
RESEARCH ARTICLE

EGFR Signaling Regulates Maspin/SerpinB5
Phosphorylation and Nuclear Localization in
Mammary Epithelial Cells
Mariana Tamazato Longhi☯, Magna Magalhães☯, Jeffrey Reina, Vanessa Morais Freitas,
Nathalie Cella*

Departamento de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade de
São Paulo, São Paulo, SP, Brazil

☯ These authors contributed equally to this work.
* ncella@usp.br

Abstract
Maspin (SerpinB5) is a non-inhibitory serpin (serine protease inhibitor) with very diverse bio-

logical activities including regulation of cell adhesion, migration, death, control of gene

expression and oxidative stress response. Initially described as a tumor and metastasis

suppressor, clinical data brought controversies to the field, as some studies reported no cor-

relation between SerpinB5 expression and prognosis value. These data underscore the

importance of understanding SerpinB5 function in a normal physiological context and the

molecular mechanism involved. Several SerpinB5 phosphoforms have been detected in dif-

ferent cell lines, but the signaling pathways involved and the biological significance of this

post-translational modification in vivo remains to be explored. In this study we investigated

SerpinB5 expression, subcellular localization and phosphorylation in different stages of the

mouse mammary gland development and the signaling pathway involved. Here we show

that SerpinB5 is first detected in late pregnancy, reaches its highest levels in lactation and

remains at constant levels during post-lactational regression (involution). Using high resolu-

tion isoelectric focusing followed but immunoblot, we found at least 8 different phospho-

forms of SerpinB5 during lactation, which decreases steadily at the onset of involution. In

order to investigate the signaling pathway involved in SerpinB5 phosphorylation, we

took advantage of the non-transformed MCF-10A model system, as we have previously

observed SerpinB5 phosphorylation in these cells. We detected basal levels of SerpinB5

phosphorylation in serum- and growth factor-starved cells, which is due to amphiregulin

autocrine activity on MCF-10A cells. EGF and TGF alpha, two other EGFR ligands, promote

important SerpinB5 phosphorylation. Interestingly, EGF treatment is followed by SerpinB5

nuclear accumulation. Altogether, these data indicate that SerpinB5 expression and phos-

phorylation are developmentally regulated. In vitro analyses indicate that SerpinB5 phos-

phorylation is regulated by EGFR ligands, but EGF appears to be the only able to induce

SerpinB5 nuclear localization.
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Introduction
Maspin (SerpinB5) is a non inhibitory serpin (serine protease inhibitor) with very diverse bio-
logical activities, including increase in cell adhesion, inhibition of cell migration, control of
gene transcription, modulation of apoptosis and oxidative stress response. First described in
the mammary tissue, it is now clear that SerpinB5 is expressed by most epithelial cells. In vitro
and animal studies indicated SerpinB5 has an important tumor and metastasis suppressor
activity, which was mainly associated with its effects on adhesion, migration, cell death and
angiogenesis inhibition. Clinical data, however, brought controversies to the field: whereas
some studies found a correlation between loss of SerpinB5 and tumor progression in different
cancer types including breast [1–3], prostate [4], lung [5, 6] and skin [7], others observed an
opposite trend [8–12]. Another unresolved issue is how SerpinB5 subcellular localization is
related to its tumor suppressor activity, as nuclear SerpinB5 is associated with a good prognos-
tic in some cases [13–17], but not in others [18, 19]. These observations may indicate that Ser-
pinB5 biological activities are cell type and tissue context-dependent. The fact that most
studies have been conducted in cell lines or in pathological conditions may also account for
these divergences. These data underscore the importance of understanding how SerpinB5 is
regulated in a non-transformed model as well as in a physiological context. SerpinB5 phos-
phorylation has been identified in mammary and corneal epithelial cell lines [20–22]. Whether
this modification occurs in vivo and the signaling pathways involved remain to be elucidated.
In this study we characterized SerpinB5 expression, subcellular localization and phosphoryla-
tion in different stages of the mouse mammary gland development and investigated the under-
lying signaling pathway in the non-transformed MCF-10A model system, which expresses
SerpinB5 endogenously. Here we show that SerpinB5 protein is detected from late pregnancy,
throughout lactation and involution and it is predominantly detected in the cytoplasm of
mammary epithelial cells. Several SerpinB5 phosphoforms were detected in the lactating gland,
but not in other developmental stages. In MCF-10A cells, phosphorylated SerpinB5 is detected
even in serum and growth-factor starved cells, but increases significantly upon EGF (epidermal
growth factor) and TGF alpha (transforming growth factor alpha) treatment. Interestingly, we
observed that EGF-treatment is accompanied by an increase in SerpinB5 nuclear localization.
Altogether, these data indicate that SerpinB5 expression and phosphorylation is developmen-
tally regulated and EGFR (epidermal growth factor receptor) signaling regulates SerpinB5
phosphorylation and nuclear localization.

