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Abstract
Inflammasomes are high-molecular-weight protein complexes that are formed
in the cytosolic compartment in response to danger- or pathogen-associated
molecular patterns. These complexes enable activation of an inflammatory
protease caspase-1, leading to a cell death process called pyroptosis and to
proteolytic cleavage and release of pro-inflammatory cytokines interleukin
(IL)-1β and IL-18. Along with caspase-1, inflammasome components include an
adaptor protein, ASC, and a sensor protein, which triggers the inflammasome
assembly in response to a danger signal. The inflammasome sensor proteins
are pattern recognition receptors belonging either to the NOD-like receptor
(NLR) or to the AIM2-like receptor family. While the molecular agonists that
induce inflammasome formation by AIM2 and by several other NLRs have been
identified, it is not well understood how the NLR family member NLRP3 is
activated. Given that NLRP3 activation is relevant to a range of human
pathological conditions, significant attempts are being made to elucidate the
molecular mechanism of this process. In this review, we summarize the current
knowledge on the molecular events that lead to activation of the NLRP3
inflammasome in response to a range of K  efflux-inducing danger signals. We
also comment on the reported involvement of cytosolic Ca  fluxes on NLRP3
activation. We outline the recent advances in research on the physiological and
pharmacological mechanisms of regulation of NLRP3 responses, and we point
to several open questions regarding the current model of NLRP3 activation.
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Direct activation of NLRP3 by K+ efflux
The stimulatory effect that cytosolic K+ depletion has on IL-1β pro-
teolytic processing and secretion from LPS-primed macrophages 
and monocytes, in response to compounds such as ATP or nigericin, 
was observed long before the discovery of inflammasomes1–3. This 
effect is now known to be mediated by NLRP34, and K+ efflux 
remains the best-characterized minimal stimulus for NLRP3 inflam-
masome activation5. Conversely, incubation in media containing 
supraphysiological [K+] can block NLRP3 inflammasome assembly 
in response to most of the identified NLRP3 triggers5.

The major classes of NLRP3 activators include extracellular ATP 
at millimolar concentrations, K+ ionophores4 and crystalline/ 
particulate substances, or other factors that cause lysosomal  
destabilization6,7. All of these stimuli are known to decrease the 
cytosolic level of K+ ions5, but the mechanisms of K+ efflux induc-
tion (summarized in Figure 1) differ for all classes of NLRP3 trig-
gers. Before discussing these mechanisms in detail, it is important 
to reiterate some of the basic features of cellular K+ homeostasis. 
Firstly, the cytosolic [K+] ([K+]

i
; ~140 mM) is much higher than the 

extracellular [K+] ([K+]
e
; ~5 mM), and this distribution is approx-

imately reversed for Na+ ions. This asymmetry is maintained by 
the Na+/K+-ATPase, an electrogenic ion pump transporting, during 
each cycle, two K+ cations into the cytosol and three Na+ cations 
into the extracellular milieu. Secondly, under basal conditions, the 
permeability of most mammalian plasma membranes is highest 
with respect to the K+ cations and much lower for Na+ and Ca2+. 
Together, these factors contribute to sustaining the transmembrane 
potential of mammalian cells, which is characterized by a slight 
excess of negative charge on the inside of the cell. Each cycle of 
the Na+/K+-ATPase produces an electric charge difference of one 
elementary unit, and slow leakage of K+ ions from the cell is not 
counterbalanced by a compensatory influx of another type of  
cation8. Plasma membranes in basal states can generally be regarded 
as electrical insulators9, so translocations of even small numbers  
of individual ions (much too small to cause any measurable changes 
in the intracellular concentration of the respective ion) produce  
significant changes in the value of transmembrane potential8. Simi-
larly, transporting ions in the direction opposite to the electrical  
gradient (i.e. cations to the outside of the cell or anions into the cell) 
requires significant energy input. In this light, the dramatic decrease 
in [K+]

i
 required for NLRP3 activation, estimated as a drop of  

at least ~20–30%5, can be expected to be accompanied by either a 
counter-flux of cations or a “co-flux” of anions, which should also 
be provided by NLRP3 stimuli.

Extracellular ATP at millimolar concentrations acts as an agonist 
of a ligand-gated cation channel called P2X7 receptor (P2X7R), 
which is permissive to K+, Na+, and Ca2+10, allowing for cytosolic 
K+ efflux balanced by the influx of extracellular Na+ and Ca2+. K+ 
ionophores activating the NLRP3 inflammasome provide diverse 
pathways for K+ transport. Gramicidin, a peptide ionophore, allows 
for K+ efflux balanced by Na+ influx by inserting into plasma mem-
branes to form monovalent cation (Na+/K+)-permissive pores11 
in a manner electrochemically similar to the P2X7R. A different 
mechanism is employed by nigericin, a carboxylic ionophore that 
can exist in a free membrane-impermeant anionic form or as a neu-
tral membrane-permeant complex when bound to a K+ cation or 

a proton (H+). In one electroneutral K+ efflux cycle mediated by 
nigericin, the ionophore anion binds to H+ on the outside of the cell, 
passes across the plasma membrane as nigericin-H, and releases 
the proton on the intracellular side. There, nigericin anion binds 
to K+, which is subsequently transported across the plasma mem-
brane as nigericin-K and released on the outside of the cell12. This 
mechanism facilitates K+ efflux by allowing an H+ influx, leading 
to acidification of cytosol. Valinomycin, another NLRP3-activating 
K+ ionophore, also forms equimolar complexes with K+ but, unlike 
the neutral nigericin-K complexes, these complexes have a sin-
gle positive charge (valinomycin-K+)12. Therefore, valinomycin- 
mediated K+ efflux is electrogenic and can only occur until the 
chemical gradient that is pushing K+ ions to the outside of the cell 
is balanced by the electric force drawing cations into the cell. It is 
currently unknown if such modest leakage of K+ ions could be suf-
ficient to activate NLRP3, or if the valinomycin-mediated K+ efflux 
is accompanied by movement of another ionic species that would 
allow for a more pronounced decrease of [K+]

i
.

