3.57, p= 0.02, n= 3 rats). As before, we
fit a logistic regression model to predict reach onset from M1
cross-area activity. We quantified the model’s performance and
saw that detection of reach initiation based on M1 cross-area
activity decreased with M2 inhibition (mixed-effect model, 0.64 ±
0.03 for Baseline, 0.52 ± 0.04 for M2 Muscimol, t(4)=−3.48, p=
0.02, n= 3 rats) (Fig. 8e), indicating that M1 cross-area dynamics
were less informative about reach initiation during M2 inhibition.
The loss of information about reach initiation caused by M2
inactivation can be directly contrasted to the learning-driven
gains in information about reach initiation that are illustrated in
Fig. 4.

In addition to disrupting reach initiation signals, we also found
that M2 inhibition decreased reach modulation of M1 cross-area
dynamics (hierarchical bootstrap, 0.78 ± 0.21 for Baseline, 0.27 ±
0.050 for M2 Musimol, p < 0.0001, n= 3 rats) (Fig. 8f). This
indicated that M2 input is necessary for intact M1 reach
modulation and implied a M2 to M1 directionality. We
additionally examined whether M2 inactivation entirely disso-
ciated M1 cross-area modulation from behavioral performance.
We found that the relationship between reach duration and M1
CA-modulation was still significant during M2 inactivation
(mixed-effect model, log slope=−0.26, t(187)=−5.54, p=
9.99 × 10−8, n= 3 rats) (Fig. 8g), underscoring the fundamental
relationship between M1 and behavior even during motor system
disruption.

Discussion
This study outlines a new approach to understanding simulta-
neous activity shared between two cortical areas. First, we
demonstrate that a computational method identifying maximally
correlated activity patterns between regions can be used to isolate
cross-area population dynamics. Second, we show that cross-area
population dynamics become more related to both reach initia-
tion and duration with learning. Through causal manipulations,
we found that local M2 inactivation disrupted M1 cross-area
dynamics as well as skilled reach execution. The M1 activity
remaining in the M1–M2 cross-area dynamics axes was still
predictive of single-trial behavior, indicating maintenance of
meaningful movement activity in M1. However, M2 muscimol
inactivation led to slower reactions to environmental cues and
less efficient reaches, consistent with the hypothesis that
attenuation of M2–M1 cross-area activity impairs M2 top–down
guidance of behavior. These results demonstrate that M1–M2
cross-area dynamics represent and contribute to skilled execution.

There are two common approaches to understanding M2 and
M1 signals during movement. First is to compare neural signals
from each region in order to detect differences supporting their
distinct roles. This approach has led to a model of M2 and M1
functioning within a hierarchy, with M2 providing top–down
signals to M1 related to movement planning4,5,16, timing50, and
context3,50,51. In contrast, the second approach focuses on simi-
larities between M1 and M2. Because M1 and M2 are both highly
active during well-learned movements, many studies combine
activity from both regions to understand cortical single-neuron
and population dynamics during movement24,28,52. This allows
analysis of a larger number of neurons with similar relationships
to movement. These two approaches emphasizing the differences
and similarities in M2 and M1 data are not mutually exclusive,
but they are rarely5 combined to understand how cross-area
versus local signals contribute to network function.

Fig. 6 Local signals support a M2 to M1 hierarchy. a Illustration of approach to identifying local activity using artificial data. Black line represents a
population firing rate for a single time bin. Population firing was projected onto a shared axis defined by CCA (solid yellow line) to obtain the cross-area
signal (dotted yellow line), and onto the hyperplane orthogonal to the CCA subspace (light red plane), to obtain the local signal (dotted red line).
b Example animal local activity in early learning (z-scored). (Top) Single-trial local activity trajectories for M2. Black dots indicate reach onset and white
dots indicate transition to grasp on each trial. (Middle) Single-trial local activity trajectories for M1. (Bottom) Mean local activity trajectories for M2 (blue)
and M1 (red). Shaded regions show SEM, n= 211 trials. c As in b, but for late learning, n= 297 trials. d Distributions of timing differences between median
timing of single-trial M2 and M1 local activity in early (brown) and late learning (gray) (from example animal in b, c). Black dotted line indicates zero lag in
M2–M1 median timing of local activity. e Quantification of M2–M1 timing differences (n= 4 rats). In gray, permutation-based reference distribution of
timing differences with data randomly assigned to M1 or M2 (105 permutations). M2 local activity significantly preceded M1 activity in early (green) and
late (orange) learning. f Quantification of tighter coupling between M2 and M1 local activity from early to late learning (n= 4 rats). In gray, permutation-
based reference distribution of mean difference in M2–M1 timing coupling with M2–M1 timing differences randomly assigned to early or late learning (105

