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The emergence of zoonotic strains of avian influenza (AI) that cause high rates of mor-
tality in people has caused significant global concern, with a looming threat that one 
of these strains may develop sustained human-to-human transmission and cause a 
pandemic outbreak. Most notable of these viral strains are the H5N1 highly pathogenic 
AI and the H7N9 low pathogenicity AI viruses, both of which have mortality rates above 
30%. Understanding of their mechanisms of infection and pathobiology is key to our 
preparation for these and future viral strains of high consequence. AI viruses typically 
circulate in wild bird populations, commonly infecting waterfowl and also regularly enter-
ing commercial poultry flocks. Live poultry markets provide an ideal environment for the 
spread AI and potentially the selection of mutants with a greater propensity for infecting 
humans because of the potential for spill over from birds to humans. Pathology from 
these AI virus infections is associated with a dysregulated immune response, which 
is characterized by systemic spread of the virus, lymphopenia, and hypercytokinemia.  
It has been well documented that host/pathogen interactions, particularly molecules of 
the immune system, play a significant role in both disease susceptibility as well as disease 
outcome. Here, we review the immune/virus interactions in both avian and mammalian 
species, and provide an overview or our understanding of how immune dysregulation  
is driven. Understanding these susceptibility factors is critical for the development of  
new vaccines and therapeutics to combat the next pandemic influenza.

Keywords: avian influenza virus, zoonosis, H7N9, H5N1, highly pathogenic avian influenza virus

eMeRGeNCe OF AviAN iNFLUeNZA (Ai) viRUS iNFeCTiON 
iN HUMANS

Influenza A viruses have consistently posed a major threat to human health, both through seasonal 
infections and pandemic outbreaks (1). AI viruses have contributed significantly to this, and in recent 
years, highly pathogenic AI (HPAI) viruses have emerged as a major zoonotic threat. AI viruses 
naturally circulate in wild bird populations, including but not limited to, ducks and waterfowl, and 
can spill over to poultry birds such as chickens. Other than a few novel strains isolated in bats, all 
influenza A subtypes have been found in aquatic birds, which act as natural reservoirs for the viruses 
(2). These viruses typically replicate in the gastrointestinal and upper respiratory tract of both these 
natural hosts and chickens, and typically present as subclinical to mild disease (3, 4). Based on these 
clinical signs in chickens, these influenza viruses are classified as “low pathogenicity AI” (LPAI) 
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infections (5). Although many AI viruses circulate without caus-
ing serious disease, other viral subtypes can lead to more severe 
outbreaks within birds. Birds infected with these subtypes have 
more severe pathogenesis and rapid disease progression, often as 
the result of dissemination of the virus into tissues peripheral to 
the gastrointestinal and respiratory tracts. This type of infection 
in chickens defines the subtypes as HPAI (5). Highlighting the 
importance of HPAI viruses, recent outbreaks of HPAI H5N6 
in China and the Philippines have caused approximately 37,000 
bird deaths and 400,000 more culled at an economic cost of 
nearly $USD40 million (6, 7), and novel strains of H7 viruses 
such as H7N4 continue to cause sporadic outbreaks (8). While 
such outbreaks represent a significant economic burden to the 
poultry industry, of greater concern is the potential for HPAI 
viruses to cross the species barrier into mammals, especially 
humans.

Despite there being a broad range of AI subtypes, fortunately, 
only a very select subset of these have been shown to infect 
humans with highly pathogenic consequences (9). The first 
known HPAI infections in humans were highlighted by the 
outbreak of H5N1 avian-derived influenza in Hong Kong in 
1997, leading to 6 deaths from 18 confirmed cases (10). Since 
then, sporadic outbreaks of H5N1 have had highly pathogenic 
consequences in humans, resulting in over 450 deaths from 
approximately 900 cases (11–13). The emergence of the avian-
derived H7N9 strain infecting humans was first described in 
March 2013 in China’s Yangtze River Delta, which has since 
caused 613 deaths out of 1,566 human cases throughout most 
of China as of January 2018 (14). This viral subtype is of a 
particular concern, as unlike H5N1, which is highly pathogenic 
in chickens and humans, H7N9 typically presents as an LPAI 
in chickens, but causes a high mortality rate in humans (40%), 
similar to that seen for H5N1 infections. H7N9 is one of several 
LPAI viruses in the H7 family capable of human infections, with 
viral transmission usually only acquired through close contact 
with host species (15–17). However, for reasons that are still 
unclear, H7N9 has greater transmissibility and more severe 
disease outcomes in humans than any other H7 viruses (18, 19). 
Thus, differences in clinical presentation across species, coupled 
with the potential of viruses such as H7N9 to cause a pandemic 
outbreak via evidence of human-to-human transmission (20), 
makes understanding the mechanisms by which these viruses 
cross the species barrier and become highly pathogenic in 
humans a critical area of investigation. Here, we discuss recent 
findings relating viral fitness to host susceptibility factors to 
understand how HPAI phenotypes are developed. We also 
outline how clinical manifestations following infection with 
LPAI or HPAI strains across different species provide further 
insights into the mechanisms underlying disease severity and 
susceptibility.