It has been demonstrated that cell treatment with crystalline/ 
particulate stimuli, representing pathophysiologically relevant 
NLRP3 activators, also leads to depletion of intracellular K+5.  
However, the mechanism by which crystal-induced K+ efflux occurs 
is currently not understood. It seems plausible that, during lyso-
somal rupture caused by crystals, mixing of lysosomal lumina (low 
[K+], close to the extracellular concentration13) with the cytosolic 
contents could passively decrease [K+]

i
. However, the observation 

that the net K+ content of cells decreases upon treatment with crys-
tals5 suggests, in the absence of data on the values of [K+]

i
, that 

plasma membrane-resident K+ channels or transporters might be 
involved in the crystal-elicited K+ efflux. One model of NLRP3 
activation by monosodium urate (MSU) crystals proposes that, 
upon phagocytosis, in the acidic lysosomal environment, Na+ ions 
can be released from MSU particles leading to an increase in the 
osmolarity of the cell. This increase in osmolarity can be balanced 
by an influx of water from the extracellular space, which, it is 
suggested, dilutes [K+]

i
 and thereby triggers NLRP3 activation14. 

While the proposed mechanism explains how MSU crystal-induced  
lysosomal damage can activate the NLRP3 inflammasome, it  
cannot account for NLRP3 activation with stimuli such as silica 
or cholesterol crystals because these particles do not dissociate in 
the lysosomal pH and are consequently not expected to influence  
cellular osmolarity. Investigating the kinetics and molecular  
mechanism of K+ loss in cells undergoing lysosomal damage 
may prove highly relevant for understanding how the different 
NLRP3 stimuli trigger inflammasome assembly and for designing  
treatments that specifically target NLRP3 activation by crystalline 
agents, which underlies multiple inflammatory diseases.

A number of other conditions that deplete cytosolic K+ have been 
demonstrated to activate NLRP3. These include pharmacological 
inhibition of Na+/K+-ATPase3,5. Blocking Na+/K+-ATPase deprives 
cells of the mechanism maintaining both the asymmetric distribu-
tion of Na+ and K+ ions and the membrane potential, leading to a 
loss of K+ ions. Under conditions of Na+/K+-ATPase inhibition, K+ 
ions are no longer actively imported by the cell. Furthermore, dissi-
pation of membrane potential, which accompanies Na+/K+-ATPase 
inhibition, eliminates the electrical force drawing K+ ions into the 
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Figure 1. Canonical NLRP3 inflammasome activation by K+ efflux. Under basal conditions, high intracellular K+ concentration is maintained 
by the activity of Na+/K+-ATPase, which actively imports K+ ions into the cell and generates an electrical gradient that favors movement of 
cations into the cytoplasm. Together with leak K+ channels, Na+/K+-ATPase contributes to the transmembrane potential, characterized by a 
slight excess of negative charges inside the cell. Under conditions of NLRP3 stimulation, this equilibrium is disturbed. ATP increases the open 
probability of P2X7R, a cation channel that allows for net exchange of intracellular K+ ions for extracellular Na+ or Ca2+ ions. This produces a 
net K+ efflux that acts as an NLRP3 activator. Activation of P2X7R is also accompanied by opening of pannexin-1 channels. During hypotonic 
stimulation, the regulatory volume decrease (RVD) response causes opening of K+ and Cl- channels, driving an efflux of K+ and Cl- ions to 
balance the intracellular and extracellular osmolarity values. To induce NLRP3 activation, this mechanism of K+ ions depletion additionally 
requires an influx of Ca2+ through TRP channels and activation of the kinase TAK1. NLRP3-activating K+ ionophores produce a net K+ 
efflux through different mechanisms. The peptide gramicidin can insert itself into plasma membranes, forming pores that are permeable to 
monovalent cations. This enables an exchange of intracellular K+ for extracellular Na+. Valinomycin, a neutral ionophore, is a cell-permeant 
compound that can bind to K+ ions, replacing the hydration shell of this cation. Consequently, K+ ions shielded by valinomycin molecules can 
pass across the plasma membrane without a requirement for opening a K+-permeable pore. Nigericin is a carboxylic ionophore that can bind 
to H+ or to K+. Both the H+- and K+-bound forms of nigericin are plasma membrane permeant. In this way, nigericin mediates K+ transport 
from the compartment with higher K+ concentration to the compartment with lower K+ concentration, concomitantly leading to a transient 
acidification of cytosol. In further stages, the increased cytosolic [H+] can stimulate Na+/H+ exchangers to extrude H+ ions from the cytosol, 
which is accompanied by Na+ influx90. Lysosomal damage caused by particulate materials or by other factors requires K+ efflux to induce 
NLRP3 activation, but it is unknown which factors are involved in this K+ depletion pathway.
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cell. A similar scenario can be predicted in the case where cells 
are incubated in a K+-free medium, which was also demonstrated 
to activate the NLRP3 inflammasome5, because K+-free media act 
as Na+/K+-ATPase inhibitors15. Finally, a distinct mechanism of K+ 
efflux is involved in NLRP3 activation by low-osmolarity media16. 
Here, the regulatory volume decrease (RVD) response leads to 
a concerted efflux of K+ and Cl- ions in an attempt to equilibrate 
intracellular and extracellular osmolarities17. In this particular 
case, however, K+ efflux does not seem to be sufficient for NLRP3 
inflammasome activation, and an additional influx of Ca2+ ions into 
the cytosol is required16 (further discussed below).