permutations). The true difference in M2–M1 coupling between early and late learning (purple line) was more negative than any of the reference values,
indicating that the timelag between M2 local activity and M1 local activity significantly decreased with learning.
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Here we analyzed both the activity simultaneously shared
across M1 and M2, and the otherwise unaccounted-for activity
in each region. In any brain region, exclusively local activity is
impossible to identify in-vivo, as this would require compre-
hensive recordings from the entire brain in order to account
for activity shared with any other region. However, M1 and
M2 have heavily overlapping inputs and outputs53, allowing us
to consider the M1–M2 cross-area activity as encompassing
most of each region’s brain-wide shared activity. We found
that the local dynamics in M2 and M1 had a clear temporal
relationship, with M2 preceding M1, consistent with the per-
vasive model of top–down M2-to-M1 signals3,4. While this
analysis quantified trial-by-trial timing in M2 and M1 local
dynamics during early and late learning, it remains unknown
whether more detailed analysis of M2 and M1 local dynamics
would reveal additional trial-by-trial processes for top–down
learning. However, as learning signals may initially be unpre-
dictably related to many aspects of motor learning (timing,
vigor, etc.) such work may be better accomplished in a

dataset with more neurons from animals performing simpler
behaviors.

Shared neural population dynamics have been identified within
single brain regions7,11,28, between two hierarchical cortical
regions5,16,32, and across sets of functionally diverse brain
regions17,18,33. In many cases, shared dynamics are defined
solely on functional relationships in neural activity, independent
of behavior (but see ref. 54). This approach moves away from the
view of fluctuations in neural signals as noise in a stochastic
system. Instead, it frames neural activity as encompassing
a range of neural computations without apparent relation to
behavior18,24,28,55. Despite this behaviorally independent
approach to understanding neural signals, one common thread in
studies of cross-area activity is the dominance of movement
signals within shared dynamics18,46. This privileged representa-
tion of movement emphasizes its importance as the final output
of the nervous system, and suggests the possibility that movement
signals have a role in shaping neural activity in a broad array of
functional systems, including cognitive and motivational circuits.
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reach and reach activity during baseline and M2 inactivation trials in M1 cross-area subspace. Yellow lines show data from individual animals, black line
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also marked with black open circles, show data from individual animals, bars show mean ± std dev., n= 3 rats. ****p < 0.0001. One-sided hierarchical
bootstrap, not adjusted for multiple comparisons. g Single-trial M1 CA-modulation predicts single-trial reach duration even during M2 inactivation. Plot
shows random subsampling of trials across animals, all trials were used in quantification.
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Here, we use learning as an intervention to change the beha-
vioral salience of reach-to-grasp movements. In other words, we
probe how learned behavioral salience of a given movement
changes its representation in cross-area neural signals. We found
that cross-area representations of similar movements were less
modulated in early learning than late learning, consistent with a
functional role for cross-area activity in amplifying neural signals
for salient behaviors. This interpretation is consistent with a study
of correlated variability between neurons in V448, which found
that the relationship between correlated variability and perfor-
mance was the same for performance improvements driven by
either attention or learning, two manipulations of behavioral
salience. Thus, we posit that shared activity specifically modulates
neural representations for salient behaviors.

