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A B S T R A C T   

Lung cancer is a leading cause of morbidity and mortality globally, with its high mortality rate 
attributed mainly to non-small cell lung cancer (NSCLC). Although immunotherapy with immune 
checkpoint inhibitors (ICI) has revolutionized its treatment, patient response is highly variable 
and lacking predictive markers. We conducted a prospective study on 55 patients with NSCLC 
undergoing ICI therapy to identify predictive markers of both response and immune-related 
adverse events (IrAEs) in the airway microbiota. We also analyzed the clinical evolution and 
overall survival (OS) with respect to treatments that affect the integrity of the microbiota, such as 
antibiotics and corticosteroids. Our results demonstrated that respiratory microbiota differ 
significantly in ICI responders: they have higher alpha diversity values and lower abundance of 
the Firmicutes phylum and the Streptococcus genus. Employing a logistic regression model, the 
abundance of Gemella was the major predictor of non-ICI response, whereas Lachnoanaerobaculum 
was the best predictor of a positive response to ICI. The most relevant results were that antibiotic 
consumption is linked to a lower ICI response, and the use of corticosteroids correlated with 
poorer overall survival. Whereas previous studies have focused on gut microbiota, our findings 
highlight the importance of the respiratory microbiota in predicting the treatment response. 
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Future research should explore microbiota modulation strategies to enhance immunotherapy 
outcomes. Understanding the impact of antibiotics, corticosteroids, and microbiota on NSCLC 
immunotherapy will help personalize treatment and improve patient outcomes.   

1. Introduction 

Cancer is one of the major causes of morbidity and mortality worldwide, with lung cancer being among the most frequently 
diagnosed [1,2]. However, its prevalence is low due to its high mortality rate. Based on GLOBOCAN estimations, 18 % of all cancer 
deaths are due to lung cancer [3], and among its risk factors, tobacco is the most prevalent followed by radon gas [2]. In terms of 
treatment, immune-checkpoint inhibitors (ICI) have brought about a radical change, particularly in non-small cell lung cancer 
(NSCLC), where it has been approved in advanced/metastatic, locally advanced, and adjuvant settings; however, not all patients 
achieve the same results. In view of this discrepancy in response, attempts have been made to identify therapy-predictive biomarker 
response [4,5], with some previous studies suggesting the relevance of host-related factors, such as the microbiota, which has been 
directly linked to ICI effectiveness [6,7]. 

The microbiota has been shown to regulate immunotherapy potential by stimulating the anti-tumor immune response, although 
some microorganisms might metabolize these drugs, thereby inactivating them [7–11]. The lung microbiota is relatively understudied 
compared to the intestinal compartment, mainly because of the difficulty in obtaining representative samples, and the available ev
idence has recently been summarized [12]. The particularities of the gut microbiota between ICI responders and non-responders have 
previously been reported [13–15]. In addition, the impact of concomitant treatments, such as antibiotics or corticosteroids, in the 
microbiota composition and finally in the ICI response has been poorly evaluated, despite the current evidence suggesting their 
implication in the loss of gut microbiota diversity [4,16–20]. Also, a relationship between immune-related adverse events (IrAEs) and 
ICI response has been proposed, again without any useful marker for predicting it. 

The aim of the present study was to prospectively analyze a cohort of patients with NSCLC treated with ICI to decipher microbiota- 
based markers for both ICI response and toxicity, as well as to estimate the impact of antibiotics and corticosteroids on survival. 

2. Materials and methods 

2.1. Study design, inclusion, and exclusion criteria 

This was a prospective, observational study conducted at the Medical Oncology Department of the Lozano Blesa University Hospital 
Clinic in Zaragoza (Spain), in 55 patients diagnosed with NSCLC and ICI indication, who were consecutively included between April 
2019 and October 2020. 

The inclusion criteria were as follows: patients with locally advanced unresectable and metastatic NSCLC, stages III and IV, with ICI 
indication (Stage IV patients could receive ICI as a first line of treatment, in monotherapy or combination with chemotherapy, or in 
subsequent lines of treatment [1]. Patients with unresectable stage III started ICI treatment after radical treatment with concomitant 
chemotherapy and thoracic radiotherapy, without progressive disease after that treatment. Patients could have been diagnosed de novo 
or relapsed or progressed to treatment other than ICI); 18 years of age or older; and have an Eastern Cooperative Oncology Group 
(ECOG) performance status score lower than or equal to 2. 