Molecular events occurring downstream of K+ efflux
While depletion of intracellular K+ is required for NLRP3 activa-
tion, little is known about how the change in [K+]

i
 is sensed and 

how this information is further transduced to the inflammasome. 
Recently, an important development has helped to solve this ques-
tion, as NEK7, a Ser/Thr kinase involved in mitotic cell division, 
has been identified as a factor specifically required for NLRP3 
inflammasome activation downstream of K+ efflux18–20. In response 
to NLRP3 activators, NEK7 is recruited to NLRP3 upstream of 
inflammasome formation (in a manner independent of ASC and 
caspases-1/11). NEK7 can also be detected in NLRP3/ASC specks, 
and formation of high-molecular-weight NLRP3 complexes that 
occurs upstream of ASC specking requires that NEK7 interacts 
with NLRP3. The NLRP3-NEK7 interaction is dependent on K+ 
efflux and can be blocked by high [K+]

e
18. Interestingly, the catalytic 

activity of NEK7 is required neither for its binding to NLRP3, nor 
for the activation of the NLRP3 inflammasome18,20.

The requirement for NEK7 in NLRP3 activation restricts this 
process to cells in interphase. At the endogenous level of NEK7, 
NLRP3 activators are able to enhance the interaction between 
NLRP3 and NEK7 in LPS-primed interphase cells but not in cells 
that have entered mitotic division, and LPS-primed interphase cells 
show a significantly higher level of caspase-1 activation than do 
their mitotic counterparts. Of note, NEK7 overexpression partially 
restores the responses to NLRP3 stimuli in mitotic cells, suggesting 
that the endogenous amount of NEK7 is not sufficient to simultane-
ously participate in both cell division and NLRP3 activation20.

It remains unknown how NEK7 is recruited to NLRP3 in response 
to a decrease in [K+]

i
 and whether elevating the interaction between 

NLRP3 and NEK7 above a certain threshold is sufficient to trigger 
the NLRP3 inflammasome assembly. In partial response to the first 
question, it was found that stimulation with ATP increases NEK7 
phosphorylation20. This increase could be blocked with N-acetyl-
cysteine, a scavenger of reactive oxygen species (ROS) that also 
potently inhibits IL-1β release upon stimulation with ATP5,20,21. 
However, it has not been clearly demonstrated that the enhanced 
phosphorylation of NEK7 is required for its interaction with 
NLRP3 and for NLRP3 inflammasome activation. Furthermore,  
shRNA-mediated silencing of NEK9, a kinase that interacts 
with NEK7 and causes its activation22, does not inhibit NLRP3  
activation18, suggesting either that NEK7 activation is not required 
for the NLRP3 inflammasome assembly or that the ROS-dependent  
NEK7 activation occurs through an as-yet-unidentified mecha-
nism. Further elucidation of this discrepancy and of the detailed  

mechanism by which NEK7 contributes to NLRP3 activation will 
be the next important step towards understanding the molecular 
mechanism of inflammasome assembly.

Differential requirements for K+ efflux and NEK7 presence 
in autoinflammatory disease-related NLRP3 mutants
Several single amino acid substitutions in NLRP3 are causative for 
systemic inflammation observed in a spectrum of autoinflamma-
tory diseases known as cryopyrin-associated periodic syndromes 
(CAPS; cryopyrin being a synonym of NLRP3): neonatal onset  
multisystem inflammatory disease (NOMID), Muckle-Wells  
syndrome (MWS), and familial cold autoinflammatory syn-
drome (FCAS)23. Of these, mainly the MWS-associated mutant  
NLRP3R260W (whose mouse counterpart is Nlrp3R258W) has been stud-
ied with respect to the requirement for K+ efflux for inflammasome 
assembly. Interestingly, activation of the Nlrp3R258W mutant occurs 
in macrophages expressing Nlrp3R258W in response to extracellular 
LPS stimulation (independent of any classical triggering stimuli) 
and without the requirement for K+ efflux5. However, NEK7 defi-
ciency dramatically reduces the ability of Nlrp3R258W-expressing 
macrophages to activate the inflammasome in response to extracel-
lular LPS18. NLRP3G775A and NLRP3G775R mutants, which are mainly 
associated with NOMID, show a stronger association with NEK7 
than does WT-NLRP3 when overexpressed in HEK293 cells and, 
conversely, the inflammasome activation-incompetent NLRP3D946G 
mutant associates with NEK7 less strongly20. Collectively, these 
observations suggest that some of the CAPS-causative mutations 
in NLRP3 could promote inflammasome activation by facilitating 
the interaction between NLRP3 and NEK7, but such a conclusion 
requires further elucidation of the mechanism by which NEK7 is 
involved in the activation of different NLRP3 variants.

Non-canonical NLRP3 activation by caspase-11 involves 
K+ efflux
Murine caspase-11 and its human orthologues caspases-4 and -5 
are cytosolic LPS sensors24 that, upon recognition of their ligand,  
trigger non-canonical inflammasome activation25. This process 
consists of pyroptotic cell death that is independent of the canoni-
cal NLRP3 inflammasome components26 and NLRP3-, ASC-, 
and caspase-1-dependent IL-1β/IL-18 processing and secretion25. 
Recent studies demonstrated that NLRP3 activation downstream 
of caspase-11 is mediated by K+ efflux27,28. This process is initi-
ated by caspase-11-mediated cleavage of pannexin-126, a plasma 
membrane-resident channel permeable to molecules and ions with 
a molecular weight of up to ~1 kDa29. Two molecular events fol-
low the proteolytic processing of pannexin-1: (a) K+ efflux (a direct 
NLRP3 stimulus that induces mIL-1β secretion) and (b) release of 
ATP, which in turn acts as an agonist of P2X7R to promote cell 
death26. Surprisingly, the levels of ATP released from cells upon 
caspase-11 activation and proposed to activate P2X7R are much 
lower (nanomolar concentrations) than the amounts of ATP typi-
cally required to activate this receptor when added as an exogenous 
stimulus30. The mechanism by which intracellular LPS recognition 
increases macrophage sensitivity to extracellular ATP is not yet 
identified.