Material & Methods

Cell Culture
The MCF-10A cell line was obtained from Banco de Células do Rio de Janeiro, Rio de Janeiro–
RJ, Brazil. Cells were grown in DMEM/F12 medium supplemented with antibiotics, EGF (10
ng/ml), insulin (10 ug/ml), cholera toxin (1 ug/ml), hydrocortisone (1 ug/ml) and heat-inacti-
vated horse serum (5%). Soluble factors were from Sigma (EGF, insulin, cholera toxin, hydro-
cortisone) or Gibco (TGF alpha)., When necessary, 1 ug/ml of goat anti-amphiregulin
(AREG)-neutralizing antibody (R&D AB-262-NA) or control goat IgG (eBiosciences) were
added to starved cells for 24 hours. Recombinant SerpinB5 was from Sigma.

Mouse maintenance and mammary gland processing
Female Balb/c mice were obtained from the animal facility of Instituto de Ciências Biomédicas
of Universidade de São Paulo. They were housed in a light and temperature–controlled room
(12 h light/dark cycle, 21±2°C) and provided with food and water ad libitum. For isolation of
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mammary tissue from different developmental stages, animals were mated and the vaginal
plug was monitored to ensure day 1 of pregnancy and so on. Day 1 of involution was consid-
ered the day after the 21st day of lactation, when pups were weaned. When necessary, mice
were placed in an euthanasia chamber. Carbon dioxide was injected from a tank into the cham-
ber at appropriate flow rate. Animals were left in the chamber until clinical death was ensured.
This study was carried out in strict accordance with the guidelines of the Animal Ethics Com-
mittee of Instituto de Ciências Biomédicas of Universidade de São Paulo. The protocol was
approved by this Committee (Permit Number: 161). All efforts were made to minimize
suffering.

2D-SDS-PAGE
Protein samples (1.7–2 mg) were applied onto 17 cm 4.7–5.9 (17 cm) linear immobilized pH
gradient strips (Bio-Rad ReadyStrip™ IPG strip) in rehydration buffer (8M urea, 4% CHAPS,
40 mMDTT) for 16 h at room temperature. Isoelectric focusing (IEF) was performed on IPG-
phor III apparatus (GE Healthcare) at 17 kV h. For the second dimension, strips were incu-
bated at room temperature for 20 min in equilibration buffer (6 M urea, 2% SDS, 50 mM Tris–
HCl, pH 6.8, 30% glycerol and 0.001% bromophenol blue with 2% DTT), followed by incuba-
tion with 4% iodoacetamide in equilibrium buffer for 20 min. The second dimension was per-
formed in a vertical 12% SDS-PAGE. Proteins were transferred to PVDF membrane and
analyzed by Western blot with anti-SerpinB5 antibodies (see below).

Protein extraction, subcellular fractionation, Phos-Tag™ SDS-PAGE andWestern
Blot. Inguinal glands were dissected from virgin animals or at specific developmental time-
points during pregnancy, lactation and involution. Tissue was flash frozen and stored at -80°C.
Mammary epithelial nuclear and cytoplasmic fractions were prepared with the NER-PER™
Nuclear and Cytoplasmic Extraction Reagent Kit (Thermo Fisher) according to manufacturer’s
instructions. In order to prepare protein extracts compatible with IEF analysis, frozen tissues
were grounded with a chilled mortar and pestle in liquid nitrogen and solubilized in 2-D Pro-
tein Extraction Buffer 1 (GE Healthcare cat# 28-9435-22) with the help of the Sample Grinding
Kit (GE Healthcare cat# 80-6483-37). Extracts were cleared by centrifugation and quantified
by the Bradford method (Bio-Rad). 1.7–2 mg of protein extracts were precipitated in 3 volumes
of acetone at -20°C for at least 2 h and ressuspended in rehydration buffer. Phos-Tag™
SDS-PAGE gels were prepared following manual instructions and published protocol (Wako
Pure Chemical Industries Ltd.) [23]. Protein extracts (from tissue or MCF-10A cells) for regu-
lar SDS-PAGE or Phos-Tag™ SDS-PAGE were prepared in RIPA buffer [24]. 50–100 ug of
extracts were separated by 12% SDS-PAGE or by 8% SDS-PAGE Phos-Tag™ gels containing
50 um of Phos-Tag™-conjugated acrylamide to separate the phosphorylated species. Proteins
were transferred to PVDF membrane and probed with diverse antibodies as follows: mouse
monoclonal anti-SerpinB5 (Millipore cat# 4035) 1:10,000, mouse monoclonal anti-SerpinB5
(BD Pharmingen cat# 554292) 1:5,000, rabbit anti-SerpinB5 (Sigma Prestige Antibodies1
HPA019132) 1:10,000, rabbit anti-SerpinB5 (Santa Cruz sc-22762) 1:1,000, anti-alpha tubulin
(Sigma) 1:2,000, anti-HSP90 (Cell Signaling) 1:1,000 and anti-lamin B1 (ABCAM ab16048)
1:1,000.

