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In genetic data modeling, the use of a limited number of samples for modeling and predicting, especially well below the attribute
number, is difficult due to the enormous number of genes detected by a sequencing platform. In addition, many studies
commonly use machine learning methods to evaluate genetic datasets to identify potential disease-related genes and drug
targets, but to the best of our knowledge, the information associated with the selected gene set was not thoroughly elucidated
in previous studies. To identify a relatively stable scheme for modeling limited samples in the gene datasets and reveal the
information that they contain, the present study first evaluated the performance of a series of modeling approaches for
predicting clinical endpoints of cancer and later integrated the results using various voting protocols. As a result, we proposed
a relatively stable scheme that used a set of methods with an ensemble algorithm. Our findings indicated that the ensemble
methodologies are more reliable for predicting cancer prognoses than single machine learning algorithms as well as for gene
function evaluating. The ensemble methodologies provide a more complete coverage of relevant genes, which can facilitate the
exploration of cancer mechanisms and the identification of potential drug targets.

1. Introduction

With the development of genetic sequencing technology,
genetic information could be recorded as gene expression
data. Data mining, such as using machine learning methods,
is commonly used to reveal latent correlations between dis-
eases and gene expression. Supervised or semisupervised
machine learning algorithms have been proposed to predict
the clinical outcomes of cancers [1–4] in the context of
tumorigenesis. The support vector machine (SVM) [5–8]
and artificial neural network (ANN) [9–11] algorithms were
the most commonly used approaches for predicting progno-
ses. In addition, the Bayesian probability model [12–14] and
the fuzzy neural network [15] were also used for cancer

prognosis prediction. The microarray quality control
(MAQC) project thoroughly investigated the performance
of models for the prediction of clinical outcomes of breast
cancer, multiple myeloma, and neuroblastoma and were
common practices for microarray-based model construction
and validation [16]. The network-based approaches have
seen a recent widespread use for the identification of
cancer-related genes and have revealed the molecular mech-
anisms of various cancers [17–22]. However, to the best of
our knowledge, no studies have examined multiple algo-
rithms with two different kinds of expression data and their
ensemble performance with a limited number of samples,
which might be crucial when using them in practical. In most
cases, the number of available samples is restricted due to the
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cost, privacy, and other reasons. A limited sample number
causes a predictive model to be more sensitive to the dataset
distribution, and the lack of prior knowledge simultaneously
reduces the overall predicting performance which could be
reflected by MCC (Matthews correlation coefficient). More-
over, a single machine learning algorithm provides insuffi-
cient coverage of the disease-related genes because it only
uses genes that show the greatest difference of expression
profiles between the phenotypic statuses compared when
the genes have a similar function. Thus, identifying a stable
predictive model using a limited number of samples becomes
a challenge.

To address this problem, the present study thoroughly
investigated the performance of single models among differ-
ent datasets and proposed a strategy to combine multiple
predictive models as well as the datasets into a final ensemble
for clinical prediction. Compared with a single machine
learning algorithm, an ensemble scheme could not only per-
form more reliably when predicting clinical endpoints but
could also provide broader coverage of disease-related genes,
which will be beneficial for further downstream analysis in
such applications as the identification of potential drugs.

2. Materials and Methods

The workflow of this study is listed in Figure 1. The datasets
were carefully generated such that the scale and representa-
tion of the samples in the different datasets are consistent

such that the predictions were comparable. This section
describes the data and methods used.

2.1. GDC Data. All data were downloaded from the NCI’s
Genomic Data Commons (GDC) [23] by using the official
web-based API (https://gdc.cancer.gov/developers/gdc-appli
cation-programming-interface-api). The genomic data were
from the official normalized microRNA and RNA sequence
expression data because it was restricted by multiplatform
coverage and accessibility; a portion of the cancer data was
excluded from this study. For example, the number of avail-
able samples of neuroblastoma in GDC is 1127 (this number
might change if the database is updated), but only approxi-
mately half of these samples have associated RNA sequence
data, and no microRNA sequence data are available. Finally,
the freely accessible data for breast invasive carcinoma
(BRCA), ovarian serous cystadenocarcinoma (OV), and kid-
ney renal clear cell carcinoma (KIRC) were downloaded and
used for modeling. The clinical information was downloaded
in the XML format. The relationships of samples from differ-
ent platforms (such as mRNA, microRNA, and clinical) were
identified by the official MetaData file in the JSON format.
The detailed distribution can be found in Table 1.

2.2. Preprocessing. Since we wanted to make the results from
two sequencing platforms (e.g., mRNA and microRNA)
comparable and able for voting at last, the selection of sam-
ples was determined by the integration of different platforms.

Breast invasive
carcinoma

(BRCA)

Kidney renal clear
cell carcinoma

(KIRC)

t-test Preprocess
6 datasets

(3 cancers × 2 platforms)

Dimensional
reduction

120 subdatasets
(6 datasets × (5 × 4)
variable selection)

Modeling
voting

analysis
5880 models

72 votes

Subdatasets with reduced genes

Variable selection

OneR, ReliefF, InfoGain, SymmetricalUncert, and GainRatio
TOP 10, 30, 50, and 100 genes are selected

Subdatasets with reduced genes

Modeling
Totally, 7 classes contain 49 methods

Predicting results

Voting & analysis

Ovarian serous
cystadenocarcinoma

(OV)

Data download
(mRNA & miRNA)

Figure 1: Work flow of the whole process. First, the datasets were downloaded from the GDC (Genomic Data Commons) database. Next, the
downloaded mRNA and microRNA sequencing data are united by the usable information. The t-test was used afterwards to determine the
significantly expressed genes. Five selection methods were used to select the cancer-associated genes and the subdatasets generated according
to the ranks. Finally, the prediction results were integrated by a voting protocol. Note that every subdataset was divided into two pieces for
cross-validation and independent test in the ratio 4 : 1 before variable selection. Only the datasets for cross-validation will be used for
variable selection and modeling.
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Only samples that contained clinical information and expres-
sion data for both mRNA and microRNA were retained for
subsequent analysis.

