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Animals with bilateral symmetry comprise the majority of the described

species within Metazoa. However, the nature of the first bilaterian animal

remains unknown. As most recent molecular phylogenies point to Xenacoe-

lomorpha as the sister group to the rest of Bilateria, understanding their

biology, ecology and diversity is key to reconstructing the nature of the

last common bilaterian ancestor (Urbilateria). To date, sampling efforts

have focused mainly on coastal areas, leaving potential gaps in our under-

standing of the full diversity of xenacoelomorphs. We therefore analysed

18S rDNA metabarcoding data from three marine projects covering benthic

and pelagic habitats worldwide. Our results show that acoels have a greater

richness in planktonic environments than previously described. Interest-

ingly, we also identified a putative novel clade of acoels in the deep

benthos that branches as sister group to the rest of Acoela, thus representing

the earliest-branching acoel clade. Our data highlight deep-sea environments

as an ideal habitat to sample acoels with key phylogenetic positions, which

might be useful for reconstructing the early evolution of Bilateria.
1. Introduction
The vast majority of the described animal species are bilaterally symmetrical [1].

The establishment of two orthogonal body axes provided the basis for enormous

structural complexity compared with radially symmetrical animals, which

allowed a more diverse evolutionary outcome [2]. However, how bilaterians

evolved and the nature of the first bilaterian animal remains elusive.

Bilaterian animals are separated into four major groups: Acoelomorpha, Ecdy-

sozoa, Lophotrochozoa (or Spiralia) and Deuterostomia [1,3,4]. Although there

has been some disagreement, it now seems clear that Xenacoelomorpha is the

sister group to the rest of Bilateria (also known as Nephrozoa [5]) [6–8]. Thus,

Xenacoelomorpha is a key taxon to compare with the rest of the bilaterians and

reconstruct the nature of the last bilaterian common ancestor, namely Urbilateria.

Members of Xenacoelomorpha, which is formed by Acoela, Nemertoderma-

tida and Xenoturbella, are morphologically quite simple: the digestive system

only has one opening, they lack circulatory, respiratory and excretory systems,

and also lack a body cavity between the gut and the epidermis [8,9]. Xenacoelo-

morphs live in benthic habitats, and the majority of described species have come
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Figure 1. Worldwide distribution of Xenacoelomorpha OTUs. Top: distribution of Acoelomorpha across sampling sites and depth. Bottom: sequencing platforms and
sampling information for the projects where the data were collected.
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from sediments, mainly in coastal areas [10–12]. This

morphological simplicity of Xenacoelomorpha seems to sup-

port the planuloid–acoeloid hypothesis proposed by Von

Graff [13] and Hyman [14], which envisaged Urbilateria

to be a simple, benthic acoelomate organism exhibiting

direct development [2,15].

However, the full diversity and morphological disparity of

Xenacoelomorpha is not yet known, because it has never been

approached in a systematic, high-throughput manner. It is

therefore possible that there are unobserved or unsampled

xenacoelomorph lineages with more complex morphologies

or lifestyles, in different habitats, or occupying earlier phylo-

genetic positions in the Xenacoelomorpha tree. For example,

some studies have described acoel morphospecies in fresh-

water [16,17], brackish water [18] and planktonic habitats

[19]. Thus, any attempt to understand the nature and ecology

of Urbilateria will require a more global and systematic

analyses of Xenacoelomorpha diversity.
2. Material and methods
Clustered operational taxonomic units (OTUs) were obtained

from public repositories or directly from the authors. The refer-

ence tree was constructed from 255 acoelomorph 18S rDNA

GenBank sequences (from herein RefTree). Alignment was car-

ried out using the E-INS-I option from MAFFT v. 7.271 [20]

and manually trimmed. The maximum-likelihood (ML) tree

was built using RAxML v. 8.0.0 [21] considering a GTR-

GAMMA substitution model. Nodal support was obtained

through 1000 bootstrap replicates. We selected the OTUs through

RAxML-EPA [22] and chose those whose abundance was greater

than 10 reads.
A final ML tree using both the RefTree sequences and our

OTUs was inferred using RAxML [21], with the same con-

ditions as above. A Bayesian tree was built using MrBayes

v. 3.2.6 [23] using a GTR þ I þ G model of evolution. Pplacer

v. 1.1 [24] was used to perform a phylogenetic placement of

the OTUs into the RefTree. Novelty blast percentages were

obtained running a blastn 2.2.31 [25] against our curated

Acoelomorpha-GenBank database.

A more detailed description of Materials and Methods can be

found in the electronic supplementary material.
3. Results and conclusion
Here, we use a comprehensive metabarcoding approach with

18S rDNA to assess xenacoelomorph diversity in marine

environments. The aim was to search for potential novel

lineages that may be of interest to understand the ancestral

xenacoelomorph body plan, as well as to identify the

environments in which it would be possible to find them.