Another effector mechanism of caspase-11 activation involves 
proteolytic cleavage of a cytosolic protein, gasdermin D31–33. The 
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signaling pathways activated upon cleavage of gasdermin D are 
unknown, but it was demonstrated that, while overexpression of 
full-length gasdermin D, or of gasdermin D C-terminal fragment, 
does not cause any apparent changes in cell physiology, expression 
of gasdermin D N-terminal fragment alone is highly cytotoxic32. 
This observation evinces that the N-terminal fragment of gasdermin  
D is one of the downstream effectors of caspase-11. Important 
questions to be answered in further investigation of the role of gas-
dermin D in non-canonical inflammasome activation are whether 
overexpression of the gasdermin D N-terminal fragment is suffi-
cient to activate the NLRP3 inflammasome and whether this proc-
ess involves K+ efflux. As gasdermin D N-terminal fragment alone 
is sufficient to cause pyroptosis, which is associated with plasma 

membrane disruption, it could be envisaged that this also leads to 
K+ depletion.

Similar to pannexin-126, gasdermin D is required for both cell death 
and IL-1β release in response to intracellular LPS32,33. While IL-1β 
secretion observed under conditions of intracellular LPS stimula-
tion is dependent on NLRP3, pyroptosis elicited by intracellular 
LPS only depends on pannexin-126 and gasdermin D32,33 and is 
unaffected in NLRP3-deficient cells. The recent discoveries on the 
caspase-11 effector mechanisms leading to non-canonical inflam-
masome activation and to pyroptosis are summarized in Figure 2. 
Future studies should address the questions of whether—and how—
the caspase-11-mediated events (pannexin-1 and gasdermin D  

Figure 2. Noncanonical NLRP3 activation by cytosolic LPS. Upon recognition of LPS in the cytosol, caspase-11 cleaves pannexin-1 
and gasdermin D. Cleavage of pannexin-1 leads to opening of the channel and leakage of K+ and ATP from the cell into the extracellular 
space. This efflux of K+ ions activates the NLRP3 inflammasome, causing proteolytic processing and secretion of IL-1β. Simultaneously, ATP 
acts as an agonist for the P2X7R, leading to NLRP3 inflammasome-independent pyroptotic cell death. Proteolytic cleavage of gasdermin D 
produces a highly toxic N-terminal fragment of this protein, which mediates both activation of the NLRP3 inflammasome (with subsequent  
IL-1β processing and secretion) and NLRP3-independent pyroptotic cell death. The relationship between two caspase-11 effectors,  
pannexin-1 and gasdermin D, is currently not understood.
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proteolytic processing) converge to orchestrate pyroptotic cell 
death. In particular, the mechanism by which gasdermin D  
N-terminal fragment induces cytotoxicity will have to be resolved, 
and the potential role of pannexin-1 cleavage in this process will 
have to be investigated more closely. Furthermore, there is a  
proposed mechanism by which the caspase-11/pannexin-1/NLRP3 
axis triggers IL-1β/IL-18 secretion26, but it remains unknown  
how gasdermin D is involved in this process.

Adding to our knowledge on canonical inflammasome activation, 
active caspase-1, alongside caspase-11, was also demonstrated 
to cleave gasdermin D32. In response to activators of various  
canonical inflammasomes, gasdermin D-deficient macrophages 
exhibit delayed kinetics of cell death32 and decreased levels of 
secreted IL-1β31–33, which suggests that caspase-1-catalysed pro-
teolysis of gasdermin D is one of the effector mechanisms of  
pyroptosis and that it may contribute to non-classical cytokine 
secretion.

Mechanisms of NLRP3 activation independent of K+ efflux
Recently, it was reported that inhibition of glycolysis by tar-
geting enzymes that catalyze two of the late reactions of this  
pathway, glyceraldehyde-3-phosphate dehydrogenase (GAPDH) 
or α-enolase, is sufficient to elicit inflammasome activation in an 
NLRP3-dependent manner34. The proposed sequence of events 
consists of a decrease in cellular [NADH]/[NAD+] ratio, and a 
consequent increase in the levels of mitochondrial ROS, which, 
it is suggested, are involved in NLRP3 activation35,36. Interest-
ingly, supplementation with the glycolytic metabolite pyruvate 
(which is normally produced downstream of the inhibited steps 
of glycolytic cascade) or with succinate (one of the TCA cycle 
metabolites; both pyruvate and succinate can enhance TCA cycle 
activity) leads to a decrease in the level of both generated mito-
chondrial ROS and NLRP3 inflammasome activation34. Such an 
observation suggests that in this pathway mitochondrial ROS act 
as NLRP3 stimuli. This mechanism of NLRP3 activation is uncom-
mon because it does not require K+ efflux: inhibition of GAPDH 
and α-enolase can trigger assembly of the NLRP3 inflammasome at 
supraphysiological [K+]

e
34. Of note, NLRP3 activation under condi-

tions of disrupted glycolytic flux could have profound pathophysi-
ological significance as, for example, macrophages infected with  
Salmonella typhimurium exhibit decreased levels of NADH34. 
Given that infection with S. typhimurium is an activator of the  
NLRP3 inflammasome37 and that S. typhimurium-mediated 
NLRP3 activation can be abrogated by pyruvate supplementation34, 
this metabolic signature may constitute an important signal in  
inflammasome activation.