The exclusion criteria were as follows: contraindication to receiving ICI; histology different from NSCLC; another concomitant 
tumor; prior treatment with an ICI antitumor agent; or being on corticosteroid treatment with doses of prednisone ≥10 mg/24 h or 
equivalent. 

The protocol was evaluated and approved by the Clinical Research Ethics Committee of Aragón with code (C.I. PI19/052). Prior to 
their inclusion in the study, all patients gave their informed consent, and baseline blood, saliva, and stool samples were collected 
before starting immunotherapy treatment. 

Patients were followed every 2–3 weeks during the treatment administration, as performed in our routine clinical practice, col
lecting all relevant clinical data for the study, particularly the antibiotic data (the antibiotic cycle, the origin of the infection, and the 
clinical response), and the corticosteroid (prednisone >10 mg or its equivalent) consumption. The registration period covered from 2 
months prior to ICI start until the end of follow-up. 

Patients who achieved a response and started follow-up were evaluated every 3 months. During shadowing, tumor response was 
assessed every 9–12 weeks according to Response Evaluation Criteria in Solid Tumors (RECIST) (v.1.1) [21]. Treatment safety was 
assessed by recording adverse events and alterations in analytical parameters. IrAEs were monitored and graded according to the 
National Cancer Institute Common Terminology Criteria for Adverse Events (v.5.0) [22]. 

2.2. Sampling 

Prior to treatment initiation, a tumor biopsy was routinely collected for programmed death-ligand 1 (PD-L1) determination. 
Additionally, each patient contributed with an oral sample (saliva + sputum collected by medical staff) and peripheral blood. Samples 
were immediately frozen at − 80 ◦C until recruitment was complete. 
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2.3. Microbiota determination 

Samples were slowly defrosted at − 20 ◦C for 24 h and 4 ◦C for another 24 h, to avoid bacterial death and DNA fragmentation. Total 
DNA was obtained by the QiaAmp kit (QIAGEN) from the saliva pellet after centrifugation. The bacterial composition was determined 
by polymerase chain reaction (PCR) amplification of the 16S rDNA V3–V4 region, and PCR products were pooled equally and sub
mitted to massive sequencing (2x300 bp) on a MiSeq (Illumina, San Diego, CA, USA) platform at traslational genomics core support 
unit (UCAT) -Ramon y Cajal Health Research Institute (Madrid, Spain). The sequence’s quality control was performed with DADA2, 
with a rarity of 12,000 sequences per sample. Amplicon sequencing variants were obtained by taxonomic assignment with the 
Silva_132 classifier. Alpha and beta diversity studies were performed, employing the q2-diversity add-on of QIIME2, after normalizing 
the samples by rarefaction (subsampling without replacement). In addition, a linear effect size discriminant analysis (LEfSe) was 
performed to assess which taxa explained the differences between groups. Sequence data were deposited in Genbank 
(BioProjectPRJNA1054537). 

Table 1 
Descriptive variables in our cohort.  