The sample label was determined by the clinical informa-
tion. For OV and KIRC, the label was determined by the sur-
vival time. A sample was deemed positive if the recorded
survival time was larger than one year and if the patient
was still alive (based on the clinical data). Similarly, a sample
was deemed negative if the associated patient was dead and if
the recorded survival time was less than one year. The sample
label for BRCA was determined by the estrogen receptor (ER)
status (negative or positive), which was also recorded in the
clinical XML file. Therefore, if the required information for
a sample could not be found in the clinical data or its status
did not satisfy the criteria (e.g., the patient was alive but the
survival time was less than one year), it was excluded.

The sample number was reduced by the clinical informa-
tion. Student’s t-test was used to subsequently reduce the
mRNA and microRNA numbers. Only genes that had signif-
icant expression with a p value less than 0.05 were retained in
a dataset. The ratio of positive to negative samples was kept
in an appropriate range to reduce classification bias. In this
study, the range of this ratio was 0.5 to 2. For example, if a
dataset contained 22 positive and 50 negative samples, 6 neg-
ative samples were randomly removed to adjust the ratio so it
fell within the required range. The eliminated datasets were
divided into two parts for cross-validation and independent
tests in a 4 : 1 ratio. The scale of the datasets is listed in
Table 1. Only the datasets for cross-validation will be used
for variable selection and the 5-fold cross-validation; the
datasets for independent testing will not participate in
modeling. And only the independent prediction will be used
for further ensemble analysis and comparison.

2.3. Machine Learning Methods. 49 modeling methods in
WEKA [24] (version 3.8.1) were investigated in this study.
The methods were divided into seven different classes by
the developers of WEKA according to specific features of
the methods (Table 2). The different method classes had dif-
ferent features. In the functions class, most of the methods use
a functional solution for modeling the data, such as LibSVM
[25] and logistic regression [26], and in most cases, few
mechanisms are available for ensemble learning, such as vot-
ing or resampling. However, in the meta class, the methods
use resampling and voting for classification and regression,
and the methods in the other classes are considered model

units, such as AdaBoost [27] and Bagging [28]. The methods
from the bayes class are from the probability and graph the-
ory, and most of them, including NaïveBayes [29], BayesNet-
work [30], and BayesianLogisticRegression [31], are sensitive
to sample number. Similarly, methods in the rules class use
rules (such as decision table) for classification [32]. The
methods in the lazy class are instance-based and could be
optimized for better efficiency using a lazy algorithm [33].
Most of the methods in the trees class are based on the classi-
fication and regression tree algorithm, but the way they are
carried out is different. Many other mechanisms are inte-
grated into the trees such as resampling used in a random for-
est [34]. Finally, the misc class contains methods for which it
is difficult to assign to another class. Only two methods fell
into this class in this study, namely, the VFI, an ensemble
method based on a voting protocol [35], and the HyperPipes,
based on an algorithm that finds similarities among attri-
butes. Considering running time, comparability, and reduc-
ing the risk of overfitting, only default parameters are used
for modeling.

Because the sample number was limited, fewer genes
should be considered to avoid overfitting. In this study, five
variable selection methods were used for dimensional reduc-
tion: OneR, ReliefF, InfoGain, SymmetricalUncert, and Gain-
Ratio. OneR is executed by using the OneR classifier, which
is based on measuring the error between the attributes and
the response values [36]. ReliefF uses a resampling mecha-
nism for evaluating the attributes [37]. The other methods
are from the information theory, and the associated formu-
las are

GainRatio = class, attribute =
H class −H class∣attribute

H attribute
,

InfoGain class, attribute =H class −H class∣attribute ,

SymmetricalUncert class, attribute

= 2
H class −H class∣attribute

H class

+H attribute ,
1

where the “H()” in the formula is the information entropy
(Shannon entropy) [38] and “class” denotes the values of a
label. According to their formulas, GainRatio could be
considered as a normalization of InfoGain. However, the
information entropies of all of the attributes, such as the
expression of mRNAs and microRNAs, are different, so both
methods are used in this study. By using the ranking mecha-
nism in WEKA, in every subdataset for cross-validation, the
attributes can be ranked, and the top 10, 30, 50, and 100
ranked attributes are selected for cross-validation andmodel-
ing. Note that since the number of microRNAs in OV is lim-
ited (83, which is less than 100), the numbers of the attributes
in the subdatasets are 10, 30, 50, and 83. Totally, we investi-
gated a total of 5 variable selection methods× 4 subdata-
sets× 49 modeling methods = 980 predictive models.

Table 1: Scales of the three datasets.

Disease
name

Sample number
in modeling

dataset

Sample number in
independent test

dataset

Number of
kept genes

BRCA 558 141
mRNA 24585

miRNA 722

KIRC 112 29
mRNA 9119

miRNA 190

OV 66 18
mRNA 4390

miRNA 83
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2.4. Integrating the Predictions by Voting. After generating
hundreds of models, it is possible to combine their predic-
tions. As previously mentioned, the prediction perfor-
mances are ranged in the datasets. To integrate the ranged
predictions and find a stable modeling method for genetic
datasets, we used a voting protocol in this study to identify
the datasets.