CLiNiCAL MANiFeSTATiONS OF DiSeASe 
iN DiFFeReNT SPeCieS

Human cases of AI infection have become increasingly common 
since outbreaks of H5N1 in the late 1990s and accentuated by 

a dramatic increase in H7N9 infections during the recent “fifth 
wave” of epidemic infections in China (21–23). These viruses 
were commonly contracted by people in regular close contact 
with live poultry markets (24, 25), where outbreaks of AI viruses 
in chickens can be common yet go largely unnoticed, especially 
in the case of H7N9 infections. Despite the vast diversity of AI 
viruses, predominantly only viruses from three hemagglutinin 
(HA) subtypes have been recorded to naturally infect humans: 
H5Nx viruses, most notably H5N1; H7Nx viruses such as H7N9; 
and H9Nx viruses, commonly H9N2. H9Nx strains present as 
LPAI infections in birds and have less severe symptoms in human 
hosts compared to H5 and H7 strains (26–29). Despite this, as 
H9N2 viruses are regularly found co-circulating with H5N1 
and H7N9 with assortment frequently occurring between these 
viruses in poultry there is a real possibility of a novel HPAI strain 
emerging from these subtypes (30, 31). While there have been 
isolated cases of human infections with other subtypes, such 
as H10 (32), and H6 viruses which have been discussed as a 
potential precursor to H5N1 with pandemic potential (33–38), 
H5/H7/H9-subtypes of AI remain of greatest concern for human 
infections and potential pandemics. Thus, understanding the 
clinical manifestations of these viruses in avian hosts is needed 
for our understanding of why these viruses are considered such 
a threat.

In the case of LPAI, infections tend to localize in the mucosal 
surfaces of the gastrointestinal tract of infected birds and 
although often asymptomatic, chickens may present with mild 
clinical signs following infection. These include excess mucus 
and congested tracheae, watery droppings, and mild respiratory 
inflammation, with rarely any other signs of respiratory disease 
associated with influenza infections (3, 26, 39, 40). Highest viral 
titers typically occur 2–3 days after infection with limited gross 
lesions evident, allowing the virus to replicate and be excreted 
into the environment with little to no effect on the host animal 
(41, 42). Interestingly, ducks can exhibit even more limited clini-
cal signs following LPAI infection than chickens (43). Thus, it is 
interesting to note that even in avian hosts, there is a range of 
clinical severity to LPAI viruses, with chickens showing more 
moderate/severe signs compared to waterfowl infected with LPAI.

In contrast to LPAI viruses, HPAI viruses have the ability to 
induce severe disease and cause devastating outbreaks with high 
mortality rates in poultry (44, 45). In chickens, H5N1 causes 
acute illness with high levels of viral shedding and clinical signs 
such as dehydration, nasal discharge, and lesions in many tissue 
types (46–48). While LPAI infections tend to remain within the 
fecal–oral tract of infected birds, HPAI infections are often iden-
tified by virus spreading systemically to multiple tissues (49). 
Suzuki and colleagues (50) described the pathology of H5N1 
infections in chickens, finding that clinical signs progressed from 
milder signs such as feather ruffling and depression behavior, 
to the more severe outcomes of hemorrhaging and edema in 
multiple tissues. These birds also showed severe respiratory 
distress not seen in LPAI infections (50). By contrast, ducks can 
present with a wider range of symptoms following infection with 
HPAI H5N1, with experimentally infected ducks having clinical 
signs as mild as depressive behavior without any other complica-
tions (51). Ducks may also show severe signs such as those seen 
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in chickens, with common outcomes including neurological 
spread and hemorrhaging in the body extremities. In addition, 
Yamamoto and colleagues have also found that domestic ducks, 
unlike chickens, show corneal opacity following H5N1 infection 
and less severe hemorrhaging compared to chickens (52, 53). 
Likewise, wild ducks have been shown to exhibit less severe  
signs following H5N1 infection compared to other gallinaceous 
birds including domestic ducks, despite showing high levels of 
viral shedding consistent with an HPAI infection, which may 
suggest their role as a key reservoir species (48).

Avian influenza viruses also have the ability to infect pigs, 
which are housed in close proximity to human populations. Pigs 
often act as a “mixing vessel” for influenza viruses, which are 
able to reassort and thus infect humans (54, 55). While this is 
particularly the case for low pathogenicity viruses, there has been 
little evidence to suggest that pigs can contract highly pathogenic 
strains such as H5N1 and H7N9 to any great level, with H5N1 
strains isolated from pigs in China found to be attenuated from 
the HPAI form (56). Although there have been no confirmed 
cases of H7N9 infection in pigs (57), H7N9 can replicate, cause 
pathology, and transmit among pigs during in  vivo studies at 
low levels (58–60), as well as replicate in swine respiratory tis-
sue in  vitro, reinforcing the idea that pigs could still act as an 
important reservoir species for mammalian-adapted H7N9 (61). 
Of particular concern, reports of H7N2 infection in pigs (62)  
suggest that as the frequency of H7Nx cases increases, the likeli-
hood of an H7N9 virus infecting pigs and potentially gaining 
stable mammalian transmissibility is a genuine possibility.