Mammary gland processing and immunofluorescence
Inguinal glands were dissected from lactating female Balb/c mice. Tissue was fixed in 4% para-
formaldehyde overnight at 4°C before processing to paraffin blocks. For immunostaining, sec-
tions were deparaffinized, rehydrated, and subjected to 10 mM citrate buffer pH 6 antigen
retrieval for 30 min at 95°C. MCF-10A cells were fixed with 2% paraformaldehyde in PBS for
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20 min at room temperature. The fixed cells were permeabilized with 0.05% Triton X-100 in
blocking buffer (5% goat serum in PBS) for 1 h at room temperature. Mammary gland tissue
section and MCF-10A staining were performed with rabbit anti-SerpinB5 antibody (Sigma
Prestige Antibodies1HPA019132 and HPA019136, respectively) 1:200, overnight at 4°C. All
stained samples were mounted in Prolong Gold antifade reagent with DAPI (Molecular
Probes). Secondary antibodies were goat anti-rabbit IgG (H+L) Alexa Fluor1568 or goat anti-
rabbit IgG Alexa Fluor1488 F(ab’)2 Fragment (Molecular Probes).

Microscope image acquisition
MCF-10A cells images were obtained with an Axiophot widefield fluorescence microscope using
a 63x PlanApo 1.3 NA objective (Carl Zeiss). Images were acquired using a digital CCDmono-
chromatic camera (CoolSnap HQ2, Photometrics Inc, Tucson, AZ, USA). The microscope and
all devices were controlled by Metamorph Premier 7.6 software (Molecular Devices, Sunnyvale,
CA, USA). For tissue, confocal images were obtained using a Zeiss LSM 780 system (Carl Zeiss,
Jena, Germany) at Core Facilities to Support Research (CEFAP) at Sao Paulo University. Images
acquired with a Plan-Apochromat 63x 1.4 NA oil immersion objective were rendered with Zen
Software (Carl Zeiss, Jena, Germany). Photoshop CS3 (Adobe) was used when necessary to
adjust levels within each channel equally across all images to maximize image clarity.

Results

SerpinB5 expression and phosphorylation during the development of the
mouse mammary gland
SerpinB5 was initially described in human mammary epithelial cells as a single 42 kDa polypep-
tide chain with 89% homology with the mouse ortholog [1, 25]. Splicing variants have been
described [26] but not characterized at protein level. We first determined SerpinB5 temporal
expression and phosphorylation along the development of the mouse mammary gland. For this
purpose, glands were isolated at different stages of development and SerpinB5 expression was
analyzed in protein extracts by immunoblot (Fig 1A). SerpinB5 was undetectable in the adult vir-
gin gland and in early pregnancy (lanes 1–2). A weak band was visible in late pregnancy (lane 4),
which increases in lactation (lanes 5–7) and decreases slightly in involution (lanes 8–9). MCF-
10A extract was used as a positive control (lane 10). This result is in good agreement with previ-
ous reports which analyzed SerpinB5 mRNA by northern blot [27] and protein levels by immu-
noblot [28], although the later did not look at SerpinB5 in the virgin, early pregnancy and late
involution. Quantification of the bands indicates that SerpinB5 expression is highest during lacta-
tion (Fig 1B), reflecting previous observations [29]. This result suggests that SerpinB5 protein
level is regulated during the development of the mouse mammary gland.

SerpinB5 post-translational modifications have been previously reported in different
immortalized and transformed cell lines, including cysteine S-nitrosylation [30], phosphoryla-
tion on serine, threonine and tyrosine residues [20–22] and acetylation [31, 32]. However, the
biological significance and the presence of these modifications in vivo and in different develop-
mental stages have not been addressed. Since we have previously identified three different Ser-
pinB5 phosphoforms in MCF-10A cells, a non-transformed human mammary epithelial cell
line [21], we were interested in looking at SerpinB5 phosphorylation in the mammary gland.
For this purpose, mammary glands from female mice at days 1, 10 and 20 of lactation and days
1 and 5 of involution were isolated, protein extracts were prepared and analyzed by Phos-Tag™
SDS-PAGE followed by immunoblot with anti-SerpinB5. We detected 3 different bands in this
analysis: two of them correspond to phosphorylated SerpinB5 polypeptides, which we named
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P-SerpinB5-2 and P-SerpinB5-1 (Fig 2A, arrows). The third band has the highest electropho-
retic mobility and corresponds to the unphosphorylated SerpinB5 (Fig 2A, arrowhead). Each
of the bands was quantified and expressed as percentage of the total levels of SerpinB5 (Fig 2B).
P-SerpinB5-1 and P-SerpinB5-2 bands likely contain more than one SerpinB5 phosphoisotypes
which could not be resolved in a Phos-Tag™ SDS-PAGE gel. In order to determine how many
SerpinB5 forms are present in the lactating gland, protein extracts of lactating glands isolated
on days 10 and 20 were analyzed by 2D-SDS-PAGE on a 17 cm IPG strip containing a micro-
range pH gradient (4.7–5.9), which allows the finest possible resolution [21]. SerpinB5 proteins
were detected by immunoblot. We observed multiple spots in both samples which differ subtly
in isoelectric point and intensity (Fig 2C). As addition of a phosphate group results in addition
of a negative charge and a consequent decrease on the protein isoelectric point, these spots
likely represent different SerpinB5 phosphoforms which differ slightly in their isoelectric point,
and for this reason could not be separated by Phos-Tag™ SDS-PAGE. This result indicates the
presence of multiple SerpinB5 phosphoforms in the mammary gland. In addition, SerpinB5
phosphorylation appears to be regulated during the development of the mouse mammary
gland. We are currently investigating the identity of the kinases and phosphatases and the sig-
naling pathways responsible for SerpinB5 phosphorylation in the mammary gland.