All of the weights were the same, except in the informa-
tion theory methods such as InfoGain, SymmetricalUncert,
and GainRatio. The weights in the information theory
methods were modified to 1/3 when voting the predictions
from the subdatasets of the OV-miRNA group according to
the prediction distribution. More details may be found in
“the coverage and reliability of selected genes” and “the dis-
tributions of the predictions.”

Three voting schemes were used to arrive at a compre-
hensive conclusion. All of the methods were first used for
voting. Then, some of the methods which performed poorly
for all datasets were eliminated. Finally, mRNA and miRNA
datasets were combined for voting.

2.5. Measurement Methods. Since there were many predic-
tions, box plots were used to reflect the stability of the differ-
ent classes. The quartiles Q1 and Q3, the interquartile range
(IQR), and the whiskers (the lower whisker is Q1 −1.5 IQR,
and upper whisker is Q3 +1.5 IQR) in the box plot are dis-
cussed. Two types of box plots were used to present the
results in different angles, one based on the WEKA classes
of modeling methods and another based on the scale of the
subdatasets. Because the ratio of positive to negative samples
was biased, the Matthews correlation coefficient (MCC) was
used as the criterion for the plots. The MCC is one of the cri-
teria used to evaluate the prediction performance, and the
associated formula is

MCC =
TP × TN − FP × FN

TP + FN × TP + FP × TN + FP × TN + FN
,

2

where TP, TN, FP, and FN are the number of true-positive
predictions, true-negative predictions, false-positive predic-
tions, and false-negative predictions, respectively.

3. Results

Figure 1 is a flow chart that shows the modeling and
integration of the preprocessed datasets. The associated
results are listed below. Since there were 5880 modules in
total (6 datasets× 980 predictive models per datasets),
figures instead of tables were used to present the results
(Figures 2–13). The individual cross-validation and
independent test results were together listed in the
Supplementary file “ModelingResults.xlsx” (available here).

3.1. Modeling Results. The prediction performance was ascer-
tained in two ways: by the modeling method class defined by
WEKA (see Table 2) and by the different subdatasets gener-
ated by the different variable selection methods. Therefore,
a total of 3 cancers× 2 sequence methods× 2 kinds of
plots = 12 figures were generated for the modeling results.

The meta class and trees class methods performed better
than those in other classes for the two types of BRCA geno-
mics data (mRNA in Figure 2 and miRNA in Figure 4), as
evidenced by the best medians and averages. The box for
the trees class had higher whiskers, but the box for the meta
class had a smaller IQR.

The KIRCmRNA (Figure 6) and miRNA (Figure 8) data-
sets showed diverse prediction distributions. In the KIRC-
mRNA group, the distributions were similar in the two
BRCA groups but the lazy class performed in a similar man-
ner in the meta and trees classes. The distributions were

Table 2: Methods used.

Class Method names

bayes
NaiveBayes, BayesianLogisticRegression, BayesNet, ComplementNaiveBayes, DMNBtext, NaiveBayesMultinomial,

NaiveBayesMultinomialUpdateable

functions Logistic, MultilayerPerceptron, RBFNetwork, SimpleLogistic, SPegasos, VotedPerceptron, LibSVM

lazy IB1, IBk, KStar, LWL

meta AdaBoostM1, Bagging, Dagging, Decorate, END, FilteredClassifier, LogitBoost, MultiBoostAB, MultiClassClassifier

misc HyperPipes, VFI

rules ConjunctiveRule, DecisionTable, DTNB, NNge, OneR, PART, Ridor, ZeroR

trees ADTree, BFTree, DecisionStump, FT, J48, J48graft, LADTree, LMT, NBTree, RandomForest, RandomTree, REPTree

The names, including the class names, are from WEKA. The results and discussion are based on the classes.

0.5

1.0

0.0

Functions Rules Misc Lazy Trees Meta Bayes

−0.5

−1.0

Cross-validation
Average

Independent test
Average

Figure 2: MCC of the BRCA-mRNA group by the functions class.
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totally different in the KIRC-miRNA class. Themisc class had
the best distribution in the box plot, and the others were far
worse. However, most of the medians and averages in the
KIRC-miRNA group were less than those in the KIRC-
mRNA group.

The situation was similar in the OV-mRNA group
(Figure 10) and the OV-miRNA group (Figure 12). The misc
class was best in the OV-mRNA group datasets, but themeta
class had relatively better prediction performance for the
OV-miRNA group. The rules class and functions class had
very poor distributions in both groups.

Comparing between cross-validation and independent
test, most of them were similar; the differences between the
whiskers were not huge except for two classes: functions
and lazy (could be found in Figures 2, 8, and 12). The func-
tions class often has wider ranges between the two whiskers
in cross-validation and is still larger than its independent test.

On the contrary, the lazy class usually has narrower ranges in
cross-validation than its independent test.