Studies in ferrets as a model for human infection have shown 
that mammalian-adapted AI viruses typically localize to the 
respiratory tract (63), however, these viruses have can have a 
limited ability to transmit via droplets (64–66). H5N1 viruses 
cause acute illness in the upper respiratory tract of ferrets with 
symptoms such as nasal discharge, high temperatures, and 
weight loss due to dehydration, and worsened pathogenesis, as 
highlighted by lung damage due to extensive infiltration of the 
lung tissue by inflammatory cells (18, 67, 68). H7N9 can also 
cause severe respiratory distress in this way, with lengthened 
time until viral clearance contributing to viral transmission and 
the substantial inflammation in the lungs of ferrets (69). Severe 
infections may cause complications such as viral pneumonia due 
to the breakdown of lung endothelial barriers, which contributes 
to this systemic spread and may lead to encephalitis or other 
neurological issues (18, 70). However, systemic spread to the 
central nervous system is more commonly associated with HPAI 
H5N1 than LPAI H7N9 (68).

Symptoms following human infection with AI are similar to 
those observed in the ferret model. Less severe cases present as 
more typical influenza infections, with symptoms such as fever 
and coughing among those commonly associated with influenza-
related illness (16, 71). However, these viruses can cause severe 
respiratory illness following infection in the lungs, which may 
manifest as atypical viral pneumonia and acute respiratory 
distress syndrome, and often patients who have contracted these 
infections die from respiratory failure (72, 73). Furthermore, 
much like in birds, dissemination of the virus away from the site 
of infection leads to other complications such as organ failure, 

encephalitis, and internal bleeding due to tissue destruction 
(10, 71, 74), all of which contribute to the lethal nature of these 
viruses. A summary of the varying degrees of clinical manifesta-
tions between the different species is depicted in Figure 1. These 
trends, including the ability for an LPAI AI viruses such as H7N9 
to cause severe fatal disease in humans, is therefore of great 
importance to understand the pathology driving the variable 
signs and symptoms of these infections across species to best 
combat future infections.

PATHOGeNeSiS OF HPAi iNFeCTiONS

Several factors appear to contribute to the worsened pathology 
observed in HPAI infections when compared with LPAI infec-
tions. One hallmark of HPAI pathogenesis is a rapid and robust 
cytokine response, often referred to as a “cytokine storm” or 
hypercytokinemia. This build-up of cytokines causes an inflam-
matory environment at the site of infection, leading to immune 
cell infiltration. In addition to the hypercytokinemia, there 
is a well-established loss of leukocytes, leading to the severe 
pathogenesis seen in these infections (75). Recently, the main 
factors associated with pathology were further described by 
Kuchipudi and colleagues (76). Following infection with H5N1 
in vitro, chicken lung cells had increased expression of specific 
pro-inflammatory cytokines, particularly interleukins (IL)-6 
and IL-8 when compared to cells infected with LPAI H2N3, 
suggesting that IL-6 and IL-8 may be key regulators leading 
to worsened pathology of HPAI compared to LPAI (76). IL-6 
and IL-8 were also found to be significantly upregulated in the 
lungs of H5N1 infected ferrets, as well as in peripheral tissues, 
including the spleen, heart, and liver (77). Interestingly, this 
study also found that IL-6 and IL-8 were downregulated in 
the nasal turbinates following infection with pandemic H1N1 
virus, which produced a less severe clinical infection compared 
to the H5N1 in ferrets (77). These findings were consistent with 
studies completed in rhesus macaques, which similarly showed 
upregulation of tumor necrosis factor α (TNFα), IL-6, and IL-8 
in response to experimentally induced H5N1 infection, along 
with an increase in the antiviral interferons (IFNs), findings 
which correlate to the severe fever symptoms observed in the 
macaques at the peak of the fever response at day six post-
infection (78). Moreover, infections with the recently emerged 
HPAI H5N6 in chickens, which caused human fatalities, was 
shown to have a very distinct immune response compared to 
other H5N6 strains by producing much higher levels of IL-6, 
IL-8, and other pro-inflammatory mediators such as TNFα 
compared to previously identified strains (79). While chickens 
and ferrets show similar pathogenesis, conversely, duck lung 
cells infected with the same viruses showed a decrease in IL-6 
expression compared to the LPAI viruses, while IL-8 remained 
unchanged. It suggests that IL-6 may play a pivotal role in the 
regulation of AI pathology in birds and, as previously dis-
cussed, ducks typically show lessened disease severity following 
H5N1 infection compared to chickens (Figure  1). Moreover 
in humans, H5N1 elicits a similarly robust cytokine response, 
with the upregulation of IL-6, IL-10, and TNFα in response to 
H5N1 (80).
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As the H7N9 virus is classified as an LPAI in chickens, it is 
interesting to note that a similar trend was observed when H7N9 
of human origin were shown to induce increased production of 
pro-inflammatory IL-6 and IL-8 cytokines when compared to 
H7N9 of chicken origin (81). In the same study, it was demon-
strated that IFNλ1 production was reduced for the human isolate, 
suggesting a possible modulation of the immune response.  
In addition, Wu and colleagues also found that H7N9 patients 
had higher levels of C-reactive protein expression in their plasma 
compared to H1N1 patients, and as C-reactive protein is associ-
ated with broader inflammatory responses, it suggests that this 
may be yet another factor alongside these regulatory cytokines 
contributing to disease severity (82). A similar pro-inflammatory 
response was observed when alveolar macrophages were infected 
with H7N9, however, when compared to H5N1, this cytokine 
response was demonstrated to be milder (83). Downregulation 
of these inflammatory responses to infection confers a level of 
immunity to these viruses in pigs, which hints at how pigs can 
act as mixing vessel species for AI without succumbing to severe 
disease. Human lung epithelial cells can express 100-fold higher 
levels of TNFα compared to pig lung epithelia, with suppressor of 
cytokine signaling 3 (SOCS3) identified as a key factor in reduc-
ing levels of TNFα in pig cells (84).