EGFR signaling regulates SerpinB5 phosphorylation and nuclear
localization in MCF-10A cells
In order to investigate the signaling pathways involved in SerpinB5 phosphorylation and the
biological significance of this post-translational modification, we went back to the MCF-10A
model, which expresses SerpinB5 endogenously and it is extensively employed as a model

Fig 1. SerpinB5 expression is developmentally regulated in the mousemammary gland. A. 100 μg of
protein extracts frommammary glands isolated on days 3, 10, 18 of pregnancy (3P, 10P and 18P), on days 1,
10 and 20 of lactation (1L, 10L and 20L), on days 1 and 5 of involution (1I and 5I) and from virgin mice (V),
were subjected to 12% SDS-PAGE, transferred to PVDFmembrane and probed with mouse monoclonal
anti-SerpinB5 (Millipore). 50 ug of MCF-10A protein extract was loaded as a positive control (lane 10). The
membrane was reprobed with anti-alpha-tubulin for loading control (lower panel);B. The bar graph shows
SerpinB5 levels normalized by alpha-tubulin. This result is representative of 3 independent experiments done
with two different mouse strains.

doi:10.1371/journal.pone.0159856.g001
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system to dissect different signaling pathways [33, 34]. Importantly, these cells exhibited many
important features of non-transformed epithelial cells, markedly the dependence on hormones
and growth factors for optimal proliferation and adhesion-dependent survival [35]. In our pre-
vious study we looked at SerpinB5 phosphorylation by 2D-SDS-PAGE followed by immuno-
blot in MCF-10A cells cultivated in the so called ‘complete medium’, i.e., medium containing
insulin, EGF, cholera toxin, hydrocortisone and 5% horse serum [21]. In order to identify
extracellular factors responsible for SerpinB5 phosphorylation, MCF-10A cells were cultivated
in serum and soluble factors-free medium (i.e., starved cells) and whole protein extracts were
analyzed by 2D-SDS-PAGE followed by immunoblot, as described in Fig 2C. SerpinB5 appears
to be phosphorylated even in starved cells, as evidenced by the presence of three different spots
(Fig 3A upper panel and 3B, lane 1). Since EGFR kinase domain phosphorylates recombinant
SerpinB5 in vitro [22], we tested whether two high affinity EGFR ligands, EGF and TGF alpha,
would modulate SerpinB5 phosphorylation. For this purpose, starved MCF-10A cells were
treated with 20 ng/ml of EGF or TGF alpha for 20 minutes and whole cell extracts were ana-
lyzed similarly. Interestingly, both EGF and TGF alpha leads to an important increase in the
number of SerpinB5 spots (Fig 3A, middle and lower panels), indicating that these EGFR
ligands regulate SerpinB5 phosphorylation. To further confirm this finding, starved MCF-10A
cells were treated with EGF for 15, 30 and 60 minutes and analyzed by Phos-Tag™ SDS-PAGE
followed by immunoblot (Fig 3B lanes 2–4, arrows). EGF treatment results in increased Ser-
pinB5 phosphorylation (Fig 3B lanes 2–4, arrows) with the expected decrease of unphosphory-
lated SerpinB5 (Fig 3B, arrowhead), without significant increase in SerpinB5 levels (Fig 3C).