Characteristics of the Patients at baseline N (55) % 

Age (median) 65[39,62,64–67]  
Sex  
❑ Male  
❑ Female 

39 
16 

70.9 % 
29.1 % 

Race  
❑ White 

55 100 % 

Smoking status  
❑ Current or former  
❑ Never 

53 
2 

96.4 % 
3.6 % 

Body mass index  
❑ <30 kg/m2  
❑ >30 kg/m2 

46 
9 

83.6 % 
16.4 % 

Eastern Cooperative Oncology Group scale  
❑ 0  
❑ 1 

36 
19 

65.5 % 
34.5 % 

Histologic features  
❑ Squamous cell carcinoma  
❑ Adenocarcinoma 

22 
33 

40 % 
60 % 

Stage  
❑ III  
❑ IV 

16 
39 

29.1 % 
70.9 % 

Treatment indication  
❑ Locally advanced  
❑ First-line  
❑ Successive lines 

14 
18 
23 

25.5 % 
32,7 % 
41.8 % 

PD-L1 expression  
❑ <1 %  
❑ 1–49 %  
❑ >50 %  
❑ Unknown 

10 
21 
16 
8 

18.2 % 
38.2 % 
29.1 % 
14.5 % 

ICI drug  
❑ Pembrolizumab  
❑ Atezolizumab  
❑ Durvalumab  
❑ Nivolumab 

21 
18 
14 
2 

38.2 % 
32.7 % 
25.5 % 
3.6 % 

Best response  
❑ Complete  
❑ Partial  
❑ Stable disease  
❑ Progression  
❑ Not evaluable 

10 
13 
12 
15 
5 

18.8 % 
23.6 % 
21.8 % 
27.3 % 
9.1 % 

Antibiotic treatment  
❑ Yes  
❑ No 

28 
27 

50.9 % 
49.1 % 

Timing of antibiotic use  
❑ 2 months before – 1 month after ICI start  
❑ >1 month after ICI start 

22 
33 

40 % 
60 % 

Corticosteroid treatment  
❑ Yes  
❑ No 

32 
23 

58.2 % 
41.8 % 

Timing of corticosteroid use  
❑ 2 months before until first ICI cycle  
❑ After first ICI cycle 

9 
23 

28.1 % 
71.9 %  
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2.4. Programmed death-ligand 1 biomarker analysis 

PD-L1 protein expression was evaluated in lung biopsies, naïve to treatment. Samples were considered suitable for PD-L1 staining if 
they had more than 100 valuable neoplastic cells. PD-L1 expression was assessed with PD-L1 IHC 22C3 pharmaDx, in formalin-fixed 
tumor samples. PD-L1 expression was confirmed when staining of the tumor cell membrane (at any intensity) was observed. The 
prespecified expression levels are 1 %–50 % (low expression) or more than 50 % (high expression). 

2.5. Machine learning analysis 

The precision of various predictive models was explored using various algorithms, such as logistic regression, random forest, k- 
nearest neighbors, neural networks, and support vector machines, employing the two data sets: bacterial abundance in saliva and 
available clinical data. Both data sets were randomly divided into training and test sets. The models’ scoring was evaluated using 
precision accuracy, and we paid special attention to the f1-score, which allowed us to fine-tune the precision for ICI response and/or 
toxicity, overall survival (OS), and progression-free survival (PFS). Our data sets are considered relatively small from a machine 
learning point of view, so we averaged our results over 500 experiments. All models were performed in Python 3.8.10, using the Scikit- 
learn package. 

2.6. Statistical analysis 

The normal distribution of variables was compared using the Kolmogorov–Smirnov test. For the quantitative variables, distribution 
normality was checked by the Anderson–Darling test to define the parametric (t-test) and non-parametric (Mann–Whitney) analyses. 

The correlations between OS (months) and quantitative variables were assessed with Pearson’s or Spearman’s rank correlation, 
depending on data distribution. For the qualitative variables, Fisher’s exact test was employed. 

A descriptive analysis of the survival function and cumulative risk function was conducted using the Kaplan–Meier product limit 
estimator. The study aimed to assess whether the risk function differed based on the presence of certain factors through a bivariate 
analysis. The Mantel–Haenszel (log-rank) test was employed to compare the risk functions among various groups. The Cox propor
tional hazards model, also known as Cox regression, was utilized to estimate a model that examines how covariates collectively in
fluence the risk of complications. Probability (p) values of <0.05 were considered significant at a 95 % confidence interval. 

3. Results 

3.1. Patients and treatment 

Fifty-five Caucasian patients (median age 65 years, 70.9 % males) were enrolled, 65.5 % of whom had ECOG 0 at diagnosis. 
Regarding smoking, 3.6 % were nonsmokers, compared with 96.4 % who were smokers or former smokers. The histology included 
adenocarcinomas (60 %) and squamous cell carcinomas (40 %), with stage IV tumor in 70.9 % of cases. En terms of PD-L1 expression, 
18.2 % of patients had an expression <1 %, with 29.1 % being high expressers (>50 %) (Table 1). 