To this end, we analysed the most complete marine eukaryotic

metabarcoding datasets to date, comprising both benthic and

pelagic marine environments and from diverse global sampl-

ings. In particular, we analysed three major metabarcoding

projects (figure 1): (1) BioMarks, with benthic and pelagic

samples from European coastal areas (biomarks.eu), (2) Tara

Oceans, with pelagic samplings from all over the world

(oceans.taraexpeditions.org) and (3) a deep-sea project (here-

after DeepSea), with benthic samples from great depths

(more than 3000 m) in both North Pacific and North Atlantic

Oceans [26].

We found a total of 101 Xenacoelomorpha environmental

OTUs (figure 1 and Material and Methods; see electronic
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Figure 2. Molecular novelty in Acoelomorpha. (a) Blast identity of 101 acoelomorph OTUs against the Acoelomorpha 18S GenBank database in known well-
described families [27]. Note the high percentage of richness with low sequence similarity to Acoela. (b) Maximum-likelihood tree inferred from 101 Acoelomorpha
OTUs and RefTree GenBank sequences (see Materials and Methods). Nodal support indicates 1000 ML bootstrap replicates and posterior probabilities. Coloured OTUs
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pointing out to the phylogenetic placements. LWR (likelihood weight ratio) of each placement is displayed near each node.
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supplementary material, S1 and S2 for raw data). Of

those, 97 OTUs corresponded to Acoela and four to

Nemertodermatida. We did not recover any Xenoturbella
OTUs. Interestingly, a high percentage (74%) of those

sequences show a low blast identity (less than 90%) against

the Acoelomorpha 18S rDNA data present in NCBI

(figure 2a). This indicates that most of the sequences we

recovered are molecularly quite different to the acoelomorphs

sequenced so far, even though extensive sampling efforts

have been undertaken for acoelomorphs in the last decade

[10–12,27].

In order to relate the Acoelomorpha novelty with their

phylogeny, we performed a phylogenetic placement of all

our OTUs against our Acoelomorpha reference tree using ppla-

cer (see Material and Methods). The more internally an OTU is

located by pplacer in the tree, the more molecularly different

this OTU is compared with the known reference database.
Interestingly, more than half of the acoelomorph OTUs (68%)

appeared phylogenetically located in internal rather than

external nodes of the Acoelomorpha tree (figure 2c). Therefore,

our data indicate that the genetic diversity of Acoelomorpha is

much broader than previously thought.

To identify the exact phylogenetic position of our OTUs,

we performed ML and Bayesian inference phylogenetic

trees (figure 2b; electronic supplementary material, figure

S1). Our trees confirmed that some of the new molecular

diversity was found in pivotal positions as sister group to

major clades. Two OTUs were especially noteworthy, because

they probably represent completely new lineages. This is the

case of the OTU_DS_13115-11580 (which we name as ‘deep

sea Acoela clade 2’), which appears as the sister group of

the Crucimusculata group [27]. Even more important is the

finding of a new clade (‘deep-sea Acoela clade 1’, from

OTU_DS_4335-14605) that represents, with high statistical
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support, the sister group to the rest of Acoela. This novel

acoel clade branches earlier than Diopisthoporidae, an acoel

family thought to be the earliest off-shoot and suggested to

possess many ancestral characters [27]. Interestingly, both

OTUs representing novel clades were found in very deep

environments, where the physico-chemical conditions differ

from those of shallow coastal areas. While deep sea Acoela

2 was found in fine mud at 4878 m depth in the North Atlan-

tic Ocean, deep sea Acoela clade 1 was found at a depth of

3678 m in the North Pacific Ocean, around 170 km offshore

from Monterey Bay, California. This finding suggests that

deep benthos is an ideal habitat in which to search for new

acoelomorph taxa that may provide important information

about the full genomic and morphological diversity of this

group. It is perhaps not surprising, then, that the most

recently described Xenoturbella species were also identified

in that habitat [7].

Having identified the most appropriate habitats for

sampling of key acoel lineages, we then analysed the full

diversity of our OTUs among all samples. These data

revealed interesting biogeographic patterns in acoels. For

example, some acoel OTUs appear to be cosmopolitan and

very abundant in pelagic environments. This is surprising

given that only a few acoel species had been described as

planktonic [19]. These species have ecological capabilities

that distinguish them from sedimentary acoels, such as

strong endosymbiont relationships with algae and mixo-

trophy strategies [19] that could help them to cope with the

oligotrophic condition in open marine waters. Thus, our

high-throughput analysis indicates that there is a greater

complexity in the ecology and lifestyle of acoels than pre-

viously suspected (see electronic supplementary material
for an extended discussion of the differences between Nemer-

todermatida and Acoela diversity).

Overall, our data reveal substantial hidden molecular

diversity in Acoelomorpha, especially within acoels, than

shown in previous morphological studies. In particular,

we show that plankton harbours a huge diversity of

unsampled acoels, although within known families, while

deep-sea sediments have the potential to uncover key novel

taxa, including the here reported putative sister group to

the rest of acoels. As Hejnol & Pang [8] pointed out, ‘strategic

sampling is essential for understanding the evolution of

major traits’. We believe that our data could help to design

future projects with the specific goal of finding new morpho-

species from phylogenetically relevant lineages in which the

study of anatomical, morphological and molecular evolution

could be carried out.
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