Fig 2. SerpinB5 phosphorylation in the lactatingmammary gland. A. 100 ug of protein extracts frommammary gland isolated on
days 1, 10 and 20 of lactation (1L, 10L and 20L), and on days 1 and 5 of involution (1I and 5I) were resolved by 8% Phos-Tag™
SDS-PAGE gel. Proteins were transferred to PVDFmembrane and probed with rabbit anti-SerpinB5 (Sigma). Arrows indicate two
phosphorylated SerpinB5 bands (P- SerpinB5-1 and P- SerpinB5-2) and arrowhead indicates unphosphorylated SerpinB5. Top and
middle panels represent a short and a long X-ray film exposure, respectively. The membrane was reincubated with anti-HSP90 for a
loading control;B. each of the three bands was quantified and expressed as percentage of the total levels of detected SerpinB5. This
result is representative of two independent experiments; C. 2 mg of protein extracts of mammary gland isolated on days 10 and 20 of
lactation were analyzed by 2D-SDS-PAGE using 17 cm pH 4.7–5.9 IPG strips followed byWestern blot with anti-SerpinB5 (Santa Cruz).
This result is representative of two independent experiments.

doi:10.1371/journal.pone.0159856.g002
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We were then wondering about the origin of SerpinB5 phosphorylation in serum and
growth factor-starved cells. Since SerpinB5 positively regulates cell adhesion and it is associated
with Beta 1-integrin [24], we hypothesized SerpinB5 phosphorylation in starved cells could be
due to signals emanating from the cell-substrate interaction. To test this possibility we used the
previously described protocol for cell adhesion-signaling network analyses [36]. Starved MCF-
10A cells were trypsinized and replated on self-deposited extracellular matrix or on control,
BSA-coated surface for 1 hour at 37°C [24]. Although cells adhered and spread on matrix-
coated surface much faster than on BSA (S1A Fig), 2D-SDS-PAGE followed by immunoblot
indicates SerpinB5 phosphorylation levels did not differed substantially (S1B Fig), indicating
that cell attachment is not responsible for SerpinB5 phosphorylation in starved cells.

As MCF-10A cells secrete AREG (amphiregulin), another EGFR ligand [37], we reasoned
SerpinB5 phosphorylation in starved cells could be a consequence of autocrine activation of
EGFR by AREG. To test this hypothesis, MCF-10A cells were grown either in the presence of
anti-AREG-neutralizing antibody or control antibody for 24 h and SerpinB5 phosphorylation
was accessed by Phos-Tag™ SDS-PAGE. Interestingly, anti-AREG antibody resulted in a signifi-
cant reduction of SerpinB5 phosphorylation (Fig 4, compare lanes 2 and 3), suggesting that
autocrinally secreted AREG is indeed responsible for SerpinB5 phosphorylation in starved
cells.

As we have previously observed a correlation between SerpinB5 phosphorylation and cyto-
plasmic localization in MCF-10A cells [21], we asked whether EGF treatment would result in
changes in SerpinB5 subcellular localization as well. Starved MCF-10A cells were treated with
EGF for different intervals and SerpinB5 localization was determined by immunofluorescence.
SerpinB5 could be detected in the cytoplasm and in the nucleus in starved cells (Fig 5A). EGF
treatment resulted in SerpinB5 accumulation in the nucleus in a time-dependent manner (Fig
5A and 5B). Since there is significant amount of SerpinB5 in the nucleus of starved cells, we
tested whether AREG could be responsible for that. However, we did not detect any change in
SerpinB5 nuclear localization in cells incubated with anti-AREG neutralizing antibody (S2
Fig). Altogether, these results indicate that at least three different EGFR ligands (EGF, TGF

Fig 3. EGF and TGF alpha regulate SerpinB5 phosphorylation in MCF-10A cells. A. Starved MCF-10A cells were left untreated (upper panel) or
treated with 20 ng/ml with EGF (middle panel) or TGF alpha (lower panel) for 20 minutes. 1.7 mg of protein extracts were analyzed by 2D-SDS-PAGE
using 17 cm pH 4.7–5.9 IPG strips followed byWestern blot with anti-SerpinB5 (BD Pharmigen); B. Starved MCF-10A cells were left untreated (lane 1)
or treated with 20 ng/ml of EGF for the indicated periods of time (lanes 2–4). 50 ug of whole protein extracts were resolved by 8% Phos-Tag™
SDS-PAGE gel to separate the phosphorylated species. Proteins were transferred to PVDFmembrane and probed with rabbit anti-SerpinB5 (Santa
Cruz);C.MCF-10A cells were grown in complete medium (lane 1) or starved medium without (lane 2) or with 20 ng/ml of EGF for 15 min (lane 3). 50 ug
of whole protein extracts were resolved by 12% SDS-PAGE, transferred to PVDFmembrane and probed with anti-SerpinB5 (Millipore) or anti-alpha-
tubulin for a loading control. This result is representative of two independent experiments.

doi:10.1371/journal.pone.0159856.g003
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alpha and AREG) regulate SerpinB5 phosphorylation. Among them, only EGF can induce Ser-
pinB5 nuclear translocation.