Distributions based on different datasets were clearer. In
most cases, the dataset (mRNA or microRNA) that contained
more attributes had a better distribution (i.e., a smaller IQR
or a higher median). However, the peak was sometimes
found in a smaller dataset. In more detail, the two BRCA
groups (Figures 3 and 5) seemed to be insensitive to the attri-
bute number and the distributions especially medians are
very similar. The boxes were larger in the KIRC-miRNA
group (Figure 9). The prediction results were sensitive to
the attribute number, and the upper whisker increased as
the attributes increased, but the lower whisker simulta-
neously decreased. In comparison, the distributions of the
boxes in the KIRC-mRNA group (Figure 7) were better when
the attribute number increased to 30 and were relatively sta-
ble afterwards. Differently in the OV-mRNA (Figure 11) and

0.5

1.0

0.0

Lazy

Cross-validation
Average

Independent test
Average

Rules Misc Functions Trees Meta Bayes

−0.5

−1.0

Figure 4: MCC of the BRCA-miRNA group by the functions class.
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Figure 5: MCC of the BRCA-miRNA group by reduced datasets.
∗Note that the subdatasets from OV-miRNA have at most 83
micro-RNAs and thus the scale "100" of OV means 83.
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Figure 3: MCC of the BRCA-mRNA group by reduced datasets.
∗Note that the subdatasets from OV-miRNA have at most 83
micro-RNAs and thus the scale "100" of OV means 83.
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Figure 6: MCC of the KIRC-mRNA group by the functions class.
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the OV-miRNA groups (Figure 13), the boxes contracted
when attributes were added.

3.2. Voting Results from All Methods. The performance of all
of the voted methods is listed in the column “Vote from all
methods” of Tables 3, 4, and 5. There is no doubt that the
overall voting performance would be lower than optimum,
since not all of the voting methods are sufficiently good for
the 6 datasets; nevertheless, most of the MCC achieved by
voting are better than the average MCC. In addition, a part
of the voting performance reached the upper bound (i.e.,
the maximum), for example, in the bayes class in the OV-
miRNA group. In more detail, similar to the box plots, the
voting performance based on the BRCA datasets was similar
and near the upper whisker except for misc. The range was
larger in the other datasets (e.g., KIRC-mRNA, KIRC-

miRNA, OV-mRNA, and OV-miRNA). Different classes in
turn, including bayes, functions, meta, lazy, misc, and trees,
showed the top three best prediction performance. The rules
class always ranked lower in the overall voting test, but the
bayes class showed good voting performance even though
its distribution, as indicated by the box plot, was not stable.

3.3. Voting Results from Eliminated Methods. The filtering
rule was based on the distribution of the prediction results.
Values that fell out of the range indicated by the whiskers
in a box plot were considered to be outliers. Similarly, in
our study, a method with an MCC below the lower whisker
was considered as an outlier. There were 5 value selection
methods, and each generated 4 subdatasets. If 6 datasets (3
cancers× 2 sequencing techniques) were considered, a
modeling method was used: 5 variable selection methods× 4
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Figure 8: MCC of the KIRC-miRNA group by the functions class.
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Figure 9: MCC of the KIRC-miRNA group by reduced datasets.
∗Note that the subdatasets from OV-miRNA have at most 83
micro-RNAs and thus the scale "100" of OV means 83.
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Figure 7: MCC of the KIRC-mRNA group by reduced datasets.
∗Note that the subdatasets from OV-miRNA have at most 83
micro-RNAs and thus the scale "100" of OV means 83.
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Figure 10: MCC of the OV-mRNA group by the functions class.
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subdatasets× 6 datasets = 120 times. Therefore, if a method
was designated as an outlier more than 6 times (5% of 120),
it was not considered in this voting test.

The details of eliminated methods are listed in
Table 6. The associated prediction performance was
listed in the column “Vote after filtering” in Tables 3,
4, and 5. One or more methods were eliminated in all
of the classes except the meta. It was evident that ZeroR
had the most counts, and it was accordingly eliminated.
Since only default parameters were used, LibSVM and SPe-
gasos, which could be considered an optimized SVM, were
designated as outliers with high counts. Similarly, the Baye-
sianLogisticRegression method required parameter optimi-
zation and was thus eliminated by many counts. No
methods in themeta class were eliminated, which indicated
that methods based on resampling and an ensemble

mechanism were stable and could address varied datasets
even they were not always the best.

3.4. Voting Results from the Combined Datasets. As men-
tioned in the Preprocessing, the datasets for one cancer com-
prised the same samples. Therefore, voting from both mRNA
and miRNA datasets is possible. The prediction performance
is in the last row of Tables 3, 4, and 5. According to these
three tables, the effects of the combination were different in
the different classes. No class always benefited from the com-
bination, but the MCCs determined by voting were not worse
than the lowest MCC (Tables 4 and 5) and sometimes better
than both (Table 3).

4. Discussion

In this section, the modeling results will be discussed. There-
fore, the discussion is comprehensive, and the gene selection
and the modeling results are discussed separately.

4.1.Coverage of SelectedGenes.Five variable selectionmethods
were used in this study, and different mRNA/miRNA datasets
were separately generated. If the subdatasets generated are
similar, combining multiple variable selection methods is
worthless. Therefore, it is necessary to analyze the contents
of the subdatasets and determine the similarity of the data-
sets. Moreover, the importance of the mRNA was evaluated
by using a 3rd party database.
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Figure 12: MCC of the OV-miRNA group by the functions class.
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Figure 13: MCC of the OV-miRNA group by reduced datasets. In
the 12 box plots, the line in the box is the median. The upper and
lower boundaries of the box are Q1 and Q3. The boundaries of the
dotted line are the whiskers. ∗The subdatasets from OV-miRNA
have at most 83 microRNAs, and thus, the scale “100” of OV
means 83. ∗Note that the subdatasets from OV-miRNA have at
most 83 micro-RNAs and thus the scale "100" of OV means 83.
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Figure 11: MCC of the OV-mRNA group by reduced datasets.
∗Note that the subdatasets from OV-miRNA have at most 83
micro-RNAs and thus the scale "100" of OV means 83.
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The coverage fraction is the number of the genes which
are used more than once of all genes, and accordingly, the
formula is

