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Aldehyde Oxidase (AO) is an enzyme involved in the metabolism of aldehydes and N-containing heterocyclic
compounds. Many drug compounds contain heterocyclic moieties, and AOmetabolism has lead to failure of sev-
eral late-stage drug candidates. Therefore, it is important to take AO-mediated metabolism into account early in
the drug discovery process, and thus, to have fast and reliablemodels to predict the site ofmetabolism (SOM).We
have collected a dataset of 78 substrates of humanAOwith a total of 89 SOMs and347 non-SOMs and determined
atomic descriptors for each compound. The descriptors comprise NMR shielding and ESP charges from density
functional theory (DFT), NMR chemical shift fromChemBioDraw, andGasteiger charges fromRDKit. Additionally,
atomic accessibility was considered using 2D-SASA and relative span descriptors from SMARTCyp. Finally, stabil-
ity of the product, the metabolite, was determined with DFT and also used as a descriptor. All descriptors have
AUC larger than 0.75. In particular, descriptors related to the chemical shielding and chemical shift (AUC =
0.96) and ESP charges (AUC=0.96) proved to be good descriptors.We recommend two simplemethods to iden-
tify the SOM for a givenmolecule: 1) use ChemBioDraw to calculate the chemical shift or 2) calculate ESP charges
or chemical shift using DFT. The first approach is fast but somewhat difficult to automate, while the second is
more time-consuming, but can easily be automated. The two methods predict correctly 93% and 91%, respec-
tively, of the 89 experimentally observed SOMs.

© 2019 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and Structural
Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/

by-nc-nd/4.0/).
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1. Introduction

Aldehyde Oxidase (AO) enzymes metabolize different chemical
functionalities, including aldehydes although this chemical fragment is
not often present in drug compounds (cf. Fig. 1A) [1]. Aldehydes can
be a result of a biotransformation by other drug metabolizing enzymes,
such as the cytochrome P450s (CYPs), and can be subsequently oxidized
to a carboxylic acid by AO. However, AO plays an important role in the
oxidation of aromatic azaheterocyclic groups to oxoheterocycles, e.g.
of pyridines, diazines, purines or benzimidazoles (cf. Fig. 1B). AO can
also reduce N- and S-oxides and hydrolyze amides [2,3]. Since chemical
groups like these ones are often present in drug-like compounds, e.g.
because azaheterocyclic rings have been introduced to avoid CYP me-
tabolism, there has lately been a lot of attention to AO metabolism
since a number of compounds have been discontinued in clinical trials
due to too rapid clearance or toxicity [1,4–7]. Thus, it is highly relevant
and Pharmacology, University
ark.

. on behalf of Research Network of Co
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to be able to predict AO metabolism. One approach, frequently used by
many predictive methods (SMARTCyp [8,9], StarDrop [10], FAME2
[11]), is to predict where a compound potentially will be metabolized
if being a substrate (site-of-metabolism, SOM) and, thereby, indirectly
also identify the possible metabolite(s).

Recently, three human AO structures have been determined (PDB
entries 5EPG [12], 4UHW and 4UHX [13]), which allow a more detailed
analysis of the molecular processes associated with AO metabolism.
The AO enzyme is a 150 kDa protein comprising three domains, a
small N-terminal domain containing two [2Fe-2S] centers, a reductive
flavin domain and an oxidative molybdenum domain (cf. Fig. 2). The
[2Fe-2S] centers are probably responsible for the electron flow from
the flavin to molybdenum sites [12–14]. Oxidation of N-containing het-
erocycles takes place at the molybdenum site, where the molybdenum
cofactor (MoCo), activated by a glutamate residue (Glu1270), acts as a
nucleophile attacking an electron-deficient carbon atom next to the
hetero-atom (cf. Fig. 2) [15–17]. The nucleophilic attack is rate-limiting
and has the lowest activation barrier on electron deficient C atoms [17].