SerpinB5 subcellular localization in the lactating mouse mammary gland
Changes in SerpinB5 nucleocytoplasmic distribution were initially reported in several different
tumor specimens, raising the hypothesis of a possible association between SerpinB5 subcellular
localization and tumor progression. Attempts to correlate tumor progression/prognostic value
and SerpinB5 nuclear or cytoplasmic localization resulted in great divergences and debates [13–
19]. In normal human breast tissue, SerpinB5 is predominantly expressed by myoepithelial cells
[38, 39], although weaker luminal epithelial staining has also been observed [1, 40]. In order to
characterize SerpinB5 subcellular localization in a normal and physiological context, we looked at
SerpinB5 by immunofluorescence and confocal microscopy during the developmental stage
which most abundantly expresses it, the lactating mammary gland. Interestingly, whereas most, if
not all luminal cells present SerpinB5 in the cytoplasm (Fig 6A and 6B), SerpinB5 nuclear staining
presents differences which we attempted to classify as SerpinB5-filled nuclei, classified as such
when nuclear boundaries could not be depicted (Fig 5C, white arrowhead); SerpinB5-negative
nuclei (Fig 5C, white arrow) and SerpinB5 partially positive-nuclei, which is positive for SerpinB5
but nuclear boundaries could still be delineated (Fig 5C, yellow arrowhead). To confirm this find-
ing, SerpinB5 expression was analyzed by immunoblot in the nuclear and cytoplasmic fractions
of the lactating mammary gland. In agreement with the image analysis, SerpinB5 was more abun-
dant in the cytoplasmic fraction, but could also be detected in the nucleus (Fig 6D). Very similar
results were observed when the same analysis was done with the involuting mammary glands iso-
lated on days 1 and 5 (S3 Fig). These results indicate that SerpinB5 is predominantly in the cyto-
plasm and its subcellular localization does not change significantly during mammary gland
development. In addition, nuclear SerpinB5 levels appear to differ among different cells.

Discussion
In this study we determined maspin/SerpinB5 protein expression, phosphorylation and subcel-
lular localization during the development of the mouse mammary gland and investigated the

Fig 4. AREG is responsible for SerpinB5 phosphorylation in starved-MCF-10A cells. Starved MCF-10A
cells (lane 1) were grown in medium containing either 1 ug/ml of goat IgG (lane 2) or goat anti-AREG-
neutralizing antibody (lane 3) for 24 h. 50 ug whole protein extracts were resolved by 8% Phos-Tag™
SDS-PAGE gel. Recombinant SerpinB5 was used as unphosphorylated control (lane 4). Proteins were
transferred to PVDFmembrane and probed with anti-SerpinB5 (Sigma). A short exposure is shown on the
right side; Asterisk indicates a spurious band. This result is representative of two independent experiments.

doi:10.1371/journal.pone.0159856.g004
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signaling pathways involved in SerpinB5 phosphorylation and nuclear translocation in MCF-
10A cell culture. In the mammary gland, SerpinB5 protein was detected during lactation and
involution, whereas phosphorylation clearly predominates in lactation. These observations
suggest SerpinB5 expression and phosphorylation are developmentally regulated processes and
therefore may be under hormonal control. By phos-tag gel analysis followed by immunoblot, 2
phosphoforms, referred as P-SerpinB5-1 and P-SerpinB5-2, were detected (Fig 2A). Biochemi-
cally, these forms differ in the amount of phosphate groups covalently bound to the SerpinB5
peptide chain; thus P-SerpinB5-2 has more phosphate groups than P-SerpinB5-1. The biologi-
cal significance of these SerpinB5 phosphoforms, however, is not known. Interestingly, P- Ser-
pinB5-1 levels increase importantly throughout lactation while P-SerpinB5-2 levels display a
rather modest decrease. The numerous SerpinB5 phosphoforms identified by 2D-SDS-PAGE
(Fig 2C) further supports a model in which developmentally regulated kinases and phospha-
tases keep SerpinB5 phosphorylation under a tight control during lactation. The prevalence of
phospho-SerpinB5 during lactation suggests that these forms may have a particular and

Fig 5. EGF treatment leads to SerpinB5 nuclear accumulation in MCF-10A cells. A. Starved MCF-10A cells were treated with 20 ng/ml of EGF for the
indicated periods of time. Cells were fixed and processed for immunofluorescence with anti-SerpinB5 (Sigma). Nuclei were stained with DAPI. Bar, 50 μm; B.
Cells were quantified based on the criteria shown under the graph. Approximately 130 cells from four random views were quantified. This result is
representative of three independent experiments.