Past work has proposed that the role of M2 is to provide
top–down control and contextual information to M14,51. Here,
we provide insight into what such a signal might look like, and
how it evolves with learning. In early learning, when behavior
was exploratory and variable, high amplitude cross-area
dynamics were less related to specific behavioral timepoints,
and modulation of cross-area activity was weakly related to
reaching. However, even at this early stage, reaches with more
movement-modulated cross-area activity tended to have
shorter durations. After learning, the relationship between
cross-area activity modulation and behavior was amplified.
Notably, the single-trial M1–M2 cross-area dynamics corre-
sponding to similarly efficient, short duration reaches were not
identical in early and late learning. This argues against the
notion that pre-existing representations of efficient movements
are selected through learning56. Instead, our results support the
idea that learning transforms and amplifies the neural signals
for behaviors that are selected10. This finding also highlights the
feasibility and importance of analyzing single-trials in order to
understand highly variable behavioral states such as early
learning.

Finally, the influence of cross-area dynamics on behavior
appears to be causal, since M2 inactivation disrupted both M1
cross-area dynamics and reaching behavior, while local properties
of M1 were less affected. Examining local activity during
upstream inactivation provides a valuable approach to differ-
entiating between activity dynamics generated locally and those
from top–down influences. Such analyses are impossible in purely
correlative studies, and, paired with same-day establishment of
cross-area dynamics, demonstrate a novel approach to under-
standing how several patterns of covariance and information
encoding overlap16,18,32,54 and interact within functional neural
systems5,32. Furthermore, we found that when M2 inputs are
removed, M1 local shared variance does not change. This is
important because there has been increasing concern that acute
changes in input to an area can perturb behaviorally relevant local
population relationships49,57. Importantly, rats do produce some
successful reaches during both early learning and M2 inactiva-
tion, although they are less frequent and less efficient. This
demonstrates that M1 can independently produce functional
reach-to-grasp behavior, and suggests that top–down input from
M2 is a learned signal, biasing M1 towards more effective beha-
vior. This is concordant with long-standing models of top–down
M1–M2 interactions during learning3 and reinforces the view
that, while M2 and M1 both represent movement, M2 is parti-
cularly important for learned, complex skills2,4,6,51,58–60.

Our results provide direct evidence that M1–M2 cross-area
dynamics reflect task learning and single-trial skill performance.
Knowledge of this phenomenon should help to better understand
mechanisms of neural plasticity and functional properties of
large-scale, hierarchical networks in the context of flexible learned
behaviors.

Methods
Animal care. All procedures were in accordance with protocols approved by the
Institutional Animal Care and Use Committee at the San Francisco Veterans
Affairs Medical Center. Adult male Long–Evans rats (n= 10, 250–400 g; Charles
River Laboratories) were housed in a 12-h/12-h light–dark cycle. All experiments
were done during the light cycles. Rats were housed in groups of two animals prior
to surgery and individually after surgery.

Surgery. All surgical procedures were performed using a sterile technique under
2–4% isoflurane. Surgery involved cleaning and exposure of the skull, preparation
of the skull surface (using cyanoacrylate) and then implantation of the skull screws
for overall headstage stability. Reference screws were implanted posterior to
lambda and ipsilateral to the neural recordings. For experiments involving phy-
siological recordings, craniotomy and durectomy were performed, followed by
implantation of the neural probes. For experiments involving only infusions,
burr holes were drilled in the appropriate locations, followed by implantation of
the cannulas. Postoperative recovery regimen included the administration of
0.02 mg kg−1 buprenorphine for 2 days, and 0.2 mg kg−1 meloxicam, 0.5 mg kg−1

dexamethasone and 15 mg kg−1 trimethoprim sulfadiazine for 5 days. All animals
were allowed to recover for 1 week prior to further behavioral training.

Electrode array and cannula implants. Long–Evans hooded rats were implanted
with two 32-channel tungsten wire probes (TDT or Innovative Neurophysiology),
one each in M1 (+0.5 AP, +3.5ML, −1.5 DV)27,38,44,61 and M2 (+4.0–4.5 AP,
+1.5ML, −1.5 DV)61,62, contralateral to reaching arm (see Supplementary
Table 2). Infusion cannulas were implanted in M2 (+4.0 AP, +1.5ML, −1.5 DV)
for infusion-only animals. For rats with both M2 electrode arrays and cannulas, the
cannula was attached to the lateral side of the electrode array prior to surgery.