Of note, it has been demonstrated that efficient glycolysis is 
required for NLRP3 activation by canonical K+-depleting stimuli38.  
Furthermore, the metabolic changes resulting from inhibition of  
glycolysis were not observed in cells treated with nigericin, a 
canonical K+ efflux-dependent NLRP3 activator34, suggesting that 
the newly discovered pathway is a distinct mechanism of NLRP3  
activation rather than simply an event occurring downstream of  
cellular K+ depletion. In further support of this conclusion, canonical  
activation of the NLRP3 inflammasome with stimuli such as 
nigericin or ATP cannot be inhibited by supplementation with 
pyruvate34. It remains unknown whether the NLRP3 inflammasome 

assembly in response to glycolysis inhibitors relies on a NEK7-
dependent mechanism. However, this is unlikely in light of the 
observations that (a) the interaction between NEK7 and NLRP3 
requires K+ efflux and (b) the K+/H+ ionophore nigericin does not 
inflict metabolic changes resembling those caused by inhibition of 
glycolysis.

Another mechanism of NLRP3 activation independent of K+ efflux 
is observed in monocytes but is restricted to several species (e.g. 
humans or pigs) and not observed in murine cells. For this mecha-
nism of NLRP3 activation, termed “alternative inflammasome acti-
vation”, extracellular LPS is a stimulus sufficient to elicit mature 
IL-1β release but not to cause ASC speck formation or pyropto-
sis. LPS acts as an agonist of TLR4, leading to engagement of the 
adaptor protein TRIF and of the RIPK1-FADD-caspase-8 signal-
ing cascade, culminating in caspase-1 activation in an NLRP3- and  
ASC-dependent manner39. The specific nature of the signal-
ing events that drive alternative NLRP3 activation as well as the 
fact that this mechanism does not lead to the generation of ASC  
specks may collectively suggest an involvement of a distinct, 
K+ efflux-independent active NLRP3 conformation in this  
process.

Ca2+ influx is not sufficient, and may not be required, 
for NLRP3 activation
Based on the ability of certain NLRP3 stimuli to increase cytosolic 
[Ca2+] ([Ca2+]

i
), and on the inhibitory effect that several small-

molecule compounds targeting intracellular Ca2+ have on NLRP3 
activation, it was proposed that [Ca2+]

i
 ions could be involved in 

NLRP3 activation40–42. The major mechanisms of [Ca2+]
i
 increase 

in the cytosol are (a) Ca2+ influx from the lumen of endoplasmic 
reticulum (ER) through a ligand-gated ion channel called inositol 
trisphosphate (IP

3
) receptor (IP

3
R), a downstream effector of the 

phospholipase C (PLC) family, and (b) entry of extracellular Ca2+ 
ions through plasma membrane-resident Ca2+ channels43. Important 
Ca2+-buffering organelles are (c) mitochondria, which can either 
absorb or release Ca2+ under different conditions44. All of these 
pathways have been implicated in the activation of NLRP3. In favor 
of the hypothesis that the ER-derived Ca2+ ions could be a stimulus 
of NLRP3, a range of small-molecule IP

3
R antagonists and PLC 

inhibitors have been consistently demonstrated to inhibit activation 
of the NLRP3 inflammasome40–42. However, the observed levels of 
inhibition vary between the different studies, and in some cases 
the applied concentrations of small-molecule compounds required 
to inhibit NLRP3 significantly surpass their IC

50
 values reported 

for other processes45,46. Furthermore, artificially increasing [Ca2+]
i
 

with thapsigargin, an inhibitor of the sarcoplasmic/endoplasmic 
reticulum Ca2+-ATPase (SERCA; an ion pump transporting Ca2+ 
from the cytosol into the ER lumen, responsible for maintaining the 
steep [Ca2+] gradient between the ER lumen and the cytosol) either  
inhibits40 or does not influence47 NLRP3 activation, demon-
strating that translocation of Ca2+ ions into the cytosol is not  
sufficient to trigger that process. Of note, thapsigargin was demon-
strated to elicit modest IL-1β secretion from LPS-primed human  
macrophages, but it is not known whether the mature form of 
the cytokine is secreted and whether this process is mediated by 
NLRP348. Furthermore, thapsigargin was demonstrated to cause 
NLRP3 activation by inducing ER stress, but the role of Ca2+ in this 
process has not been studied49.
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The current evidence for the involvement of extracellular Ca2+ in 
the activation of NLRP3 strongly suggests that this pool of Ca2+ 
does not play a role in the inflammasome assembly. Supporting 
this is the observation that all tested canonical NLRP3 stimuli 
that act by depleting cytosolic K+ can activate the inflammasome 
in Ca2+-free extracellular buffers47,50. In several studies, a contra-
dictory effect of extracellular Ca2+ depletion was reported40,48 but, 
in some cases at least, such observations may have resulted from 
simultaneous application of BAPTA-AM and Ca2+-free buffer48, 
which can be expected to interfere with Ca2+ fluxes deriving from 
a range of different sources. Nevertheless, there is currently no 
convincing explanation as to why in certain experimental systems 
the removal of extracellular Ca2+ seems to inhibit NLRP3, while 
in other setups such treatment does not interfere with NLRP3 acti-
vation. A second argument supporting the claim that extracellular  
Ca2+ is not required for the NLRP3 inflammasome activation comes 
from the observation that K+ ionophores elicit NLRP3 inflammas-
ome assembly in the absence of any significant changes in [Ca2+]

i
47.  

Surprisingly, one study reports that human macrophages can secrete 
IL-1β in response to ionomycin, a Ca2+ ionophore, but, similar 
to the case of thapsigargin, the involvement of NLRP3 is not  
proven and it is not demonstrated that the released form of the 
cytokine is proteolytically processed48.