Coverage =
NumOfSelectedGenes −NumOfIndependentGenes

NumOfSelectedGenes
3

According to Tables 7 and 8, the overall coverage was
approximately 40% in the datasets from mRNA. However,
the overall coverage of the microRNA datasets was much
larger, due to dataset scale limitations. Especially in OV, the
finally selected microRNAs were the same because there were
only 83 microRNAs; therefore, all of them were selected and
ranked in the top 100, and the OV-miRNA datasets must be
carefully considered when the predictions are integrated.
Conversely, the coverage of the two mRNA subdatasets was
not large. According to the statistical results for the mRNA
datasets, the frequency of shared mRNA increased as the cov-
erage fraction increased. The shared mRNAs were usually
ranked lower by the variable selection methods, which means
the most commonly used mRNAs were not recognized as
crucial genes that would be ranked higher. The reason might
be an insufficient sample number to determine the relation-
ships, since there are many mRNAs. Another probable rea-
son is that the gene expression data could not be directly

associated with a disease since cancer is a complex group of
diseases, so not only one or a small number of gene are cor-
related, such as in coexpression [39].

4.2. Reliability of the Selected mRNAs. To determine if the
shared mRNA is important, the Human Protein Atlas data-
base [40] was used to evaluate its importance. The Human
Protein Atlas contains a map frommRNA to tissue generated
by an antibody-based approach. The gene reliability is
recorded in the database, so that the mRNAs selected in this
study could be evaluated by using the database. The evalua-
tion had two steps. First, the fraction of Hits/Total in
Table 9 was used to determine the number of selected
mRNAs in the dataset. Next, the mRNAs’ reliability was ver-
ified by using the associated record in the “reliability (IH)”
table. An mRNA was considered reliable only if the record
was designated as “approved” or “supported.”

Table 9 shows that the fractions of hits in the database
were approximately 60%, 55%, and 35% for BRCA, KIRC,
and OV, respectively. However, the reliable hits ranged near
70% for the three datasets. The reliabilities based on more
than 10 hits were always around 70% no matter which data-
set was used. Few differences in reliability were found for the
three datasets. The fraction of the reliable mRNAs from OV
is relatively larger, and smaller for BRCA. Since the number
of records in the Human Protein Atlas is still limited, a more

Table 3: Voting results of BRCA.

Platforms Class Vote from all methods Vote after filtering MCC avg MCC max

BRCA-mRNA

bayes 0.7620 0.7620 0.5327 0.7766

functions 0.7252 0.7766 0.3696 0.7938

lazy 0.7620 0.7423 0.6797 0.7793

meta 0.7274 0.7274 0.7295 0.8085

misc 0.5821 0.6466 0.5449 0.7869

rules 0.7274 0.7274 0.5069 0.7967

trees 0.7274 0.7274 0.7207 0.8085

overall 0.7274 0.7274 0.5985 0.8085

BRCA-miRNA

bayes 0.7237 0.6895 0.3544 0.7067

functions 0.6733 0.6908 0.1080 0.7566

lazy 0.6214 0.6214 0.5067 0.6736

meta 0.6278 0.6278 0.6142 0.7269

misc 0.3203 0.5773 0.2816 0.6383

rules 0.5990 0.6278 0.3933 0.7234

trees 0.6427 0.6602 0.6066 0.7566

overall 0.6405 0.6908 0.4427 0.7566

BRCA-mRNA and BRCA-miRNA

bayes 0.7423 0.7252 0.4436 0.7766

functions 0.6555 0.7915 0.2388 0.7938

lazy 0.7595 0.7595 0.5932 0.7793

meta 0.7595 0.7595 0.6719 0.8085

misc 0.5624 0.6756 0.4133 0.7869

rules 0.7080 0.7746 0.4501 0.7967

trees 0.7595 0.7595 0.6636 0.8085

overall 0.7407 0.7746 0.5206 0.8085

All of the measurements in the tables are MCCs, and the vote after filtering is the MCC based on the eliminated methods. The “avg” is the average of the MCCs.
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reliable discussion and conclusion must await further analy-
sis based on more samples and records.

The records in the Human Protein Atlas will be updated,
and more mRNAs will become available. Therefore, the frac-
tion of hits and the reliability will change accordingly and the
shared mRNAs that are currently not recorded in this data-
base might be worthy of study. In addition, the reliabilities
of the genes were similar whether a gene was independent
or shared, and this indicates that the selected genes were
representative for a prognosis but might have a redundant
function; therefore, the shared genes are not significantly
different from the independent genes in reliability.

4.3. Reliability of the Modules. The results from cross-
validation could be used as the reference to evaluate the reli-
ability by comparing the results with independent test. As an
empirical conclusion, in most cases, the results from cross-
validation could be better than an independent test due to
various reasons such as the overfitting and batch effects, but
if the difference is not too large, the modules could be identi-
fied as reliable. Reflected in the figures, except a few classes
such as the functions class and lazy class, the MCC from
cross-validation had a relatively better predicting perfor-
mance (e.g., higher median and average or narrower IQR)
than independent test. According to the whiskers, most of
the classes had small differences, but there was still a lot of

the modules that had a large difference which could be
reflected by the outliers. Thus, it is still risky to get the unre-
liable prediction if we only use the modules which have good
performance in cross-validation for predicting. However,
since most of the methods were reliable, combining the
methods together becomes useful and necessary to reduce
the risk.