Functional ICMS mapping. Two additional animals were used to confirm that
forelimb movement could be evoked from both M1 and M2 (see Supplementary
Fig. 1). For the two mapping procedures, animals were initially anesthetized with a
mixture of ketamine hydrochloride (100 mg kg−1) and xylazine (16.67 mg kg−1)
delivered intraperitoneally. Supplementary 0.5–1 cc doses of the mixture were
provided as needed, based on toe-pinch response. 32-channel tungsten microwire
electrode arrays (Tucker Davis Technologies, ~50 kΩ input impedance at 1000 Hz)
were implanted in M1 (n= 1) and M2 (n= 1), at a depth of 1500 µm, targeting
cortical layer V.

Consistent with prior studies63,64, triplet biphasic trains of 200 µs per phase
(100 µs inter-phase interval, 333 Hz triplet) were delivered at each electrode using a
constant current stimulator (IZ2, TDT) controlled by a custom Synapse program
(TDT). These trains were delivered with 60–150 µA amplitude64,65. Movements
were evoked across large portions of the M1 and M2 arrays (Supplementary Fig. 1).
Animals were placed in a prone position such that the contralateral forelimb
remained free. Stimulation was delivered at each electrode in the array with video
recording at 20 frames per second. Movement, if elicited, was visible immediately
after onset of stimulation, with greater amplitude of movement at higher currents
and frequencies.

Pharmacological infusions. Rats were anesthetized with 2% isoflurane before
infusions. We injected 0.5–1 µL (1 μg μL−1)44,60 of the GABA receptor agonist
muscimol into contralateral M2 (infusion rate: 1 nLmin−1) through a chronically
implanted cannula using a Hamilton infusion syringe. The infused volumes were
titrated for each animal. We first started with the larger volume (1 µL). If the animal
was unable to reach within 2 h, we downscaled to the smaller volume (0.5 µL). The
infusion syringe was left in place for at least 5 min post infusion. Rats were allowed
to recover in their home cages for 2 h before starting behavioral testing.

Histology. Final placement of the electrodes was monitored online based on
implantation depth and verified histologically at the end of the experiments. Rats
were anesthetized with isoflurane and transcardially perfused with 0.9% sodium
chloride, followed by 4% formaldehyde. The harvested brains were postfixed for
24 h and immersed in 20% sucrose for 2 days. Coronal cryostat sections (40-μm
thickness) were mounted with permount solution (Fisher Scientific) on super-
frosted coated slides (Fisher Scientific). Images of a whole section were taken by
a HP scanner, and microscope images were taken by a Zeiss microscope.

Behavioral training. We used an automated behavior paradigm to train rats to
perform dexterous reach-to-grasp movements36. Rats learn to reach through a
narrow slot to grasp and retrieve a 45 mg pellet from a shallow dish (i.e. pellet
holder) placed ~1.5 cm outside the behavioral box35. Prior to implantation, rats
were handled and habituated to the behavioral box for at least 1 day, then manually
prompted to reach for a pellet 10–30 times to determine handedness. Handedness
was determined when rats reached with the same hand for >= 70% of at least ten
test trials. The start of each trial was signaled with a tone and the opening of a door
allowing access to the pellet. Trials ended when the door was closed, which was
triggered either by the pellet being dislodged from the pellet holder, or, if this did
not occur, ~15 s after door opening.
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Behavioral training for learning animals. Once handedness was determined, rats
were implanted with neural probes (see Surgery). For 2 days before behavioral
training, rats were food restricted, followed by feeding animals a fixed amount
during the course of training. During behavioral training, rats were placed in an
automated reach box and completed 38–300 trials per day. The early learning
training day was the first day on which the rat completed at least 30 trials. The late
learning training day was the second consecutive day on which the rat performed
with at least 45% success rate (see Supplementary Table 1).

Behavioral training for M2 inactivation animals. Once handedness was deter-
mined, rats were trained until their success rate reached a plateau (at least 2
consecutive days with performance above 45% and >100 completed trials/day),
after which they were implanted with infusion cannulas alone (n= 3 rats), or with
infusion cannulas and electrodes (n= 3 rats) (see Surgery). Rats were allowed at
least a week of recovery after surgery before beginning behavioral testing. Rats were
retrained until plateau performance (>2 consecutive days with performance above
40%). On M2 inactivation days, rats performed ~100 reach trials before receiving
pharmacological infusions. After 2 h of rest post infusion, rats were retested for
~100 trials (see Supplementary Table 1).