Interestingly, in the NLRP3 response to hypotonic environments, 
extracellular Ca2+ influx through mechanosensitive TRP channels 
and consequent activation of the kinase TAK1 were both demon-
strated to be required for activation of the inflammasome alongside 
RVD-mediated K+ efflux16. It is unknown whether this mechanism 
also contributes to inflammasome assembly by all NLRP3 stimuli, 
but it is suggested that TAK1 is involved in NLRP3 activation 
induced by lysosomal damage51. Finally, one study proposed that 
Ca2+ influx into the cytosol follows K+ efflux caused by NLRP3 
stimuli and that this Ca2+ flux promotes activation of the inflammas-
ome by enhancing mitochondrial ROS generation52. However, there 
are two major limitations to this conclusion. First, the only method 
applied for targeting cytosolic Ca2+ was cell loading with BAPTA-
AM, which may exert numerous off-target effects53. Secondly, the 
only tested NLRP3 activator was ATP, a cation channel opener and 
inducer of PLC (through interaction with P2Y2 receptor54), which 
makes it challenging to dissect the relative contributions of the  
various ion fluxes in the process of inflammasome activation.

The mitochondrial Ca2+ stores are the most difficult to perturb 
experimentally, and consequently their potential role in NLRP3 
activation is not well understood. Several reports suggest that an 
increased Ca2+ uptake by the mitochondria may promote mitochon-
drial damage and NLRP3 responses40,55,56, although it was also dem-
onstrated that mitochondrial damage inflicted by canonical NLRP3 
activators is at least in part dependent on NLRP3 and caspase-157. 
The transporter responsible for mitochondrial Ca2+ uptake during 
NLRP3 activation by the membrane attack complex (a component 
of the complement cascade) and by Pseudomonas aeruginosa has 
been identified as mitochondrial Ca2+ uniporter (MCU)55,56. The 
specific factors that could tie an increase in mitochondrial [Ca2+] 
to NLRP3 inflammasome assembly have not been identified, and it 

remains unknown whether MCU is involved in NLRP3 responses 
to its classical, better-characterized activators.

The collective evidence regarding the role of Ca2+ in the activa-
tion of NLRP3 suggests that elevation in [Ca2+]

i
 is not required 

for the assembly of this inflammasome. However, a modula-
tory role for this ion cannot be excluded, especially in light of 
two puzzling observations: (a) inhibition of NLRP3 responses by  
BAPTA-AM41,47 and (b) inhibition of NLRP3 activation by siRNA 
knock-down of a G

q
α-coupled G-protein-coupled receptor (GPCR) 

called Ca2+-sensing receptor (CaSR)42. Given that BAPTA-AM 
has off-target effects apart from scavenging Ca2+ ions inside the 
cell53 and that Ca2+ ions are not the only ligand of CaSR58, re- 
evaluation of the mechanisms by which application of BAPTA-
AM or suppression of CaSR signaling interfere with NLRP3  
activation could provide valuable insights into the molecular 
events that regulate NLRP3 inflammasome assembly. We further  
discuss some aspects of GPCR/CaSR signaling below.

Physiological and pharmacological modulation of 
NLRP3
The relevance of NLRP3 in human pathologies has led to research 
regarding both the intrinsic mechanisms that limit inflamma-
some activation and the possibility of pharmacological targeting 
of NLRP3. Even though such studies are challenging, because it 
is unclear how the K+ efflux is transduced to NLRP3, they have 
nevertheless resulted in discoveries that processes such as cAMP 
signaling and autophagy can interfere with NLRP3 activation and 
in identification of several classes of exogenous small-molecule  
compounds that can act as specific inhibitors of NLRP3 activation.

Inhibition of the NLRP3 inflammasome by cAMP
In recent years, the interest in how GPCRs could regulate NLRP3 
responses resulted in an observation that increasing [cAMP]

i
 inhib-

its the activation of the NLRP3 inflammasome42. Specifically, treat-
ing cells with pharmacological activators of adenylyl cyclases42, or 
with agonists of GPCRs that enhance adenylyl cyclase activity59,60, 
leads to a decrease in NLRP3 activation in response to classical 
NLRP3 stimuli. Conversely, NLRP3 stimuli were demonstrated 
to decrease [cAMP]

i
42, although it is currently not clear whether 

this decrease occurs upstream or downstream of NLRP3 activation. 
One study suggested that inhibition of adenylyl cyclase enzymatic 
activity (surprisingly, using KH7, an inhibitor targeting the GPCR-
independent soluble adenylyl cyclase and not acting on the GPCR-
regulated transmembrane adenylyl cyclases61) might be sufficient 
to activate the NLRP3 inflammasome42, but this result could not be 
reproduced, possibly due to differences in the applied concentra-
tions of the compound60. Of note, inhibitors of transmembrane ade-
nylyl cyclases also do not act as NLRP3 inflammasome activators, 
pointing to a modulatory role of [cAMP]

i
 rather than its decrease 

being the direct NLRP3 stimulus.

Pharmacological targeting of various cAMP-binding proteins that 
act as downstream effectors of adenylyl cyclase activation revealed 
that the inhibitory effect that cAMP exerts on NLRP3 activation 
cannot be ascribed to the currently known cAMP targets42,59,60. In 

Page 8 of 15

F1000Research 2016, 5(F1000 Faculty Rev):1469 Last updated: 22 JUN 2016



the study that identified cAMP as a regulator of NLRP3, it was pro-
posed that NLRP3 could form a complex with cAMP42, and recently 
it was demonstrated that the NLRP3-cAMP complex recruits  
ubiquitin ligase MARCH7, which in turn labels NLRP3 for deg-
radation in autophagosomes60. It is suggested that this process 
down-regulates NLRP3 signaling. Nevertheless, there are still open  
questions about the mechanism of inhibition of NLRP3 responses 
by cAMP. This model suggests a direct interaction between cAMP  
and NLRP3, in which the nucleotide-binding domain (NBD) of 
NLRP3 is involved42. However, sequence analysis of NLRP3-NBD 
does not suggest the presence of a cyclic nucleotide-binding fold 
along with the ATP-binding site62. Furthermore, even if the cAMP-
binding and ATP-binding sites were in fact the same structural  
interface, it is not likely that cAMP could compete with ATP for 
binding to NLRP3, given that in living cells [ATP]

i
63,64 is much 

higher than [cAMP]
i
65. Another problematic aspect of studies on 

the influence of cAMP on activation of NLRP3 is the consistent 
use of KH759,60, the inhibitor of soluble, GPCR-independent ade-
nylyl cyclases66, to interfere with events that, it is proposed, occur  
downstream of GPCR-responsive transmembrane adenylyl cycla-
ses. Applying genetic rather than pharmacological approaches to 
the studies on the influence of cAMP on NLRP3 activation and a  
more thorough investigation of the roles of established cAMP- 
binding proteins in this process could potentially provide a  
greater insight into the mechanism of NLRP3 response inhibition by 
cAMP.