The drivers of cytokine production are resident and infiltrat-
ing immune cells, which release these cytokines in response 
to the infection to recruit other immune cells and hinder viral 
replication. This occurs following cellular activation and results 

in further activation of leukocytes recruited to the area in a 
positive feedback loop (85). As pro-inflammatory molecules 
are associated with apoptotic pathways in humans, increased 
cytokine production is likely to be a contributing factor in the 
loss of immune cells, or leukopenia, observed in severe cases of 
HPAI infection (55). These pro-inflammatory regulators lead to 
upregulation of the death signaling molecule Fas-ligand on the 
infected host cell to initiate the caspase-mediated Fas-associated 
pathway, in which Fas receptors on the immune cell (part of 
the TNF-receptor family) bind to Fas-ligand and subsequently 
recruit the Fas-associated death domain (FADD) molecule 
(86). FADD interacts with caspase-8, which initiates a signaling 
cascade within the immune cell, resulting in the destruction of 
cellular components and thus cell death, which may be causa-
tive of the pathology seen in influenza patients (87). Indeed, 
both H5N1 and H7N9 have been observed to cause leukopenia 
in hospitalized patients (88–90). According to Boonnak and 
colleagues, CD8+ T cells can be particularly affected by the Fas-
ligand mediated pathway, where Fas-ligand was upregulated on 
plasmocytoid dendritic cells during lethal H5N1 infection in 
mice, which then lead to apoptosis of influenza-specific CD8+ 
T cells in the lung draining lymph nodes (86). Furthermore, in 
hospitalized H7N9-infected patients during the emergence of 
H7N9 in 2013, the persistence of immune cell subsets within the 
blood contributed to disease severity and fatal outcomes, with 
the continuation of CD38+HLA-DR+ CD8+ T  cell responses 
shown to be predictive of fatal outcomes, possibly due to 
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longer-lasting inflammatory responses in the peripheral blood 
and lung (91). Loss of peripheral blood lymphocytes was also 
observed in human seasonal influenza A infections, with these 
cell subsets succumbing to apoptosis by the same apoptotic 
pathways described for AI viruses (92). In summary, LPAI 
versus HPAI viral strains differentially promote the induction of 
pro-inflammatory cytokines, which then alter disease outcomes 
in different species. The potential mechanisms by which certain 
HPAI AI viruses cause more severe disease will be further dis-
cussed in the following sections.

viRAL FiTNeSS ACROSS SPeCieS

In order for AI viruses to be capable of infecting multiple host 
species they require viral adaptations allowing replication in 
different host cells, which ultimately increase their genetic fit-
ness and create a sustainably replicating and transmitting virus 
(93). It is well established that for zoonotic transmission of AI 
viruses, the virus needs to present the appropriate HA binding 
specificity to allow viral fusion and entry. AI virus HA proteins 
typically have a binding preference for sialic acid residues with 
an α-2,3-Gal terminating sequence found on the surface of avian 
cells (Figure  1), resulting in restriction to avian cells (63, 94). 
Therefore, for AI viruses to gain entry into human cells display-
ing an α-2,6-Gal terminating sequence, modifications to the  
HA binding site may be required to allow this new interaction.

One of the commonly associated amino acid substitutions 
for LPAI strains converting from avian to mammalian receptor-
specificity is a HA Q226L substitution (58, 95–97). For example, 
LPAI H9N2 isolates from birds can adopt a Q226L substitution, 
which increases its mammalian receptor binding affinity and 
potentially infect mammalian hosts (98, 99). However, with 
regards to H7N9 human isolates, Belser and colleagues described 
the Q226 bearing Shanghai/1 and the L226 bearing Anhui/1 as 
binding to largely avian α-2,3-Gal receptor analogs and mixed 
α-2,3/α-2,6-Gal receptors, respectively (64). Despite these differ-
ences, infections with each isolate produced effective replication 
in the lower respiratory tract of ferrets, suggesting additional 
factors are involved in mammalian adaptation. Similarly, this 
Q226L mutation has not been commonly observed in the HA of 
H5N1 HPAI viruses (100, 101). However, alternative substitu-
tions, HA Q192H and HA I151T, can confer increased ability 
for replication in human hosts. Moreover, Herfst and colleagues 
demonstrated a closely related change to the HA of H5N1, HA 
Q222L, conferring more efficient replication and transmission 
in the ferret model (66). Additional to this HA mutation, an 
E627K change in the polymerase basic 2 (PB2) protein in H5N1 
HPAI was also shown to be critical for transmission in ferrets 
(64, 102–105).