Only a few methods for prediction of AO metabolism have been re-
ported. Torres et al. used density functional theory (DFT) methods to
mputational and Structural Biotechnology. This is an open access article under the CC BY-
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Fig. 1. The mechanism of AOmediated metabolism involves a nucleophilic attack on the electron-deficient carbon atom. Potential SOMs are marked by a dot. A: Alcaftadine is one of the
few registered drug compounds being an aldehyde; B: Examples on heterocyclic rings systems present in drug compounds. See Fig. S1 in SupplementaryMaterial for the structures of the
actual drug compounds; C: DACA, an example on an unusual AO substrate.
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calculate the tetrahedral intermediate for the reaction leading to poten-
tial metabolites, and in more than 90% of the cases, the intermediate
with the lowest energy relative to the initial substrate corresponded
to the experimentally found metabolite [19]. Jones et al. calculated the
relative heats of formation by DFT methods for eight AO substrates
and in combination with a steric model for the accessibility to the AO
Fig. 2.A: Ribbon representation of the humanAO crystal structure (PDF entry 4UHX [18]). The th
Asp538, green) and MoCo domain (Asp555-Val1336, blue). The linker regions between the dom
and FAD) and phthalazine (Pht) and distances between them. B: Close-up showing the contacts
coding and domain definitions adapted from Coelho et al. [13,18].
active site, they were able to develop a model for in vivo as well as
in vitro clearance [16]. Xu et al. used the energy and accessibility de-
scriptors by Jones et al. to develop a decision threemodel for identifying
and ranking possible SOMs in compounds with multiple SOMs [20].
Montefiori et al. studied different reactionmechanisms for AOmediated
metabolism of a series of 4-quinazolinones by DFT methods, and
reee domains are: N terminal or 2Fe-2S domain (Ala4-Lys166, red), FAD domain (Gln231-
ains are colored grey. B: Colour-coded stick models of prostetic groups (MoCo, FeSI, FeSII
betweenMoCo, Glu1270 and phthalazine. D and E: 2D structures ofMoCo and FAD. Colour



Table 1
AUC values for the different descriptors for our dataset comprising 78 substrates (see Fig. S1 in Supplementary Material for 2D structures of the compounds).

AUC (all values)i AUC (top n)j

Chemical shieldinga 0.96 0.88
Chemical shiftb 0.96 0.90
ESP chargesc 0.96 0.88
Gasteiger chargesd 0.91 0.67
Product stabilitye 0.79 0.59
Relative spanf 0.62 0.22
2D-SASAg 0.80 0.72
C-next-to-Nh 0.93 0.99

a Determined at the B3LYP/6-31G* level.
b Determined with ChemBioDraw.
c Determined at the B3LYP/6-31G* level.
d Determined with RDKit.
e Determined at the B3LYP/6-31G* level.
f From SMARTCyp.
g From SMARTCyp.
h Aromatic C atom next to N atom.
i AUC (all values) evaluates the descriptor with both the SOMs and the non SOMs, thus giving us 89 (SOMs) and 347 (non SOMs) data points to evaluate the performance.
j AUC (top n) evaluates the SOMs (thus 89 SOMs) where n refers to the number of SOMs in each molecule (n = 1 or 2).

Fig. 3. Box plot of calculated descriptors. All descriptors have been normalized between 0 and 1 for easier comparison using the following formula: Normalized value= (Value - min of all
the descriptors)/(max of all descriptors - min of all descriptors). The binary C-next-to-N descriptor has been omitted from the figure. The absolute values are found in Table S1 in
Supplementary Material.

Table 2
Classification of SOMs. The total number of SOMs and non-SOMs is 89 and 347, respectively.

TPa FPb Sensc Specd Prece Accf

Chemical shielding 79 9 0.90 0.97 0.90 0.96
Chemical shift 80 8 0.91 0.98 0.91 0.96
ESP charges 78 10 0.89 0.97 0.89 0.95
Gasteiger charges 60 28 0.68 0.92 0.68 0.87
Product stability 55 33 0.63 0.91 0.63 0.85
Relative span 20 68 0.23 0.81 0.23 0.69
2D-SASA 64 24 0.73 0.93 0.73 0.89
C-next-to-N 87 47 0.99 0.88 0.65 0.90

a True positives (TP: atoms correctly classified as SOMs).
b False positives (FP: atoms wrongly classified as SOMs).
c Sensitivity (Sens): TP/(TP + FN).
d Specificity (Spec): TN/(TN + FP).
e Precision (Prec): TP/(TP + FP).
f Accuracy (Acc): (TP + TN)/(TP + FP + FN + TN).
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Fig. 4. ESP charges (A) and chemical shifts (B) for four representative molecules. The values for predicted primary SOMs are in bold, the experimentally observed primary and secondary
SOMs are shown by green and red dots, respectively.
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showed that the lowest activation energy in all cases corresponded to
the experimentally observed SOMs [17].