Regulation of inflammasome responses by autophagy
Autophagy is emerging as a central process regulating multi-
ple inflammasome responses at several levels. Pro-IL-1β can be 
degraded in autophagosomes, leading to decreased inflammatory 
responses to a range of stimuli67. In addition, it is also proposed 
that autophagy specifically controls NLRP3 activation over other 
characterized inflammasomes. Suppression of the autophagic proc-
esses impairs homeostatic turnover of mitochondria, promoting 
mitochondrial damage that contributes to caspase-1 activation in 
response to ATP68, as well as in the NLRP3 response to influenza 
A virus infection69. A decrease in the number of autophagosomes 
was also reported in response to palmitate, a long-chain fatty acid 
previously demonstrated to activate NLRP370. However, activa-
tion of NLRP3 using nigericin or crystalline stimuli enhanced 
autophagy,71 targeting inflammasome components for degradation 
in the autophagosomes. Collectively, these observations suggest 
that reduction in the autophagic processing of cellular contents may 
support NLRP3 inflammasome responses. Conversely, increased 
autophagy may act as a regulator of the NLRP3 inflammasome 
specifically and a regulator of IL-1β-based inflammation generally 
by a negative feedback loop. The recent discoveries that dopamine 
decreases cellular responses to NLRP3 activators by targeting this 
inflammasome sensor protein for degradation in autophagosomes60 
and that NF-κB signaling can inhibit activation of NLRP3 by stim-
ulating the autophagic turnover of dysfunctional mitochondria72 
demonstrate that this regulatory mechanism can position immune 
cells towards a state of decreased sensitivity to NLRP3 stimuli 

even before they encounter inflammasome activators. The proposed 
mechanisms of regulation of NLRP3 responses by autophagy and 
by cAMP (discussed earlier) are summarized in Figure 3.

Inhibition of the NLRP3 inflammasome by compounds 
containing a sulfonylurea moiety
The first observation that compounds containing a sulfonylurea  
moiety potently inhibit ATP- or hypotonicity-induced IL-1β 
processing and release predates the discovery of inflammasomes73. 
This phenomenon was later recognized as specific inhibition of 
the NLRP3 inflammasome74, and until now virtually all validated  
NLRP3 activators are sensitive to sulfonylurea-containing com-
pounds, such as glyburide or CP-456,77375. Sulfonylurea drugs 
seem to specifically inhibit the triggering step of NLRP3 activa-
tion without affecting the NF-κB signaling-related priming step or 
the activation of other inflammasomes74,75. Compounds containing 
sulfonylurea moieties have been tested, as NLRP3 inhibitors, in  
several animal inflammatory disease models, usually with 
encouraging results75–79. Of note, alternative inflammasome acti-
vation (described in more detail above) can also be blocked by  
CP-456,77339.

The mechanism by which sulfonylurea compounds inhibit NLRP3 
activation is currently not understood. Given that an important  
target of these pharmaceuticals are K+ channels80–82 and that K+ 
efflux is required for NLRP3 activation5, one concept would be that 
sulfonylureas could impede K+ efflux from cells treated with NLRP3 
stimuli. However, not all sulfonylurea drugs can inhibit inflam-
masome activation74 and, conversely, sulfonylurea compounds 
were demonstrated not to prevent K+ efflux caused by NLRP3  
activators75, which collectively suggests that these inhibitors act 
downstream of K+ depletion and that the inhibition mechanism 
is not related to the activity of these compounds on K+ channels.  
Glyburide was shown to inhibit the ATPase activity of NLRP3, 
but it is unclear whether other drugs from this class can act in a 
similar manner, and if this observation is related to the glyburide- 
mediated inhibition of inflammasome formation. CP-456,773 
(CRID383, which has recently been renamed to MCC95075) has 
been demonstrated not to affect the Ca2+ flux in cells treated 
with ATP75, which, some studies suggest, plays a role in NLRP3  
activation40. The influence of CP-456,773 on other molecular 
events connected to NLRP3 activation, such as the production of  
ROS, decrease in [cAMP]

i
, or recruitment of NEK7 to NLRP3,  

has not yet been tested.

Attempts to identify the molecular target of CP-456,773 showed 
that this compound interacts with proteins from the glutathione  
S-transferase family83, but so far none of these have been shown to 
transduce the information about K+ efflux to the NLRP3 inflam-
masome. There is conflicting evidence regarding the ability of sul-
fonylurea drugs to inhibit the activation of CAPS-related NLRP3 
mutants, as glyburide has been shown not to affect IL-1β release 
from cultured monocytes from an FCAS-affected patient74, but  
CP-456,773 suppressed mutant NLRP3 activation in both the 
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Figure 3. Modulation of the NLRP3 inflammasome by cAMP and autophagy. Several physiological mechanisms regulate NLRP3 
responses on the cellular level. Agonists of GS-coupled GPCRs stimulate the generation of cAMP by transmembrane adenylyl cyclases. 
cAMP is believed to bind to the nucleotide-binding domain of NLRP3. This formed NLRP3-cAMP complex recruits the ubiquitin ligase 
MARCH7 that polyubiquitinates NLRP3, targeting it for autophagosomal degradation. Autophagosomes are also the organelles responsible 
for degradation of pro-IL-1β (the inactive pro-form of the proinflammatory cytokine IL-1β), which is a more general mechanism controlling 
the inflammatory responses mediated by a range of inflammasomes. Finally, mitophagy is a way to dispose of damaged mitochondria that 
starts with sequestering them in autophagosomes. Autophagosomal degradation of dysfunctional mitochondria curbs the inflammasome 
responses, possibly by removing the source of direct NLRP3 activators.
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mouse model of MWS and in monocytes from an MWS-affected 
patient75. The NLRP3 mutants investigated in these studies had dif-
ferent amino acid substitutions, which, together with other differ-
ences in the experimental systems, could have led to this apparent 
discrepancy. A more comprehensive study addressing the sensitivity 
of a range of hyperactive NLRP3 mutants to sulfonylurea com-
pounds could provide more insight into whether these drugs can 
inhibit inflammasome activation by these protein variants and what 
the mechanism of inhibition could be.