Behavioral analysis. Rat behavior was video recorded using a side view camera
(30–100 Hz, see Supplementary Table 1) positioned outside the behavioral box,
perpendicular to the main direction of movement. Each rat’s reach hand was
painted with an orange marker at the start of each day. Reach videos were viewed
and semi-automatically scored to obtain trial success, hand position, timepoints for
reach onset, and grasp onset. To characterize motor performance, we quantified
reach duration, reaction time, maximum movement speed, and pellet retrieval
success for each trial. Percent reach success is the percent of trials on which the
pellet was retrieved during a single day of training, excluding trials in which the rat
did not dislodge the pellet from the holder or displayed abnormal behavior (i.e.,
licking, reaching with the wrong hand). Reach duration for each trial was defined
as the time from the start of reach to onset of grasping or when the paw first
touched the pellet if no grasping occurred on that trial. Reaction time was defined
as the time between the door open cue and movement onset—note that since the
rat was freely moving in the behavior box, reaction time is affected by both the rat’s
position and attention at the time of the cue.

Electrophysiology data collection. We recorded extracellular neural activity using
tungsten microwire electrode arrays (MEAs, n= 8 rats, TDT or Innovative Neu-
rophysiology). We recorded spike and LFP activity using a 128-channel
TDT–RZ2 system (TDT). Spike data was sampled at 24,414 Hz and LFP data at
1018 Hz. Analog headstages with a unity gain and high impedance (~1 GΩ) were
used. Snippets of data that crossed a high signal-to noise threshold (4 standard
deviations away from the mean) were time-stamped as events, and waveforms for
each event were peak aligned. MEA recordings were sorted offline using either
superparamegnetic clustering program (WaveClus66) or a density-based clustering
algorithm (Mountainsort67). Clusters interpreted to be noise were discarded, but
multi-units were kept for analysis. Trial-related timestamps (i.e., trial onset, trial
completion, removal of pellet from pellet holder, and timing of video frames) were
sent to the RZ2 analog input channel using an Arduino digital board and syn-
chronized to neural data.

Cross-area neural subspace and population dynamics. Shared cross-area sub-
spaces (CSs) were defined using CCA, which identifies maximally correlated linear
combinations between two groups of variables. Neural data in M2 and M1 was
binned at 100 ms, and data from −1 to +1 s surrounding time of grasp onset was
concatenated across trials and mean subtracted. CCA models were fit using the
MATLAB function canoncorr. For analyses and figures involving times outside the
−1 to +1 s window around grasp, data from other time periods was projected onto
these models.

CCA produces as many CVs as the number of neurons in the smaller
population (e.g., if there are 30 M2 neurons and 20 M1 neurons, then CCA will fit
20 CVs). The R2 values of each CV were computed using tenfold cross-validation,
and the R2 values reported in Fig. 3b are for the top CV only. The cross-validation
procedure used to compute the R2 values is as follows: The full dataset was
randomly partitioned into ten equal folds (ignoring trial structure, i.e. timepoints
from the same trial could be assigned to different folds). Then, ten different times,
one fold was assigned to be the test data and the other nine to be the training data.
CCA models were fit to the training dataset. The test data was then projected onto
the training model, and R2 values were computed between the M1 and M2
projections for each CV. The R2 values reported for each CV are the average across
all ten combinations of testing/training data, and are intended to measure how well
the models generalize to held-out data. Other than when reporting R2 values
(Figs. 2d, 3b; Supplementary Fig. 3a, d), or comparing weights fit on different
subsets of data (Fig. 2c), the CCA models used were those fit to the full datasets.