All these methods for prediction of SOM are based on DFT calcula-
tions and, accordingly, time-consuming for larger compounds and/or
series of compounds. Therefore, to avoid the time-consuming DFT cal-
culations to identify the transition states, it would be desirable to use
other descriptors as predictor for whether the reaction would occur
[2,19]. Montefiori et al. also showed that ESP charges correlate with
the computed activation energies which makes it an attractive descrip-
tor for the prediction of site of metabolism (SOM) [17]. Thus, it has been
our aim to develop faster methods for accurate AO SOM prediction, fast
enough to be useful in drug development projects in the pharmaceutical
industry.

In thiswork,we have developedmodels for prediction of theAOme-
diated SOMs in heterocyclic compounds containing the -CH=N-moiety
(cf. Fig. 1B) using electronic descriptors of substrate atoms.We used the
two DFT calculated descriptors fromMontefiori et al. with the best cor-
relation to the activation energies, i.e. the stability of the generated
product and the ESP charges [17]. In addition, we used NMR shielding
constants determined at the DFT level and chemical shifts from empiri-
cal models, since these also reflect the atomic electron density. To ad-
dress the accessibility, descriptors like those from SMARTCyp that are
based on 2D structures and thus fast to determine were used [9,21]. A
data set comprising 78 compounds with a total of 89 SOMs and 347
non-SOMs were collected to evaluate the performance of our models.

2. Results and Discussion

2.1. Atomic Descriptors

A set of atomic descriptors related to the charge distribution, stabil-
ity of the product, accessibility or whether an aromatic or sp2-
hybridized atom is next to an aromatic or sp2-hybridized N atom were
determined. For each descriptor, the area under the curve (AUC) has
been calculated in two different ways: 1) considering all the atoms of
the dataset, checking if both the SOMs and non-SOMs were correctly
predicted, or 2) per molecule, checking if at least one of the SOMs was
in the top n rank with n being equal to the number of SOMs in themol-
ecule. In the first case, the AUC values calculated considering all the
atoms are biased by the large number of non-SOMs relative to SOMs
(347 and 89, respectively) and may not be a relevant measure for the
ability to predict the SOMs. In the second case, a correct prediction re-
quires that the predicted SOM is identical to the experimentally ob-
served SOM if the molecule only has one experimentally observed
SOM, and is in the top two if the molecule has two experimentally ob-
served SOMs and so on. This way to determine the performance has



Fig. 5. ESP charges (A) and chemical shifts (B) of 6, 23, 30 and 31. Experimentally observed SOMs are marked by green dots, whereas SOMs not observed experimentally are marked by
black dots.
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previously been used by us [8,9] aswell as by other groups [10,11,22,23]
in evaluating and comparing methods for predicting cytochrome P450
mediated SOMs.