4.4. Distributions of the Predictions. A balanced ratio of
positive samples to negative samples is an important factor
for prediction. The BCRA datasets had the largest sample
numbers; therefore, the IQRs were the smallest, which indi-
cates that the MCCs were concentrated toward the median.
The boxes become wider for the KIRC, OV-mRNA, and
OV-miRNA datasets. The sample number should be guar-
anteed before modeling if a stable prediction is to be
obtained. However, sometimes, many reasons such as cost,
privacy, and difficulty limit the sample number, so it is
insufficient to confirm the prediction stability. Such predic-
tions should be considered very carefully because overfitting
may have occurred.

A basic way to avoid overfitting is to reduce the attribute
number for modeling, and that is why 4 subdatasets (i.e.,
datasets with 10, 30, 50, and 100 samples) were used for
modeling. As shown in the Modeling Results, especially in
Figures 9 and 11, more attributes relatively improved the

Table 4: Voting results of KIRC.

Platforms Class Vote from all methods Vote after filtering MCC avg MCC max

KIRC-mRNA

bayes 0.4216 0.3672 0.2401 0.6590

functions 0.6292 0.7162 0.0399 0.7785

lazy 0.4682 0.6292 0.3801 0.8474

meta 0.5261 0.5261 0.3780 0.7785

misc 0.4176 0.4105 0.2991 0.6058

rules 0.4385 0.6110 0.0723 0.6885

trees 0.5421 0.5421 0.3649 0.7785

overall 0.6110 0.5421 0.2535 0.8474

KIRC-miRNA

bayes 0.2368 0.1805 −0.0433 0.5131

functions 0.0889 0.0530 −0.1698 0.7162

lazy 0.4371 0.3410 0.1865 0.5249

meta 0.1667 0.1667 0.1105 0.4542

misc 0.4606 0.4795 0.3230 0.6590

rules 0.0889 0.2689 −0.0795 0.4606

trees 0.0530 0.1667 0.1165 0.6110

overall 0.1667 0.1667 0.0323 0.7162

KIRC-mRNA and KIRC-miRNA

bayes 0.4795 0.4795 0.0984 0.6590

functions 0.2605 0.6885 −0.0649 0.7785

lazy 0.5514 0.4371 0.2833 0.8474

meta 0.2300 0.2300 0.2442 0.7785

misc 0.4105 0.5131 0.3110 0.6590

rules 0.2605 0.5249 −0.0036 0.6885

trees 0.4371 0.5249 0.2407 0.7785

overall 0.4371 0.5249 0.1429 0.8474

All of the measurements in the tables are MCCs, and the vote after filtering is the MCC based on the eliminated methods. The “avg” is the average of the MCCs.
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overall prediction performance. However, the improvement
was still limited by the sample number. All of the BRCA sub-
datasets had the relatively smallest IQR compared to the
others that had the same attribute number. This limitation
might apply not only to modeling but also to many other

studies which must use the samples as a template to measure
the correlations among samples and genes. For example, in a
gene set enrichment analysis, genes should be eliminated by
statistical methods such as a t-test, fold-change, or FDR. In
the analysis, the genes are independent from each other when
calculating the correlations and thus the validity of the iden-
tified genes is only affected by the sample number. If the sam-
ple number is too small (less than 10), the t-test result is not
reliable.

Limited sample and attribute numbers make a predic-
tion sensitive to the datasets. The various distributions in
Figures 2, 4, 6, 8, 10, and 12 indicate that the methods in
the meta class are relatively stable for prediction, which is
reasonable because the methods in the meta class use other
methods for ensemble learning, so they are not sensitive to
different dataset distributions as other types of methods are.
The methods in the trees class were similar but had a more
varied performance than the meta class methods because
the classification and regression tree algorithms can be as
simple as REPTree or as complex as random forest. There-
fore, the boxes of the trees class usually had a larger IQR than
the meta class. However, the misc class performed best for
two datasets, but only two methods were contained in this
class. Based on the algorithm, the methods in the misc class
were much different and thus could have a much more vari-
able performance for different datasets. Except for the rules

Table 5: Voting results of OV.

Platforms Class Vote from all methods Vote after filtering MCC avg MCC max

OV-mRNA

bayes 0.4725 0.4725 0.1217 0.7906

functions 0.1250 0.4725 −0.0890 0.7906

lazy 0.3162 0.3162 0.1328 0.6447

meta 0.1890 0.1890 0.1923 0.6447

misc 0.6139 0.7500 0.3433 0.8864

rules 0.1250 0.3162 −0.1160 0.8864

trees 0.1890 0.1890 0.1734 0.6447

overall 0.3162 0.3162 0.0890 0.8864

OV-miRNA

bayes 1.0000 0.8771 0.2508 0.8864

functions 0.5000 0.6139 −0.0740 0.8771

lazy 0.6447 0.6447 0.2756 0.6325

meta 0.7559 0.7559 0.3786 0.8864

misc 0.7559 0.6139 0.1384 0.6447

rules 0.3430 0.7559 −0.0783 0.6447

trees 0.5000 0.7559 0.1258 1.0000

overall 0.7559 0.7559 0.1432 1.0000

OV-mRNA And OV-miRNA

bayes 0.4725 0.4725 0.1863 0.8864

functions −1.0000 0.7500 −0.0815 0.8771

lazy 0.7500 0.8771 0.2042 0.6447

meta 0.3162 0.3162 0.2854 0.8864

misc 0.6139 0.7500 0.2408 0.8864

rules 0.3430 0.3162 −0.0971 0.8864

trees 0.3162 0.4725 0.1496 1.0000

overall 0.3162 0.4725 0.1161 1.0000

All of the measurements in the tables are MCCs, and the vote after filtering is the MCC based on the eliminated methods. The “avg” is the average of the MCCs.