To determine which CVs were significant, the R2 of each CV was compared
with a bootstrap distribution made of the R2 of the top CV from CCA models fit to
trial-shuffled data (104 shuffles). Specifically, before fitting CCA, trials from M2
were concatenated in the order in which they occurred, while trials from M1 were

randomly permuted prior to concatenation. This method maintains local neural
patterns, as well as neural modulation which could be attributed to coarse
behavioral variables that do not vary by trial, while breaking moment-by-moment
relationships between the regions. Therefore, computing CCA on trial-shuffled
data provides a floor for the degree of correlation expected from the fact that many
neurons in both regions have firing rate fluctuations around the time of grasp. A
CV was considered significant if its R2 was greater than the 95th percentile of the
bootstrap distribution. One animal was eliminated from further analysis because its
early dataset had no significant CVs. All other datasets had 1–3 significant CVs. For
evaluating cross-area signals (Figs. 2–5, 7e, 8b–g; Supplementary Figs. 3a–c, 4),
only the top CV was used, as this provided a consistent dimensionality across
datasets, and a signal with both magnitude and sign.

To test whether results were unique to the 100 ms bin width, CCA models were
also fit to data binned at 75 and 50 ms (Supplementary Fig. 3). Qualitatively, CCA
trajectories fit to smaller binwidths appeared noisier but had peaks at similar
timepoints as the 100 ms models. There was no significant difference in R2 between
the 100 ms bin width and the 75 ms bin width, but the 50 ms bin width had a
significantly smaller R2 than either the 100 or 75 ms models (two-sided hierarchical
bootstrap, 104 shuffles; 0.27 ± 0.047 for 100 ms models, 0.28 ± 0.046 for 75 ms
models, 0.22 ± 0.037 for 50 ms models; p= 0.83 for 100 ms vs 75 ms; p= 0.016 for
100 vs 50 ms; p < 0.0002 for 75 vs 50 ms; n= 160 R2 values from eight datasets each
with tenfold cross-validation for each condition), suggesting that larger bin sizes
are needed to capture the cross-area signal. We also compared the angle between
the top CV for models fit to 100, 75, and 50 ms data (hierarchical bootstrap, 104

shuffles; 13.74° ± 2.40 for angle between 100 ms model weights and 75 ms model
weights, 20.04° ± 3.05 for 100 vs 50 ms, 18.22° ± 2.62 for 75 vs 50 ms; n= 8 models
per bin width, each fit to early or late data from four rats). In M2, we found that the
angle between the 100 and 75 ms models was significantly smaller than both the
angle between the 100 and 50 ms models (p= 0.0094) and the angle between the 75
and 50 ms models (p= 0.0041). In M1, we found that the angle between the 100
and 75 ms models was significantly smaller than the angle between the 100 and
50 ms models (p= 0.00089) but not significantly smaller than the angle between
the 75 and 50 ms models (p= 0.097). For all models, all bootstrap samples were
less than 45°, suggesting that models fit to different binwidths identified similar
patterns of covariation. In addition, we fit CCA models for all three binwidths at
timelags from −500 to +500 ms, and found that for six of eight datasets, using
100 ms bins with no lag resulted in the highest R2 values.

Normalized cross-correlation. Normalized cross-correlations were calculated as
the peak correlation coefficient for timelags between −200 and +200 ms minus the
mean correlation coefficient for all timelags in that range.

Local neural subspace and population dynamics. Local signals were computed
by projection onto the hyperplane orthogonal to the CS defined by CCA. For
comparison with local signals (Figs. 6, 8a), all significant CVs were used to define
the CS, so that the local signal would be orthogonal to all significantly correlated
cross-area activity. This meant that dimensionality varied across datasets, and the
signals analyzed were the magnitudes of the projections onto the cross-area and
local subspaces.

Reach start decoding. To calculate the difference in CS activity before reach
initiation versus during reach initiation, we defined a pre-reach period as −2 to
−0.1 s before reach initiation and a reach initiation period from −0.1 to +0.3 s
surrounding reach initiation. CS activity from each of these periods was con-
catenated across trials to then calculate the median CS activity value. The difference
between median CS activity during pre-reach and reach initiation was calculated
for each animal.

For reach start prediction, activity from pre-reach and reach initiation was
labeled as 0 or 1, respectively, which was then used as the response values to train a
logistic regression model using the MATLAB function fitglm. The probability that
CS activity values corresponded to a timepoint during reach initiation was returned
as scores. We then used these scores to compute the receiver operating
characteristic (ROC) curve of the classification results using the MATLAB function
perfcurve. The area under the curve (AUC) was returned for each animal, and these
values were used in mixed-effect modeling to detect difference in pre-reach versus
reach initiation activity during early versus late learning, and baseline versus
muscimol behavior.