A total of 25.5 % of the patients received ICI and had a locally advanced stage, 32.7 % received it as first-line palliative treatment, 
with the remaining 41.8 % in subsequent lines of palliative treatment. Pembrolizumab was the most frequently employed ICI (38.2 %) 
(Table 1). 

Antimicrobial therapy was required by 50.9 % of the patients. 60 % received it after the first month of immunotherapy and the 
other 40 % received it in the window from 60 days before to 42 after ICI starting. Although 60.7 % required only one course of 
antibiotic treatment, up to 7.1 % needed four courses. The indications were respiratory (71.5 %, of which 28.6 % was respiratory 
infection/pneumonia), urinary (14.3 %), or intra-abdominal (3.6 %) infections, and were unknown in 7.1 % of the cases. Amoxicillin/ 
clavulanic acid, azithromycin, and levofloxacin were the most frequent antimicrobial agents. 

Table 2 
Types and grades of immune-related adverse events described in our cohort.   

No. (%) GRADE (%) 
1 2 3 4 

Infusion reaction 1 (1.8) 100.0 – – – 
Endocrine 5 (9.1) 40.0 60.0 – – 
Pneumonitis 6 (10.9) 16.7 66.7 16.7  
Colitis 2 (3.6) – 100.0 – – 
Hepatitis 3 (5.5) 33.3 33.3 – 33.3 
Nephritis 4 (7.3) 25.0 25.0 50.0 – 
Neurologic 1 (1.8) – – 100.0 – 
Musculoskeletal 5 (9.1) 40.0 20.0 40.0 – 
Skin 6 (10.9) 50.0 33.3 16.7 – 
Cardiovascular 1 (1.8) – – 100.0 – 
Ocular 1 (1.8) 100.0 – – – 
Other 1 (1.8) – 100.0 – –  
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Corticosteroids were required by 58.2 % of the patients, up to 71.9 % of them after the first ICI cycle. The reasons for their use were 
IrAEs (34.4 %), cerebral metastases (9.4 %), and exacerbations of chronic obstructive pulmonary disease (COPD) (9.4 %) (Table 1). 

Globally, 45.5 % of patients reported IrAEs (Table 2), most of them classified as late IrAEs (>3 months of ICI); 75 % were grade 1–2, 
and only one patient had grade 4 toxicity (hepatitis). 

3.2. Microbiota analysis 

After quality control, only one saliva sample was eliminated by the low quantity of reads. Significant differences were observed in 
the respiratory microbiota between ICI responders and ICI non-responders [Fig. 1(A-B) − 3(A-C)]. ICI responders presented a 
significantly greater abundance of Fusobacteria and Porphyromonas, whereas in ICI non-responders the Streptococcus genera was 
significantly more abundant [Figs. 2 and 3(A-C)]. 

3.3. Survival analysis 

The median overall survival (mOS) was 19 months (95 % CI, 11.13 to 26.87), while the median PFS was 10 months (95 % CI, 2.81 to 
17.19). At the 24-month mark, 36 % of the patients were still alive, and 30 % had not experienced disease progression. 

We detected no differences in OS according to sex, smoking status, body mass index, or tumor histology. There were also no 
significant differences based on age (cut-off 75 years), although there was a tendency toward a shorter OS in older patients. Regarding 
ECOG, patients with ECOG 0 had a longer OS (27 months) compared with those with ECOG 1 (4 months), and these differences were 
statistically significant (p < 0.001) [Fig. 4(A-D)]. 

According to the best achieved response, differences were observed, which were confirmed to be significant. The mOS was 4 
months for progressive disease (PR), 20 months for stable disease (EE), 27 months for partial response (RP), and not reached (NR) for 
complete response (RC). 

Although no statistically significant differences were found in the analysis of survival and antibiotic exposure, there was a clear 
trend toward longer survival in patients who did not require antibiotic treatment (mOS 23 months for non-use vs 12 months for use of 
antibiotics; p = 0.078). Within the cohort of responders, it was observed that 60 % did not receive antibiotics, whereas among non- 
responders, 74 % required antibiotic treatment. Statistically significant differences were not found when analyzing this item based on 
the number of cycles or on the timing of its use (from 2 months before to 1 month after the start of ICI vs. 1 month after ICI initiation) 
[Fig. 5(A-C)]. Neither of the differences was found when the relationship with PFS was studied. 