doi:10.1371/journal.pone.0159856.g005
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restricted role during this developmental period. The sudden decrease in SerpinB5 phosphory-
lation at the onset of involution further supports this hypothesis. SerpinB5 target expression
under the control of the whey acidic protein promoter, a milk protein gene, resulted in
decreased milk protein expression, increase in apoptosis and impaired lobuloalveolar develop-
ment [27]. In addition, SerpinB5 was detected among the top 10 genes uniquely expressed dur-
ing the lactating mammary gland [41]. Altogether, these data indicate that SerpinB5 plays an
important, yet poorly understood role during the lactation stage of the mammary gland. As
SerpinB5 protein is also detected throughout involution, it may also play a role in mammary
gland remodeling and cell death, as has been previously suggested [29]. In line with this obser-
vation, SerpinB5 sensitizes cells to cell death [42, 43] and it is a cathepsin D binding partner
[44], an instigator of mammary gland involution [45]. We found that EGF and TGF alpha reg-
ulates SerpinB5 phosphorylation and autocrinally secreted AREG, and not an adhesion-
induced signal, is responsible for SerpinB5 phosphorylation in starving MCF-10A cells. Of
note, whereas EGF treatment is followed by SerpinB5 nuclear translocation, anti-AREG neu-
tralizing antibody efficiently inhibits SerpinB5 phosphorylation without interfering with its
subcellular localization (S2 Fig). Different EGFR agonists lead to different cell responses even
on the same cell type [46]. This difference has been clearly demonstrated for EGF and AREG
in the mammary gland [47, 48]. The effect of TGF alpha on SerpinB5 subcellular localization
has not been analyzed in this study. Based on our observation for EGF and AREG and on what
is currently known about EGFR signaling, TGF alpha-induced SerpinB5 phosphorylation may

Fig 6. SerpinB5 subcellular localization in the mousemammary gland. A. SerpinB5
immunofluorescence staining (Sigma) on paraffin section of a 10 day lactating gland;B. SerpinB5 and DAPI
merge image; C. Representative area enlarged from boxed region indicating a SerpinB5-positive nucleus
(white arrowhead), a partially-positive nucleus (yellow arrowhead) and a SerpinB5-negative nucleus (white
arrow). D. 50 ug of nuclear (nuc) and cytoplasmic (cyt) protein fractions of a 10 day lactating mammary gland
were subjected to 12% SDS-PAGE, transferred to PVDFmembrane and probed with anti-SerpinB5 (Santa
Cruz). Fractionation efficiency was monitored by reprobing the membrane with anti-Lamin B1 and anti-alpha-
tubulin. Scale bar—20 μm.

doi:10.1371/journal.pone.0159856.g006
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regulate different, yet unknown function of this protein in the cell. The observation that Ser-
pinB5 is located in the nucleus even in starved cells indicate that SerpinB5 nuclear localization
is regulated by at least two different mechanisms–one non-regulated mechanism which is
already present in resting cells and another which depends on EGF pathway activation. As Ser-
pinB5 molecular weight (42 kDa) is close to the size limit for passive diffusion [49], it is theo-
retically possible that SerpinB5 nuclear translocation occurs via a passive mechanism.
However, a simple SerpinB5 cDNA transfection in TM40D mammary tumor cells resulted in
SerpinB5 in the cytoplasm only [50], suggesting that SerpinB5 requires an active mechanism to
translocate to the nucleus. Interestingly, SerpinB5-GFP expression (which is about 67 kDa)
was restricted to the cytoplasm [15, 51] or found in both compartments (cytoplasm and
nucleus) [52] depending on the cell type. One possible explanation for this difference is the
presence of different ratios of SerpinB5-GFP to endogenous cytoplasmic anchoring proteins in
these cell lines. If anchoring proteins are limited, GFP-SerpinB5 may translocate to the nucleus,
as has been previously observed for ERK2 [53]. It is also possible that SerpinB5 subcellular
localization is actively regulated by different signaling pathways, as we observed here for EGF
in MCF-10A cells. As cell lines differ in their signaling pathways, this difference could account
for the differences in SerpinB5 subcellular localization in these cell lines. A number of different
proteins have their nuclear localization regulated by EGF, including its own receptor, EGFR
[54], ERK2 [55], pyruvate kinase M2 [56] and Stat5 [57]. EGF can induce protein nuclear
translocation via diverse mechanisms. For example, EGF signaling does not directly act on
ERK2 nuclear translocation signal, but rather releases it from cytoplasmic anchors [53], which
is essential for ERK2 nuclear translocation. For PMK2, EGF induces PMK2 phosphorylation
and acetylation, which are both essential for PMK2 nuclear translocation [58, 59]. The cyto-
plasmic levels of SerpinB5 remained high after EGF treatment, suggesting that only a fraction
of cellular SerpinB5 translocates to the nucleus. In the nucleus, SerpinB5 likely regulates gene
expression, as it is physically associated with histone deacetylase 1 (HDAC1) [60] and inter-
feron regulatory factor 6 (IRF6), a transcription factor which regulates cell cycle arrest and qui-
escence during cell differentiation [61]. It has been hypothesized that IRF6 and SerpinB5
cooperate to establish cell cycle arrest and terminal differentiation in mammary epithelial cells
during lactation [28]. How the interaction between IRF6 and SerpinB5 ultimately regulates cell
differentiation is still not clear. Bailey et al. observed that IRF6 phosphorylation leads to its ubi-
quitination and degradation by the proteasome. Interestingly, SerpinB5 binds preferentially to
the phosphorylated IRF6. They hypothesized that SerpinB5 may act as an IRF6 anchor, pre-
venting IRF6 degradation and perhaps nuclear translocation [29]. In MCF-10A cells, EGF
alone is not able to promote IRF6 phosphorylation and does not induce entry in the cell cycle.
A recent study demonstrated that EGF (and not others EGFR ligands) is specifically upregu-
lated during lactation in the mouse mammary gland and it is essential for alveolar cell survival
during this particular developmental stage [62], raising the interesting hypothesis of a role of
SerpinB5 in the EGF-dependent function in vivo. In this context, it is possible that EGF-
induced SerpinB5 translocation results in IRF6 release, which would then promote cell cycle
arrest for mammary epithelial cell differentiation. We are currently investigating if EGF regu-
lates SerpinB5 in the mouse mammary gland. While the results presented here suggest that
EGF-induced SerpinB5 phosphorylation may regulate SerpinB5 nuclear localization, our previ-
ous results showed SerpinB5 accumulation in the cytoplasm in sodium pervanadate-treated
cells, a tyrosine phosphatase inhibitor. Altogether, these data indicate that two different Ser-
pinB5 fractions have their subcellular localization regulated by phosphorylation. Whether
these events occur independently or are associated in the cells remains to be established. The
biological significance of the different patterns of SerpinB5 nuclear staining in the lactating
mammary gland is not clear. It will be interesting to determine how SerpinB5 nuclear status
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relates to the expression of estrogen and progesterone receptors, as these steroid hormones
orchestrate mammary epithelial proliferation and morphogenesis [63]. The predominance of
SerpinB5 in the cytoplasm of mouse mammary epithelial cells contrasts with studies which
found a positive correlation between SerpinB5 cytoplasmic localization and poor breast cancer
outcome [15, 17], emphasizing the importance of understanding SerpinB5 function in a non-
transformed context. We are presently identifying SerpinB5 phosphorylated residues by mass
spectrometry and dissecting the components of the signaling pathway involved in SerpinB5
phosphorylation and subcellular localization, as well as the translocation machinery involved.
Future studies will aim at investigating the role of SerpinB5 in mammary gland development
and how it is altered during mammary tumorigenesis.