In addition to HA-sialic acid binding, key to viral fitness is the 
presence of a multi-basic cleavage site (MBCS), which has been 
shown extensively with H5N1, that the presence of an MBCS 
often dictates the use of the term HPAI (106, 107). The presence 
of an MBCS in the HA of influenza A viruses allows HA cleav-
age by additional enzymes such as furin-like proteases, whereas 
without an MBCS, the virus relies on only trypsin-like proteases 
(108). This flexible range of enzyme activity results in the virus 

being able to infect a greater range of cells and can lead to sys-
temic infection (106, 107, 109). Though commonly asso ciated 
with H5N1, this motif is seen in other avian-infecting HPAI 
viruses such as H7N3, however, these strains are less frequently 
transmitted to humans (19, 110). Interestingly, LPAI can also 
acquire MBCS motifs, changing the pathogenicity of the virus 
from low to high, such as in the case of an H7N8 outbreak in 
Turkey in 2016, where an LPAI virus caused a severe outbreak 
in the poultry due to the spontaneous addition of an MBCS, 
leading to over 800 bird deaths (111). However, the addition 
of an MBCS does not guarantee an LPAI virus to increase its 
pathogenicity, as recombinant H5 and H7 viruses do not exhibit 
HPAI pathology in chickens specifically due to the addition of 
an MBCS (112), which suggests that these motifs are one of 
many factors contributing to HPAI pathogenesis. H7N9 has 
also been shown to be able to obtain an MBCS to become highly 
pathogenic in chickens (113). Imai and colleagues showed 
increased disease severity of an MBCS-containing H7N9 virus 
in the ferret model compared to an LPAI H7N9 virus (18). 
However, H7N9 will still cause severe disease without an MBCS 
in most human cases, highlighting how unique this virus is in 
the AI landscape for its ability to show HPAI-like symptoms 
in mammals, while maintaining low pathogenicity in birds. 
Similarly for H5Nx viruses, several additional changes in the 
H5 HA protein, such as an N158D mutation, also allow greater 
replication of the virus in ferrets without the need for an MBCS, 
which combined with reassortment with human-adapted H1N1 
gene segments shows the potential for these viruses to not only 
cross into humans but also cause severe, sustained human infec-
tion without systemic spread (114). This, coupled with H7N9’s 
ability to cause severe disease without the requirement of an 
MBCS, suggests that while the MBCS still acts as a key virulence 
factor for AI viruses, it is not a sole-determining factor for 
HPAI in humans.

A key interaction between host and viral proteins is the 
interplay between Mx GTPases and viral nucleoprotein (NP), 
which may be pivotal in determining viral fitness. Human MxA 
and murine Mx1 protein have been shown to confer antiviral 
protection against influenza A viruses by interfering with the 
ability of NP to localize to the nucleus, inhibiting the viral repli-
cation cycle (115). While many influenza viruses are susceptible 
to Mx restriction, changes in the NP have been shown to confer 
resistance to this form of protection, particularly in the case of 
AI viruses such as H5N1 which shows greater susceptibility to 
MxA inhibition than pandemic H1N1 (116, 117). Moreover, 
LPAI H7N9 viruses were similarly shown to be affected by Mx1 
in infected mice compared to H5N1 by Deeg and colleagues, 
who showed that these viruses required human adaptive motifs 
in their NPs to evade Mx restriction (118). Interestingly, avian 
species such as chickens have been found to have an Mx that does 
not display strong antiviral properties, suggestive of why these 
avian viruses do not commonly have NP capable of MxA eva-
sion (119, 120). Therefore, while these AI viruses often appear 
to cause worsened disease progression due to their differences 
to human-infecting strains, in the case of Mx restriction it is a 
lack of human adaptation that may provide a level of protection 
to mammalian hosts.
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Another key virulence factor elucidated in recent years is 
the ability of the non-structural protein 1 (NS1) to aid viral 
escape in the host immune system. In avian hosts, NS1 has been 
associated with worsened pathology through increases in iNOS 
and oxygen-reactive species for both LPAI H9N2 (121) and 
HPAI H5N1 (122). However, in contrast in mammals, the NS1 
protein has been more closely associated with inhibition of host 
IFN responses. Jia and colleagues (123) showed that the H5N1 
NS1 protein inhibits IFN production through interference with 
the JAK/STAT pathway. They found that expression of NS1 in 
HeLa cells prevented STAT phosphorylation and upregulated 
inhibitors of this pathway to prevent expression of IFNAR and 
SOCS3 proteins, which generally upregulate IFN expression 
(123). Furthermore, a naturally occurring deletion in the H5N1 
NS1 effector domain can attenuate the virulence of the virus in 
both chickens and mice, suggesting that this protein is critical in 
the ability of H5N1 to suppress host immune antiviral responses 
across hosts (124). The pathogenicity of H5N1 in mice is also 
affected by the NS1 protein, as a single mutation (P42S) con-
ferred greater pathogenicity to the virus by preventing nuclear 
factor-κB (NF-κB) and interferon-regulatory factor 3 (IRF3) 
signaling, and thus inhibiting IFN responses (125). Interestingly, 
in cats the NS1 protein can be associated with blocking NF-κB 
and IRF3 signaling in response to the emerging HPAI H5N6 
virus, with inhibition of the IFN-β promoter blunting the feline 
IFN response (126), suggesting that NS1 may have different 
ways of interacting with influenza hosts across species to pro-
duce similar immune suppression. On the other hand, Thube 
and colleagues investigated the IFN responses of HPAI H5N1 
compared to LPAI H11N1 and suggested that decreased IFN 
signaling occurred independently of NS1, suggesting other viral 
elements can also induce a reduced antiviral state in cells (127). 
It is worth noting that while the NS1 of LPAI H7N9 is inefficient 
at binding to CPSF30 (involved in pre-mRNA processing), a 
single I106M mutation restores CPSF30 binding to NS1 thereby 
blocking the expression of host antiviral genes. This renders the 
virus more virulent than other LPAI infections (128), which 
may explain why H7N9 causes more severe disease in humans 
compared to other LPAIs. These results also highlight inhibi-
tion of IFN-activation pathways as an important viral factor in 
preventing host immune responses to infection, allowing for 
more productive infection and potentially more severe clinical 
outcomes.