No association between antibiotic use and OS was found; however, non-responders to ICI were exposed to more antibiotics, 
whereas a higher number of patients without antibiotic use was observed among responders (p = 0.0439). 

When analyzing the relationship between OS and corticosteroid use, statistically significant differences were found (p = 0.011). 
However, when performing the subgroup analysis based on the reasons for use (COPD, IrAEs, brain metastasis, and others) or timing of 
use (from 2 months before to 1 month after the first cycle vs. after the first cycle of ICI), these differences did not persist [Fig. 6(A-C)]. 

When analyzing associations between PFS and corticosteroid use, we found no statistically significant differences (p = 0.846). The 
same occurred when analyzing the previously mentioned subtypes [Fig. 6(D-F)]. 

The occurrence of IrAEs had a positive correlation with extended OS (p = 0.051). The median OS of patients with IrAEs was 21 
months, whereas in those without such events it was 6 months. However, when we analyzed PFS, the differences observed in the 

Fig. 1. Oral microbiota. A: Bacterial phyla distribution for ICI responders and non- responders. B: Alfa and beta diversity statistical análisis among 
ICI responders and non- responders. 
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graphs were confirmed in the survival analysis, and these differences were statistically significant (p = 0.03). No significant differences 
were found in OS, nor in PFS, based on the type or grade of toxicity. 

As mentioned earlier, blood samples were also collected. We attempted to find an association between the presence of IrAEs and 
variation in the percentage of various lymphocyte populations. We analyzed CD8 T lymphocytes (LAG3+, TIM3+), CD4 T lympho
cytes, and natural killer cells. No significant differences were found with any of these lymphocyte subpopulations. 

3.4. Markers for immune checkpoint inhibitor response 

Thirty-five (63.6 %) patients were considered as ICI responders, with a statistically significant association with longer OS and PFS. 
A correlation was also found between the presence of IrAEs and the response to immunotherapy. Specifically, there was a higher 
percentage of patients without immune-related toxicity among non-responders to ICI (Fig. 7). 

ICI responders presented greater abundance of Bacteroidota to the detriment of Firmicutes, with a fourfold increase in Fusobacterium 
and Porphyromonas, whereas the abundance of Streptococcus was up to 4.5 times lower [Figs. 2 and 3(A-C)]. 

Considering the possibility of predicting response to ICI using information arising from the saliva microbiota, we employed a 
logistic regression model with parameters c = 1 and a Ridge penalty. Based on our analysis, the abundance of Gemella was the best 
predictor of no response, whereas Lachnoanaerobaculum was the best predictor of a positive response to ICI [Fig. 8(A-B)]. 

Fig. 2. LEfSe analysis of the oral microbiota between ICI responders (in green) and non-responders (in red). (For interpretation of the references to 
colour in this figure legend, the reader is referred to the Web version of this article.) 

Fig. 3. Percentage of the most relevant genera with statistical differences between ICI responders and non-responders. A: Streptococcus; B: Por
phyromonas; C: Fusobacterium. 
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4. Discussion 

Our study examined a prospective cohort of 55 patients diagnosed with advanced or metastatic lung cancer who underwent ICI 
treatment, aiming to evaluate the effect of antibiotics and corticosteroids on the efficacy of ICI and on IrAEs occurrence. We also 
considered respiratory microbiota as a possible predictive marker of both response to ICI and the occurrence of IrAEs. 

The baseline characteristics of our patients were similar to those found in the literature [23–26]. It is worth mentioning that in some 

Fig. 4. Kaplan–Meier survival curve graphs. A) Survival curves based on Eastern Cooperative Oncology Group scale. B) Survival curves based on 
tumor stage. C) Survival curves based on the type of immunotherapy. D) Survival curves based on the best-achieved response. The numerical data 
and p-values are specified in the text above. 