The descriptors with the best AUC are the NMR shielding and chem-
ical shift and the ESP charges (AUC=0.96, cf. Table 1), which can be re-
lated to the charge at the potential SOMs and thus, the reactivity of the
molecule towards AO. The atomic accessibility, on the other hand, is not
directly predictive for this set of compounds. The limited effect of
atomic accessibility on the prediction of the SOM may be related to
the fact that the substrates generally are small. For larger substrates,
these descriptors may be more important. The AUC for the top N posi-
tion in the molecule follows the same trend as the one for all the
atoms, with a few exceptions. The chemical shift calculated with
ChemBioDraw (AUC = 0.90) is slightly better than DFT calculated
chemical shielding and ESP charges (cf. Table 1). The ESP charges, how-
ever, are more predictive than the empirical Gasteiger charges. The
"C-next-to-N" rule-of-thumb with an aromatic C atom next to an N
atom in a heterocyclic ring has the best performance in the AUC calcu-
lated permolecule. This is due to the fact that this is a binary descriptor,
and as such the atom is either classified as a SOM or not and, accord-
ingly, there is no ranking of the atoms. This is also seen in Table 2
where the true positive rate (sensitivity) for C-next-to-N is higher
(0.99) than for the chemical shielding, shift and ESP charges (0.89–
0.91). However, the true negative rate (specificity) is lower considering
the aromatic C atoms next to N (0.88). It is also reflected in the accuracy
(0.90 for C-next-to-N compared to 0.95–0.96 for shielding, shift and ESP
charges) and particularly the low precision of 0.65 due to a large false
positive rate. Thus, although the correct SOM is almost always identified
considering the presence of an aromatic C atom next to an N atom, it is
difficult to choose the correct one if there aremore of the same type of C
atom. On the other hand, descriptors like chemical shielding; chemical
shift and ESP charges that showed only a slightly lower performance
in the AUC compared to the C-next-to-N rule-of-thumb are more pre-
dictive considering specificity, precision and accuracy.

In Fig. 3, it can be seen that the SOMs have large chemical shifts and
ESP charges and thus low chemical shielding. In addition, there is a clear
separation between these properties of the SOMs and non-SOMs with
only a few outliers. The SOMs are characterized by positive ESP charges
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with 50% of the data in the range of 0.27–0.47 (cf. Table S1). This agrees
well with the chemical shielding of the SOMs mostly having low values
in the range of 43–51, or high chemical shifts from 122 to 132
(Table S1). The accessibility descriptors have a less clear separation be-
tween the SOMs and non-SOMs as also indicated by the statistical data
in Tables 1 and 2. Nevertheless, there is a tendency that the SOMs are
more accessible than the non-SOMs.

2.2. Examples of AO SOMs

In Fig. 4,we report chemical shifts and ESP charges for four represen-
tative molecules to compare the two best methods. Considering either
chemical shifts or ESP charges, the most electrophilic carbon atoms in
these compounds are unambiguously identified as the carbon atoms
next to the nitrogen atoms and, thereby, as the potential SOMs for AO
mediated metabolism. Both methods predict the correct carbon atom
as the primary SOM for the majority of the 78 compounds (e.g. com-
pound 32 in Fig. 4). Several of the compounds contain two experimen-
tally observed SOMs, and we see a few examples where one or both
methods have difficulties identifying the correct relative ranking of
the primary and secondary SOMs, although both the primary and sec-
ondary SOMs are clearly distinguishable from the remaining C atoms
by both methods. For example, the ranking of the primary and second-
ary SOM is opposite for 6-mercaptopurine (45) and 6-deoxypenciclovir
(42); and for quinazoline (1) both methods predict the secondary SOM
as primary SOM (Fig. 4).

We also see a few examples where one or both of the methods pre-
dict the primary SOM to correspond to a site not observed experimen-
tally. For example, in compound 6 (cf. Fig. 5) chemical shifts correctly
predict SOM to be in the quinazoline moiety, whereas ESP charges pre-
dict the pyridine moiety to be the most reactive [24]. In compound 23
(cf. Fig. 5) the experimental SOM is in the phthalazine moiety, whereas
both chemical shifts and ESP charges indicate that the six-membered
ring is more prone to nucleophilic attack [24].

The reasons for the discrepancies between the experimentally
identified and predicted SOMs and between the two predictive
methods may have several reasons. We have generated one likely
3D conformation for each compound, but we have not performed a
conformational analysis of the compounds and, accordingly, confor-
mational effects may have an effect on the predicted values of the
chemical shifts and ESP charges. The potential SOMs in the molecules
are not equally accessible (cf. Table S2, Supplementary Material), but
we have not been able to establish a correlation between reactivity
and accessibility for the present dataset as we have previously done
for CYP mediated metabolism [25,26]. The effect of the protein, i.e.
the shape of the active site, has not been considered and the gener-
ated 3D structures may therefore not be identical to the bioactive con-
formations of the compounds. Coelho et al. noticed increased mobility
(altered orientations or poor electron density) of several hydrophobic
residues at the entrance to the active site when phtalazine binds to AO
and suggested that the binding process involves an induced-fit mech-
anism [13].