HOST SUSCePTiBiLiTY FACTORS

In addition to the ability of the virus to gain function through 
mutation, in recent years there has been an increasing focus on 
how host genetic factors can lead to changes in resistance or sus-
ceptibility to influenza A viruses. While many factors have been 
identified in preventing influenza A infection, a key which has 
come to light for AI host/pathogen interactions is the interferon-
induced transmembrane (IFITM) protein family, which unlike 
other factors such as MxA seems to be predominantly the host, 
rather than the virus, that seems to control whether the virus is 
able to replicate. IFITMs are family of transmembrane antiviral 
proteins that are stimulated by the presence of elevated IFN 

levels, giving another reason why so many AI viruses attempt 
to quash the IFN response (129, 130). The IFITM proteins can 
interfere with viral entry to the cytosol via cell membranes 
(131), with Brass and colleagues showing that overexpression 
of human IFITMs 1, 2, and 3 effectively blocked infection with 
several influenza A pseudoviruses (retroviruses expressing 
influenza surface proteins), including those enveloped with 
H5 and H7 proteins (132). Moreover, IFITM3 specifically 
localizes to the endosomes due to phosphorylation of the Y20 
tyrosine residue, enabling these proteins to intrinsically target 
pH-dependent viral pathways such as that seen with influenza 
A viruses (133).

The IFITM3 molecule can play a significant role in mice and 
human influenza infections. Mice inoculated with influenza anti-
gen showing higher IFITM3 expression in the lungs developed a 
more robust lung tissue-resident memory CD8+ T cell response 
as well as a longer duration of response even following reduction 
of IFN-α, suggestive of this molecule playing a role in not only 
innate immunity but also adaptive immunity as well (134). Of 
particular note, a single-nucleotide polymorphism (SNP) in the 
IFITM3 gene, rs12252-C, has been shown to strongly correlate to 
worsened disease progression, as this SNP leads to a truncated 
splice-variant that affects the protein’s ability to localize to the 
membrane (135, 136). IFITM3 protein dysfunction can be 
associated with severe hypercytokinemia and worsened disease 
progression in H7N9-infected hospitalized patients. In support, 
Zhang and colleagues showed that the rs12252-C mutation 
correlated to severe seasonal H1N1 influenza cases in Chinese 
populations where the mutation appeared in higher frequencies 
(136, 137). However, studies have shown that while this SNP 
does affect IFITM3′s ability to localize, restriction of the virus 
may continue with the variant protein or with a Y20A mutation 
to affect the localization of the full protein (138). Furthermore, 
a recent study by Makvandi-Nejad and colleagues found that 
primary cell lines homozygous for the rs12252-C SNP expressed 
the non-truncated mRNA transcript and thus expressed the 
wild-type IFITM3 protein at levels greater than 99% when 
compared to the truncated versions (139), which may provide 
insights into why the rs12252-C mutation appears not to act as a 
significant risk factor in Caucasian populations, but perhaps in 
the Chinese patients. Moreover, an additional SNP has recently 
been identified, rs34481144-A, which affects the promoter for the 
IFITM3 gene, resulting in lower IFITM3 expression compared 
to hosts without the mutation. Interestingly, both the rs12252-C 
and rs34481144-A mutation were found to be non-overlapping, 
as the risk allele for one was inherited with the protective allele of 
the other, suggesting a multifaceted IFITM response to influenza 
A viruses (140).