Conclusions
The present study reveals for the first time the status of SerpinB5, a tumor suppressor gene, during
the development of the mammary gland regarding its phosphorylation and subcellular localiza-
tion. We identified numerous SerpinB5 phosphoforms which are developmentally regulated. Ser-
pinB5 is abundantly expressed by luminal cells and is predominantly located in the cytoplasm. In
contrast, there are different patterns of SerpinB5 nuclear staining, suggesting that the levels of this
protein in the nucleus is under tight control. In addition, we revealed that EGF signaling regulates
these two processes in a non-transformed in vitromodel. These results provide important insights
towards understanding the role of SerpinB5 in the mammary gland biology, which will ultimately
be able to reconcile the important divergences in the field regarding the role of SerpinB5 as a
breast tumor suppressor and help design more effective therapeutic and prognostic tools.

Supporting Information
S1 Fig. Cell-substrate interaction does not affect SerpinB5 phosphorylation. A. Starved
MCF-10A cells were trypsinized and replated on BSA (upper panel) or on MCF10A-self-
deposited extracellular matrix (lower panel) and incubated for 1 h at 37°C [24]. B. Protein
extracts were prepared and analyzed by 2D-SDS-PAGE using 17 cm pH 4.7–5.9 IPG strips fol-
lowed byWestern blot with anti-SerpinB5 (Millipore). This result is representative of two inde-
pendent experiments.
(TIF)

S2 Fig. AREG does not regulate SerpinB5 nuclear accumulation in starved MCF-10A cells.
Starved MCF-10A cells were grown in medium containing either 1 ug/ml of goat IgG or goat
anti-AREG-neutralizing antibody, as indicated on the Fig Cells were fixed and processed for
immunofluorescence with anti-SerpinB5 (Sigma). Nuclei were stained with DAPI.
(TIF)

S3 Fig. SerpinB5 subcellular localization in the involuting mammary gland. 50 ug of nuclear
(nuc) and cytoplasmic (cyt) protein fractions of a 1 day (A) or 5 day (B) involuting mammary
gland were subjected to 12% SDS-PAGE, transferred to PVDF membrane and probed with
anti-SerpinB5 (Santa Cruz). Fractionation efficiency was monitored by reprobing the mem-
brane with anti-Lamin B1 and anti-alpha-tubulin.
(TIF)
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