Finally, a few atypical AO substrates present in our dataset should
be mentioned. Lu29-297 (30), a CYP metabolite of alvameline, con-
taining a positively charged pyridinium ring, is further metabolized
by AO at the C atom next to the positive nitrogen atom and opposite
to the tetrazole substituent (cf. Fig. 5) [27]. This compound is the only
charged compound in our dataset and, accordingly, we do not have
enough basis to warrant whether charged compounds should be
treated independently or analogously to the neutral compounds, as
we have done in this study. DACA (31) (cf. Figs. 1C and 5) is another
example on an atypical AO substrate by being metabolized at C9 to
the 9(10H)-acridone metabolite [28]. We have previously by DFT cal-
culations shown that metabolism at C9 is associated with the lowest
transition state, although C9 is not placed next to a N atom [17]. It is
notable that considering the chemical shift values, C9 is correctly iden-
tified as the preferred SOM.

3. Conclusions

We have collected a set of AO substrates consisting of 78 substrates
with 89 SOMs and 347 non-SOMs. For this dataset, a set of atomic de-
scriptors related to the charge distribution or accessibility was deter-
mined. In particular, descriptors related to the chemical shift and
shielding (AUC = 0.96) and ESP charges (AUC = 0.96) prove to be
good descriptors. The rule-of-thumb of a C atom next to a N atom in a
heterocyclic ring is good at predicting SOMs (AUC = 0.93), but has a
large false positive rate. The stability of the products shows a weaker
performance (AUC=0.79). For this set of compounds, the atomic acces-
sibility descriptors do not yield high predictions rates, probably because
most of the compounds are relatively small. For larger compounds, it
could be important to include the accessibility, e.g. in case of sterically
hindered atoms. We propose two simple methods to identify the SOM
for a given compound: (1) Use ChemBioDraw to calculate the chemical
shift which is very fast and reliable for compounds with good parame-
ters, but somewhat difficult to automate. (2) Calculate the ESP charges
or NMR chemical shielding using a DFT program. This is more time-
consuming, but easier to automate and independent of whether empir-
ical parameters exist. ChemBioDraw-calculated chemical shifts and
DFT-calculated ESP charges predict correctly 83 (93%) and 81 (91%), re-
spectively, of the 89 experimentally observed SOMs.

4. Methods

A dataset comprising 78 substrates of human AO with experimen-
tally determined SOMs were collected from the literature. Only com-
pounds tested against human AO (hAO) were included (see Fig. S1 in
Supplementary Material and Montefiori.sdf for 2D and 3D structures,
respectively). The SOMs were taken from the literature and references
to the original papers can be found in the Supplementary Material
(Montifiori.csv). In total, the dataset contains 89 SOMs and 347 non-
SOMs where the potential SOMs are all the aromatic C atoms. Alde-
hydes, amides or N- and S-oxides are not included.

The KNIME Analytics Platform (version 2.12.2; www.knime.org)
[29] with the Schrodinger (www.schrodinger.com) and RDKit nodes
(Open-source cheminformatics, http://www.rdkit.org) was used to op-
timize structures, determine the atomic descriptors and structures of
the possible products.

The structure of substrates and possible products were prepared
with LigPrep [30,31] (Epik version 3.5014), followed by a MCMM con-
formational search with MacroModel using the OPLS3 force field
[32–35]. Each structure was subsequently optimized with Jaguar [36],
using the B3LYP/6-31G** basis set with the exception of bromine for
which we used LACVP. The DFT optimized structures were used to cal-
culate the atomic properties (chemical shielding, ESP charges). The en-
ergies of the substrates and products were extracted and used to
determine product stabilities. Gasteiger charges [37] were determined
using the RDKit node. The 2D-SASA and span2end values were deter-
minedwith SMARTCyp [8,9]. ChemBioDraw [38] was used to determine
the chemical shift for the carbon atoms in the compounds. Fig. S1 was
produced by the Mona program [39].
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