IFITM1 and IFITM3 distribution in mice has been investi-
gated in the context of H9N2 infection, with the distribution 
of these proteins correlating with increased restriction of the 
virus’ entry into host tissues, due to upregulation in the lungs 
and peripheral tissues of BALB/c mice following inoculation. 
Interestingly, when infected with a H9N2 strain with higher 
pathogenicity and ability for systemic spread due to a K627E 
mutation (rVK627E) in the viral PB2 protein, compared to the 
wild-type strain, IFITM3 was upregulated accordingly in the 
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FiGURe 2 | Age-related mortality trends highlight impact of host–pathogen 
relationships. Frequency of age groups of patients who succumb to different 
strains of influenza is graphed as a proportion of total fatalities for a given 
strain. When we assessed the age of patients who succumb to different 
strains of influenza, as a proportion of the total mortalities for a given strain, 
trends emerge as to the host susceptibilities. For seasonal influenza, older 
patients (>60 years old) were the most susceptible, however, for a variation 
on seasonal influenza, pdmH1N1 2009, the age of patients who succumbed 
was reduced and included significant mortalities between 20 and 59 years 
old. Interestingly, the highly pathogenic AI H5N1 was predominantly fatal in 
those under 40 years old, whereas H7N9, a low pathogenicity AI strain, 
followed a similar trend to seasonal influenza.
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brain of rVK627E-infected mice to combat this virus’ ability to 
cause viral encephalitis (141). IFITM3 responses to H5 and H7 
proteins have also been assessed in pigs and bats, with both these 
HA subtypes showing restricted entry due to the action of these 
IFITM3 proteins (142), suggestive of the broad action of IFITM 
molecules across species known to contract and potentially dis-
seminate AI viruses. That IFITMs restrict AI viruses in “mixing 
vessel” species (i.e., pigs and bats) suggests that these proteins 
may have a key role in preventing the spread of human-infecting 
AI viruses through these routes, as well as contributing to these 
species showing lessened pathology compared to other mam-
malian species.

The role of IFITMs against AI viruses in avian species has not 
been clearly defined, though a study by Smith and colleagues 
has shown that chicken IFITM3 (which is “human IFITM1-
like”) similarly restricts H5 and H7 expressing viruses (143). 
However, when chickens were infected with H5N1, expression 
of IFITM molecules was not highly upregulated compared to 
other human-infecting seasonal strains such as H1N1, with 
IFITMs showing the weakest inhibiting effect against H7N9 
(144). Hence, IFITM expression in chickens appears to be 
limited and does not vary greatly whether the virus is of low 
or high pathogenicity. Conversely, the IFITM expression profile 
observed in ducks is far more robust and variable between 
viral strains, whereby infection with LPAI H5N2 virus was 
reported to consistently cause a 3-fold increase in IFITM1, 2, 
and 3 expression levels in the lungs and ileum on day one post-
inoculation, while infection with the HPAI H5N1 virus caused 
up to a 93-fold increase in IFITM3 expression in the lungs in 
a similar time frame (145). Therefore, understanding the dif-
ferences in variable IFITM expression, and the reasons why 
chickens mount a lesser IFITM response to influenza viruses, 
may prove pivotal in understanding why some birds succumb 
to HPAI infection while others survive.

In addition to specific IFITM mutations, broad immunode-
ficiency can lead to worsened pathology and disease outcomes 
in humans and animals. For example, immunocompromised 
patients who contract LPAI viruses such as H9N2 suffer severe 
respiratory distress, and though many of these LPAI remain mild 
even in immunocompromised patients, H9N2 induces stronger 
cytokine responses than seasonal influenza viruses (146, 147). 
These trends are also observed in avian hosts, in which Nili and 
Asasi found that chickens co-infected with other pathogens 
such as M. gallisepticum showed worsened clinical signs such as 
severe necrotizing tracheitis, leading to a 19% mortality in the 
flock (148, 149). Therefore, it is apparent that both the host and 
pathogen can contribute to perturbed inflammation and severe 
disease outcomes. In addition, in humans, more severe AI sub-
types have been associated with mortalities in very distinct age 
demographics when compared to seasonal influenza (Figure 2), 
and often manifest in age groups not commonly associated 
with immunodeficiency. Fatal cases in children (0–9 years) and 
younger adults (10–19  years) were predominantly caused by 
HPAI H5N1 infection, with 80.3% of H5N1 fatal cases seen in 
people aged 35 or under (12). Interestingly, a similar trend was 
observed with the pandemic [pdmH1N1(2009)] strain, which 
led to increased infection in younger age groups compared to 

other seasonal strains circulating at the same time (150). An 
interesting observation from the 2009 pandemic, however, was 
that disease outcomes were more mild in newly weaned ferrets 
infected with pdmH1N1(2009) as well as in younger children, 
suggesting the immune response in younger individuals may 
have a protective response to this strain (151, 152). Conversely, 
seasonal strains of influenza disproportionately impact older 
ferrets infected, which display a greater degree of morbidity 
and reduced HA and T  cell responses (153). This is also true 
of human patients also whereby older patients (>60  years of 
age) are most susceptible to seasonal influenza strains (80% of 
mortality cases). With regards to H7N9 LPAI infections, the 
highest mortality was also skewed toward older people, which 
is likely due to the propensity for H7N9 cases to be found in 
live poultry farmers, typically older men (154, 155). This 
emphasizes the dynamic relationship between the pathogen and 
the human host, and how different strains of influenza viruses 
can lead to differential fatal outcomes across different ages, a 
concept further explored by Gostic and colleagues who suggest 
that pre-immunity to these viruses may confer differing levels of 
protection to AI based on whether they have been exposed to the 
viral HA class while still young (156).