Table 6: Methods eliminated as outliers.

Class Names Counts

bayes
BayesianLogisticRegression 78

DMNBtext 24

functions

SPegasos 113

VotedPerceptron 19

LibSVM 106

lazy KStar 8

meta none /

misc HyperPipes 12

rules

ConjunctiveRule 56

OneR 9

ZeroR 120

trees
BFTree 14

DecisionStump 20

The counts are the number of methods whose MCC is lower than the lower
whisker in the box plot.
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class, the methods in the bayes class also had a relatively infe-
rior performance, which might have been caused by the low
sample number, because probability-based methods are
sensitive on a modeling scale. The performance of methods
in the functions class was more skewed; the boxes usually
had a good upper whisker but a poor lower whisker. One
reason for these might be that the algorithms in this class
are also different from those in the misc class. There were
6 methods in the functions class, and thus the prediction
performance varied widely. Another reason might be param-
eter optimization; less parameter optimization would affect
all of the methods, but the methods in the functions class
might be the most affected because they are much more
sensitive to the parameters when only default parameters
were used.

The high similarity of the gene data used would lead to a
similar prediction performance, but when the similarity is
lower than 50%, as reflected by the coverage in Table 7 or
Table 8, the associated box plots were not significantly simi-
lar (as shown in Figures 3, 5, 7, 9, and 11).

According to the coverage of mRNA andmicroRNA used
and shown in Tables 7 and 8, the coverage among the data-
sets was not large, but most of the medians from different

subdatasets for the same cancer were similar, and this is
reflected in the boxplots (Figures 3, 5, 7, 9, and 11), which
indicates that some of the information contained in the genes
was duplicated. In other words, the genes eliminated by the
variable selection methods are representative for modeling,
but not comprehensive. The duplicated genes could arise
from similar genetics or pathology; for example, they could
have the same genetic regulation pathway or simply be coex-
pressed, so that only one would be sufficient for modeling.
Additionally, duplication could indicate that variable selec-
tion and machine learning methods are not sufficient to find
out all of the disease-correlated genes. On the one hand, cur-
rent machine learning methods can only determine some
disease-associated genes, so further study might be necessary.
On the other hand, the voting scheme provided in this study
could be helpful for evaluating the relationship between can-
cer and genes.

As previously mentioned, the predictions using different
datasets differed, meaning that we cannot determine which
method is best for all datasets. The separate use of different

Table 7: Coverage of the selected genes from mRNA.

Disease ShareNum
Subdata scale

10 30 50 100

BRCA

5 0 2 2 5

4 4 5 10 25

3 4 13 21 45

2 2 16 26 42

1 18 49 85 156

Total 28 85 144 273

Coverage fraction 35.7% 42.4% 40.1% 42.9%

KIRC

5 0 0 0 2

4 0 3 3 8

3 2 6 14 28

2 6 22 34 71

1 32 76 128 232

Total 40 107 179 341

Coverage fraction 20% 29% 28.5% 32%

OV

5 0 1 2 5

4 1 2 7 16

3 1 8 16 55

2 9 27 34 43

1 25 59 96 160

Total 36 97 155 279

Coverage fraction 30.6% 39.2% 38.1% 42.7%

The coverage fraction is the number of the genes which are used more
than once in all of the genes, and accordingly, the formula is Coverage =
NumOfSelectedGenes −NumOfIndependentGenes/NumOfSelectedGenes.
The ShareNum is the number of a gene used in the subdatasets. For
example, in Table 7, the value in the OV-miRNA group with ShareNum 3
and data scale 10 is 1; it means that there is one gene which is used by 3
subdatasets and each subdataset has 10 microRNAs as the attributes.

Table 8: Coverage of the datasets from miRNA.

Disease ShareNum
Subdata scale

10 30 50 100∗

BRCA

5 1 2 2 8

4 3 8 17 47

3 3 11 23 31

2 3 9 12 26

1 18 57 79 127

Total 28 87 133 239

Coverage fraction 35.7% 34.5% 40.6% 46.9%

KIRC

5 1 14 16 35

4 3 6 13 53

3 5 7 19 12

2 2 7 11 9

1 14 21 39 59

Total 25 55 98 168

Coverage fraction 44% 61.8% 60.2% 64.9%

OV

5 0 5 17 83

4 3 15 27 0

3 7 10 6 0

2 3 5 12 0

1 11 25 15 0

Total 24 60 77 83

Coverage fraction 54.2% 58.3% 80.5% 100%

The coverage fraction means the number of the genes which are used
for more than 1 times in all of the genes, and accordingly, the
formula is Coverage = NumOfSelectedGenes −NumOfIndependentGenes/
NumOfSelectedGenes. The ShareNum is the number of a gene that is used
for the subdatasets. For example, in Table 8, the value in the OV-miRNA
group with ShareNum 3 and data scale 10 is 7; it means that there are 7
genes which are used by 3 subdatasets and each subdataset has 10
microRNAs as the attributes. ∗The subdatasets from the OV-miRNA
group have at most 83 microRNAs, and thus, the scale “100” of OV-miRNA
means 83.
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modeling methods will result in a loss of information, so
using ensemble methods to integrate the modeling results
is necessary.