The logistic regression model was used to calculate the probability of reach
initiation based on CS activity on single trials. We calculate the single-trial
difference in the mean predicted probability of reach initiation during the pre-
reach versus reach initiation periods. We compared this difference using all trials in
early versus late learning, and baseline versus muscimol behavior. We plotted the
median probability of reach initiation across trials aligned to reach initiation.

Neural reach modulation. Single-trial neural reach modulation of the first CV
from CCA was calculated using the signal processing d′ (d-prime) signal sensitivity
metric defined by the equation below68, where μ indicates the mean and σ indicates
the standard deviation of the signal. For each trial, the reach period was defined as
−0.1 s before reach onset to +0.1 s after grasp onset; the baseline period was
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defined as a length of time equal to the reach period, ending 1 s before the start of
the reach period. To produce single-trial normalization, the median value from the
baseline period was subtracted from both the movement signal and the baseline
signal before calculating the single-trial modulation value (d′), as below.

d0 ¼ μreach � μbaseline
1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

σreach þ σbaseline
p : ð1Þ

Mean local covariance. Each neuron’s shared over total variance was calculated as
in Athalye et al.7 using code adapted from Yu et al.69. Briefly, we used the factor
analysis function fastfa to model each neuron’s firing rate distribution as the sum of
three elements: (1) a mean rate; (2) private variance from neuron-specific firing
fluctuations not shared by the population being analyzed, and (3) shared variance
driven by population signals (factors). For each neuron, shared over total variance
is calculated as shared variance/(shared variance+ private variance).

Using the fastfa function, we represent a column vector of N neurons’ mean
firing rates as µ (rank N). Each neuron’s private variance is an elements of the
diagonal matrix ∑private (rank N ×N). Each neuron’s weights for creating k shared
population signals are rows in the matrix U (rank N × k, where k <N). The
population covariance matrix is calculated as ∑shared=UUT (rank N ×N), with
the diagonal values representing the shared variance for each neuron. Therefore,
the matrix of total variance for the population of neurons is represented as
∑total= ∑shared+ ∑private. Neuron i’s shared over total variance is ∑sharedii/∑totalii.
We chose to use k= 3 latent shared variables using the leave-one-out strategy
outlined in Yu et al.69.

Subspace alignment. The alignment between the subspaces defined by CCA and
by PCA (Supplementary Fig. 4) was calculated using the MATLAB function sub-
space. Weights for the top three PCs were included for the local subspace. Weights
for only the top one CV were included for the shared subspace.

Statistical analysis. Unless stated otherwise, all measurements were taken from
distinct samples. We did not adjust for multiple comparisons. Normality was
explicitly tested via Anderson–Darling test. For distributions that were non-nor-
mal, statistical testing was done using hierarchical bootstrap analysis, which is
nonparametric70 and p values were computed as a one-sided test unless otherwise
noted. For hierarchical bootstrap tests, statistics are written as mean ± standard
deviation, and data was clustered by rat identity and, where relevant, condition
(early vs. late, or baseline vs. infusion). Unless otherwise noted, 104 permutations
were used. For one-sided tests the lowest obtainable p value was 0.0001, and for
two-sided tests the lowest p value obtainable was 0.0002; therefore, some p values
are reported as p < 0.0001 or p < 0.0002 rather than precise values. When dis-
tributions were normal, we used linear mixed-effect modeling by the MATLAB
function fitlme. For mixed-effect models, statistics are written as mean ± standard
error of the mean, and rat identity was always considered a random effect. When
calculating changes in neural reach modulation between early and late learning, we
included reach duration as a covariate to control for changes in reach duration
between early and late learning. When calculating the relationship between neural
reach modulation (log) and reach duration (log), only trials with positive neural
modulation were included, and we included learning stage (early vs. late) as a
covariate.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The datasets generated and analyzed in the current study are available from the
corresponding author on reasonable request. Source data are provided with this paper.

Code availability
The custom data analysis code created in MATLAB, and custom recording programs in
OpenEx and Synapse (TDT) are available from the corresponding author on reasonable
request.
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