While IFITM proteins aim to restrict viral entry, the inter-
action between influenza virus peptides and major histocom-
patibility complex (MHC) molecules is a key host–pathogen 
interaction affecting the outcome of disease following initial 
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infection. In humans, MHC molecules are encoded for by the 
human leukocyte antigen (HLA) system, with a vast array of 
alleles in the genes encoding for the molecules responsible for 
the recognition of antigenic peptides. As such, different HLA 
subtypes confer different levels of susceptibility to influenza A 
viruses, as not all HLA subtypes respond to influenza peptides in 
the same way. For example, human populations expressing HLA-
A*02:01 can elicit strong, cross-protective CD8+ T cell responses 
following presentation of the internally conserved M158–66 
epitope (157–160); this epitope is one of the most immunogenic 
influenza peptides observed in humans with HLA-A*02:01 
being the most common HLA alleles expressed worldwide (157). 
Moreover, individuals lacking common HLA alleles may be at 
greater risk of influenza A infections, such as those carrying the 
HLA-A*24:02 allele, associated with increased mortality in indi-
viduals infected with pandemic H1N1 virus (161). Indigenous 
populations in particular are susceptible to influenza A due to 
a lowered prevalence of protective HLA variants toward these 
viruses (160). Wang and colleagues suggest that for AI viruses 
such as H7N9, MHC-interactions with internally conserved 
epitopes from other influenza A strains, such as pandemic H1N1, 
may explain why some populations show greater immunity 
through cross-reactive CD8+ T cell responses than others (72). 
However, some H7N9 peptides may have cross-conservation 
with human host proteins that the immune system recognizes 
as “self,” leading to an attenuated immune response to the virus 
and thus worsened disease progression due to T cell-mediated 
tolerance (162).

Interestingly, chickens show a restricted repertoire of 
MHC alleles compared to other species, and these haplotypes 

themselves are poorly characterized. As such, a few studies 
have been conducted into characterizing T  cell epitopes in 
response to H5N1 infections, one such study predicting 25 
potential T cell epitopes in the NP of H5N1 in four haplotypes 
(163). More recently, experiments into epitopes of a specific 
haplotype, BF2*15, further characterized NP epitopes that may 
lead to protective immunity against H5N1 (164). This limited 
repertoire may explain why chickens show more severe clinical 
outcomes due to HPAI such as H5N1 compared to waterfowl, 
as ducks show extensive diversity in their MHC class I alleles 
which allows the immune system greater coverage for viral 
variation (165). A recent investigation into duck MHC class I 
molecules found that the duck Anpl-UAA*01 complex showed 
similar peptide binding properties to HLA-A*02:01 in humans 
and as such appears to cover a greater array of influenza A 
virus epitopes compared to similar chicken MHC molecules 
such as BF2*2101 (166). Furthermore, migratory shorebirds 
which act as reservoirs for AI viruses (in particular LPAI 
H9N2) show increased diversity in their MHC alleles, likely 
as a mechanism for protecting against foreign pathogens that 
may be encountered during migration. A study in red knots 
found high MHC diversity with 36 alleles detected across eight 
birds, which when correlated to their low prevalence of shed AI 
virus and high antibody titers to AI viruses, they could mount 
effective immune responses toward these viruses, possibly via 
cytotoxic T  lymphocyte responses recognizing novel peptide/
MHC complexes (167). Based on a culmination of human and 
animal evidence, the interactions between the various pathogen 
and host factors contributing to human influenza severity are 
summarized in Figure 3.

FiGURe 3 | Mechanisms leading to severe clinical outcomes involve both host and pathogen elements. A number of factors have been elucidated to contribute  
to the severity of influenza disease outcomes. This include viral fitness elements, such as the presence of a multi-basic cleavage site (MBCS), mutations to the 
polymerase basic 2 (PB2) genes, as well as the presentation of hemagglutinin (HA) protein capable of binding to human sialic acids. These viral fitness elements 
work in concert with host factors such as modified interferon-induced transmembrane (IFITM) proteins, with reduced ability to combat the virus and MHCI diversity 
which can or cannot present the antigen appropriately and efficiently to host T cells. Ultimately, these and other elements lead to changes in production of key 
cytokines as well as cellular activation that drives inflammation, cell death, and clinical manifestation of disease.
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CONCLUSiON

The emergence of AI viruses is of major concern to the avian and 
human population. The lack of pre-existing antibody immunity 
and their ability to cause severe disease through multiple host 
and viral mechanisms makes these viruses difficult to counter. 
Currently, these viruses are yet to effectively replicate and 
transmit between humans, however, experiments in ferrets 
show that only a few mutations are needed for H5N1 and H7N9 
viruses to quickly adapt and become a major pandemic threat 
(114, 168). Their ability to pass from birds to mammals com-
monly in contact with humans requires constant surveillance 
across all known bird reservoirs to limit the potential threat 
of an AI-derived pandemic. Characterization of the interac-
tions between AI viruses and their hosts and how they illicit 
different degrees of clinical manifestations across species is of 

utmost importance. Here, we extend our current knowledge of 
the “cytokine storm” model of AI pathogenesis and delve into 
more complex underlying viral and host genetic factors that 
may also contribute greatly to disease severity and susceptibility 
outcomes.
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