Inhibition of the NLRP3 inflammasome by cysteine-
modifying compounds
Several recent studies demonstrated that NLRP3 activation can be 
abolished by pre-treatment of cells with various compounds that 
contain a Michael acceptor group (a double C=C bond in the α  
position with respect to a carbonyl [-C=O] or a nitro group  
[-NO

2
])84,85. In biological systems, these compounds can covalently 

modify protein Cys residues that are not engaged in disulfide bond 
formation86,87. This mechanism explains the inhibition of the NLRP3 
inflammasome both by compounds that are generally regarded 
as NLRP3 inhibitors (e.g. parthenolide and BAY 11-7082)85  
and compounds whose ability to inhibit NLRP3 activation has 
been identified as an “off-target” effect (e.g. the Syk kinase 
inhibitor 3,4-methylenedioxy-β-nitrostyrene [MNS])84. Impor-
tantly, the issue of specificity of the tested inflammasome inhibi-
tors has also been addressed in the cited studies and, while MNS 
and BAY 11-7082 have been demonstrated to selectively inhibit 
NLRP3, parthenolide was also able to block other inflammasome 
responses84,85. This observation is probably related to parthenolide-
mediated direct inhibition of caspase-185 (which contains a Cys  
residue that is essential for its catalytic activity and which can  
also be modified by Michael acceptors87).

In further investigation of the mechanism of NLRP3 inhibi-
tion by Cys-modifying compounds, two consecutive structure- 
activity relationship studies demonstrated that Michael accep-
tors with very diverse chemical structures can interfere with 
NLRP3 activation (assessed by IL-1β release and pyroptotic LDH 
release)88,89. Of note, these compounds are capable of inhibit-
ing NLRP3 ATPase activity88,89. Furthermore, several Michael 
acceptors moderately but significantly inhibit the activation of 
CAPS-related NLRP3 variants, but their potency on these NLRP3 
mutants is lower compared to the inhibitory influence exerted on  
WT-NLRP389.

When applying compounds that contain a Michael acceptor moi-
ety to investigate the molecular mechanism of NLRP3 activation, 
several issues have to be considered. First, the downstream effec-
tor of NLRP3 is caspase-1, a Cys protease whose catalytic activ-
ity depends on an unmodified, free Cys residue. This implies that 
Michael acceptors, at high enough concentrations, may obscure 
various experimental readouts that rely on caspase-1 activity, such 
as assessing inflammasome speck formation using the caspase-
1-targeting FLICA reagent, IL-1β/IL-18 release, or pyroptotic 
LDH release, even if the particular compounds-of-interest do not 
directly interfere with NLRP3 activation. Second, the ability of 
Michael acceptors to directly interact with NLRP3/modify Cys 
residues in NLRP384,89 only suggests, but does not prove, that the  
NLRP3-Cys modification constitutes the mechanism of  

inflammasome inhibition by these compounds. Further insights  
into the structural basis of NLRP3 activation and into the possi-
ble influence of Michael acceptors on that process are required to 
resolve this issue.

Conclusions and future directions
In recent years, a number of molecular players involved in NLRP3 
activation have been identified. Most importantly, the direct inter-
action of NLRP3 with the kinase NEK7 has been described, and 
its importance for the assembly of the NLRP3 inflammasome has 
been demonstrated. Major progress has also been made in our  
understanding of how intracellular LPS triggers caspase-11, lead-
ing to proteolytic processing of pannexin-1 and gasdermin D, and 
to non-canonical NLRP3 inflammasome activation. Finally, the  
mechanism by which human monocytes activate NLRP3 in response 
to extracellular LPS as a single stimulus has been solved and 
shown to rely on TLR4/TRIF-mediated activation of the RIPK1-
FADD-caspase-8 cascade. On the other hand, physiologically rel-
evant mechanisms, such as autophagy and cAMP signaling, have  
been proposed to down-regulate the activation of NLRP3, dem-
onstrating the physiological importance of limiting NLRP3  
inflammasome responses.

However, there still remain unanswered questions about the  
molecular events that link cytosolic K+ depletion to NLRP3-/ 
NEK7-dependent inflammasome formation. Furthermore, the 
discovery of the dual function of gasdermin D (as a downstream 
effector of caspase-11 required for non-canonical NLRP3 acti-
vation and a substrate of inflammatory caspases required for  
pyroptosis) calls for closer investigation of the mechanism 
of action of this protein. In light of the reported K+ efflux- 
independent modes of NLRP3 triggering that include alternative 
NLRP3 inflammasome activation and NLRP3 inflammasome acti-
vation upon inhibition of glycolysis, the relative contributions of 
these pathways to inflammatory responses will have to be evalu-
ated. Finally, the mechanisms by which compounds containing  
sulfonylurea or Michael acceptor moieties cause NLRP3 inhibi-
tion will have to be defined, which may open new possibilities  
for potential future therapeutic applications of these molecules.
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