Fig. 5. Kaplan–Meier overall survival curve graphs. A) Survival curves based on use or non-use of antibiotics. B) Survival curves based on cycles of 
antibiotics. C) Survival curves based on timing of use. 
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of the referenced trials, there was a lower proportion of patients with ECOG 0 and a higher proportion of non-smokers [27,28]. The 
second difference could be explained by the presence of more actionable alterations found in non-smoking patients, making them 
ineligible for ICI treatment [23,26,29–31]. 

With respect to survival and response rate, in our study, we had a median PFS of 10 months, an mOS of 19 months, and an overall 
response rate of 42.4 %. These data are similar to those previously reported in clinical trials with comparable samples performed with 
ICI [26,30,32–35]. Not all patients respond in the same way to ICI. Just as the response is not homogeneous, neither is the development 
of IrAEs [28,36]. IrAEs are reported in up to 80 % of patients receiving ICI in monotherapy and in up to 95 % of those receiving 
combinations with ICI. 

Regarding concomitant treatments, several studies have examined the influence of the use of proton pump inhibitors, antibiotics, or 
corticosteroids, among others, on the efficacy of immunotherapy. Most associate the use of these treatments with shorter survival and a 
poorer treatment response [19,26,37–41]. An illustrative instance of this phenomenon is the retrospective review conducted by 
Tinsley et al. In their cohort of 291 patients, a subset of 92 received antibiotics, and they exhibited both a reduced PFS and OS in 
comparison to those who did not receive it (median OS 10.4 months vs. 21.7 months) [42]. These results are closely parallel to those 

Fig. 6. Kaplan–Meier overall survival and progression-free survival curve graphs. A) Survival curves based on the use or non-use of corticosteroids. 
B) Survival curves based on reasons for its use. C) Survival curves based on timing. D) Progression-free survival based on use or non-use of cor
ticosteroids. E) Progression-free survival based on reasons for its use. F) Progression free survival based on timing. 

Fig. 7. Correlation between immune checkpoint inhibitor response and immune-related adverse events. Chi-square test p = 0.06.  
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observed within our cohort, with an mOS of 12 months among individuals who used antibiotics, in contrast to 23 months in those who 
did not. 

Our findings reveal a disparity in PFS and OS greater than that reported in the meta-analysis conducted by Lurienne et al. In their 
study, antibiotic use yielded a reduction of 1.2 months in PFS (not statistically significant) and 6.7 months in OS. However, in contrast 
to our study, the differences in OS were statistically significant. This disparity can be potentially elucidated by the inclusion of ECOG 2 
patients (an attribute not encompassed within our cohort) and by the ICI indication. In this meta-analysis, the majority of patients 
received ICI in second and subsequent lines of therapy, in contrast to our dataset, in which the majority of patients underwent 
administration of ICI as first-line or adjuvant therapy [43]. 

Regarding the relationship between corticosteroids and OS, our results are consistent with those published in the literature 
[44–46]. However, our study did not reach statistical significance in PFS or in the different subgroups, as other studies such as Arbour 
et al., among others, have achieved [44]. 

It has been suggested that de-structuring of the microbiota, particularly those produced by the antibiotics, could have a negative 
impact on ICI’s efficacy [37,42,43]. Insights from retrospective studies have taught us that antibiotics and corticosteroids produce 
dysbiosis in the gut microbiota when used during immunotherapy. This could cause poorer outcomes in these cases. However, there 
are still many aspects that deserve further investigation [40], including the impact of each family of antimicrobials. 

Previous studies have shown that exposure to antibiotics in the month preceding the start of ICI therapy is associated with shorter 
OS and a poorer response. This aligns with research suggesting that the microbiota takes approximately 4–6 weeks to restore after 
exposure. However, a recent study has been published suggesting that even antibiotic exposure in the year prior to the initiation of ICI 
could have deleterious effects [38]. In the same way, the use of corticosteroids was related to a higher amount of Actinomyces in saliva. 

Similar results were published by Georgiou in 2022, which showed a tendency to a higher proportion of Actinobacteria in the 
salivary microbiota of those patients diagnosed with lung cancer, without the use of concomitant medication that could condition the 
results [8]. In a systematic review published in 2021, patients receiving corticosteroids for respiratory tract diseases found a significant 
increase in the salivary microbiota of Actinobacteria, mainly at the expense of the family Microbacteriaceae, but without highlighting 
differences with respect to the species Actinomyces [39]. 