4.5. Effects of Voting. A sufficiently large fraction of coverage
in the data space is necessary for good voting performance,
and the average accuracy must not be too low. Therefore, if
only the box plots are considered, the expected performance
of the bayes class is much lower. However, the result is anom-
alous in that the bayes class showed a good ensemble classifi-
cation performance (it was ranked in top three) for 5
datasets. On the other hand, the meta and trees classes were
not as good as the bayes class even though they had relatively
similar distributions. One reason is many ensemble algo-
rithms are contained in those two classes, so that the voting
had already been accomplished, so the prediction results
were concentrated near the median or the average. It is not
difficult to see that in most cases, the voting results of the
two classes were near the average. Another reason is that
only default parameters were used in the entire test. Many

ensemble methods must optimize the submethods for
ensemble learning, and the resampling methods also must
be optimized.

As a comparison, the voting performance from the elim-
inated methods was similar. However, the voting results were
not always better than the original results. The bayes class
was negatively affected by the filter. The MCCs based on
the bayes class were not larger than prior to voting. The rules
and functions classes were benefited by the filter, and the
MCCs were improved for most of the datasets. The trees class
was slightly benefited in the BRCA-miRNA group but was
not globally affected as the meta class was. The other classes,
including the overall voting, were affected positively or nega-
tively by different datasets. The biased effects could indicate
that the methods were sensitive to the datasets; the prediction
performance of a method changed greatly when the dataset
changed. On the other hand, the overall performance was
not affected too greatly. One reason was the meta class
methods, which showed a stable prediction ability, were not
eliminated, and thus, the overall results remained stable.

Table 9: Reliability of selected mRNAs.

Names Data scale
Reliable/Hits/ShareNum

10 30 50 100∗

BRCA

5 0 1/2/2 1/2/2 4/5/5

4 4/4/4 4/5/5 8/9/10 13/17/25

3 0/2/4 2/6/13 5/10/21 13/21/45

2 0/0/2 5/6/16 8/12/26 18/29/42

1 8/10/18 27/33/49 39/58/85 68/97/156

Total 12/16/28 39/52/85 61/91/144 116/169/273

Hits/Total 57.1% 61.2% 63.2% 61.9%

Reliable/Hits 75% 75% 67% 68.6%

KIRC

5 0 0 0 0/0/2

4 0 0/0/3 0/0/3 2/4/8

3 2/2/2 2/2/6 4/6/14 12/17/28

2 2/2/6 10/17/22 19/27/34 26/40/71

1 15/18/32 31/42/76 45/63/128 98/129/232

Total 19/22/40 43/61/107 68/96/179 138/190/341

Hits/Total 55% 57% 53.6% 55.7%

Reliable/Hits 86.4% 70.5% 70.8% 72.6%

OV

5 0 1/1/1 1/1/2 2/2/5

4 1/1/1 0/1/2 2/3/7 2/4/16

3 0/0/1 1/1/8 1/2/16 12/16/55

2 0/2/9 5/8/27 6/10/34 14/18/43

1 7/8/25 13/21/59 27/34/96 50/64/160

Total 8/11/36 20/32/97 37/50/155 80/104/279

Hits/Total 35% 33% 33.3% 37.3%

Reliable/Hits 72.7 62.5% 74% 76.9%

The table that records the hits and reliability in the “Human Protein Atlas” database. The “ShareNum” is the same in Table 8, and the “Hits” is the number of
mRNAs recorded in the “Human Protein Atlas” database. The “Reliable” is the number of reliable hits. The reliability is measured by using the associated record
in the “reliability (IH)” table. An mRNA is considered reliable only if the record is “approved” or “supported.” “Hits/Total” and “Reliable/Hits” are calculated
simply by using the row “Total” for division. For example, the last two elements in the last column are 37.3% and 76.9%. They are calculated by the element in
the associated row in “Total,” such as 80/104/279, where 37.3% = 104/279 and 76.9% = 80/104. ∗The subdatasets from the OV-miRNA group have at most 83
microRNAs, and thus, the scale “100” of OV means 83.
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Another reason might be that the performance effects were
polarized. For example, the bayes class that showed the best
comprehensive performance was negatively affected but the
rules class was benefited. Therefore, the overall differences
from the two voting mechanisms could be less.

The biased effects mean that a filter might not be that nec-
essary if there is no prior knowledge. However, the voting by
combining the mRNA and miRNA datasets could produce
better performance if the sample size is sufficiently large, as
shown in Table 3. Moreover, as shown in Tables 4 and 5, even
the sample size is insufficient, the results will not become
worse. Since the methods are not weighted, the results
support that most of the methods will produce the same
prediction, so combining the two datasets will be beneficial.

5. Conclusions

The purpose of this study was to discover a reliable way to
predict unknown data to reduce the risk of error prediction
when not enough samples were used for modeling. The dis-
tribution of the modeling performance indicated that the best
methods were different for different datasets; therefore, the
methods were integrated using a voting protocol. Finally,
we proposed a better way to model different gene expression
datasets. In conclusion, no prior knowledge exists; a compar-
ison of the prediction results for three cancers indicates that
the methods in the bayes class show a good ensemble perfor-
mance, even though the individual methods are not as stable
as those in the meta or trees classes. The meta and trees clas-
ses already contain many ensemble methods; therefore, their
performance is stable but, again, not good for ensemble twice.
Therefore, using the methods in the bayes class as a group
and one of the algorithms in the meta class might be a prac-
tical approach for a dataset without sufficient prior knowl-
edge. If prior knowledge exists for a cancer, the methods
and datasets used can be more specific. For example, this
study indicates that using miRNA as an attribute for model-
ing the OV data could yield a better result than using mRNA,
if we knew that at first, some of the negative effects could be
avoided. We hope that the scheme can facilitate related stud-
ies of genetic data modeling and elucidate important genes to
enhance the reliability of the final model.
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