Our cohort study also assessed differences in microbiota composition between ICI responders and non-responders. It is important to 
emphasize that compositional studies are not comparable to functionality studies, we should check if these bacteria are the real 
responsible for the lack of response by degradation of the drug, but these microorganisms are extremely difficult to handle in the 
laboratory. Following the same trend as the results presented by McCulloch et al. (patients with melanoma treated with anti-PD-1), our 
study also observed the enrichment of the genera Streptococcus in non-responders’ microbiota [15]. 

As previously demonstrated in other studies, ICI have been associated with a reduction in Bacteroidetes and Firmicutes within the gut 
microbiota. However, within our cohort, we observed an increase in Firmicutes abundance among individuals exhibiting a subpar 
response to ICI [47]. These findings appear to contradict the literature suggesting that supplementation with Bifidobacterium could 
enhance ICI response. However, some studies have reported results consistent with ours regarding the increase in Bacteroidetes among 
individuals with a poor ICI response and, consequently, a shorter OS [48]. 

We are aware of the detrimental effects of antibiotics and corticosteroids on the efficacy of ICI. The composition of salivary 
microbiota might have been influenced by concurrent medication use, potentially contributing to differences between responders and 
non-responders. A critical question is determining which microbiota composition is more favorable for ICI effectiveness, and how it can 
be restored to a normal composition following antibiotic or corticosteroid treatment [49]. Some trials have demonstrated that certain 
commensal bacteria, such as Akkermansia muciniphila, are more abundant in stool samples from responders [47,50]. However, this 

Fig. 8. Machine learning results for ICI response prediction. A: Confusion matrix, B: Linear discriminant analysis (LDA) representing the significant 
differences in the abundance of each species. 
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pattern did not hold true in our cohort. 
The inclusion of a heterogeneous patient population, who received ICI treatment in both adjuvant and metastatic settings, across 

first and subsequent lines of treatment, poses a notable limitation. Patients in subsequent lines often undergo multiple courses of 
antibiotics and corticosteroids, which may attenuate the true impact of the medications on the microbiota and outcomes. This could 
potentially account for the lack of statistical significance observed in the results. 

Taxonomic features associated with improved response during ICI treatment should be further characterized in larger prospective 
trials. The characterization of salivary microbiota in patients with lung cancer (given its close association) warrants investigation [49]. 
Additional studies are needed to identify microbiome-modulating therapies, such as fecal transplantation and dietary or supplement 
interventions, to reverse the dysbiosis induced by administered treatments, thereby enhancing the ICI response. 

5. Conclusions 

In our cohort, the use of corticosteroids was significantly associated with a poorer OS, whereas exposition to antibiotics is linked to 
a diminished response to ICI, although we did not observe a significant association with OS. The absence of a statistically significant 
difference in OS between patients who received or did not receive antibiotics suggests that their use does not directly impact long-term 
survival outcomes. Nevertheless, the efficacy of ICI could be influenced by the specific antibiotic and their specific impact on the 
bacterial populations. Possible mechanisms underlying this relationship include alterations in the microbiota, including a decreased 
abundance of commensal microorganisms and changes in the taxonomic characteristics of the salivary microbiota, as observed in our 
cohort. 

Regarding IrAEs, we did not find a significant difference in survival based on their presence or absence, although there is a trend 
toward improved PFS in the absence of IrAEs. However, similar to what occurs with antibiotics, we observed a better response to ICIs in 
those who have not experienced IrAEs. 

Concordant with that previously reported for the gut microbiota, the airway microbiota appears to play a substantial role in the 
response to ICI. Its composition significantly differs between responders and non-responders. Responders have a greater abundance of 
the phyla Bacteroidota and the genera Fusobacterium and Porphyromonas, and a lower population of the phyla Firmicutes and Strepto
coccus. Specifically, reversing the alterations caused by corticosteroids and antibiotics to achieve taxonomic characteristics of the 
microbiota similar to those of responders could lead to improved responses to ICI and enhanced survival outcomes in patients with 
NSCLC. 
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