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Abstract

The treatment of many diseases such as cancer requires the use of drugs that can

cause severe side effects. Off-target toxicity can often be reduced simply by directing

the drugs specifically to sites of diseases. Amidst increasingly sophisticated methods

of targeted drug delivery, we observed that Nature has already evolved elegant

means of sending biological molecules to where they are needed. One such example

is corticosteroid binding globulin (CBG), the major carrier of the anti-inflammatory

hormone, cortisol. Targeted release of cortisol is triggered by cleavage of CBG’s

reactive centre loop by elastase, a protease released by neutrophils in inflamed

tissues. This work aimed to establish the feasibility of exploiting this mechanism to

carry therapeutic agents to defined locations. The reactive centre loop of CBG was

altered with site-directed mutagenesis to favour cleavage by other proteases, to alter

the sites at which it would release its cargo. Mutagenesis succeeded in making CBG

a substrate for either prostate specific antigen (PSA), a prostate-specific serine

protease, or thrombin, a key protease in the blood coagulation cascade. PSA is

conspicuously overproduced in prostatic hyperplasia and is, therefore, a good way of

targeting hyperplastic prostate tissues. Thrombin is released during clotting and

consequently is ideal for conferring specificity to thrombotic sites. Using

fluorescence-based titration assays, we also showed that CBG can be engineered to

bind a new compound, thyroxine-6-carboxyfluorescein, instead of its physiological

ligand, cortisol, thereby demonstrating that it is possible to tailor the hormone binding

site to deliver a therapeutic drug. In addition, we proved that the efficiency with which

CBG releases bound ligand can be increased by introducing some well-placed

mutations. This proof-of-concept study has raised the prospect of a novel means of

targeted drug delivery, using the serpin conformational change to combat the

problem of off-target effects in the treatment of diseases.
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Introduction

Since antiquity, Man has sought to use compounds extracted from plants to treat

diseases such as cancer, often with little success. It was not until the interbellum

years that the modern era of cancer chemotherapy really took hold, when toxic

chemicals were found to be effective against this hitherto incurable disease. Nearly

seventy years after the first real effective drug against cancer, nitrogen mustard

(Bis(2-choroethyl)methylamine hydrochloride), was first introduced into clinical

use [1], the vast majority of anti-cancer drugs are still highly toxic. These drugs

need to kill tumour cells using overwhelming cytotoxicity while remaining

innocuous to healthy tissue. Unfortunately, with little to differentiate between the

two, it has frequently been found that the benefits in terms of overall survival are

often marginal, while the risks of off-target toxicity, whether lethal or chronic, are

high [2]. As a result, chemotherapy often causes a plethora of side-effects ranging

from emesis, stomatitis and alopecia that reduce the patient’s quality of life, to

leukopenia, febrile neutropenia and sepsis that are potentially debilitating [3, 4].

To reduce the incidence of these off-target toxicities, chemotherapeutic agents

need to be targeted specifically to tumours. One of the earliest breakthroughs in

attaining site-specificity in cancer therapy was the formulation of a styrene-maleic

acid copolymer-conjugated neocarzinostatin (SMANCS), where the potent anti-

tumour agent, neocarzinostatin, was attached to a lipophilic polymer, allowing it

to penetrate more efficiently into solid tumours than intramuscular injection of

the non-derivatised drug [5–7]. However, SMANCS and other similar polymer

conjugates were found to be limited in their effectiveness in cases involving

hypovascular tumours such as those seen in prostatic and pancreatic cancers [8].

Since then, a new class of antibody-based anti-cancer drugs has emerged. Some of

these comprise antibodies conjugated to therapeutic drugs. The antibody

recognises certain antigens specific to the tumour tissue, thus selectively directing

the drug to the target. ‘Naked’ antibodies have also been used to target tumour

tissues directly for destruction by the body’s immune system. There are currently

three antibody-drug conjugates and 11 ‘naked’ monoclonal antibodies approved

by the Food and Drug Administration for the treatment of cancers [9, 10].

Another form of immunotherapy that has gained traction in recent years is

therapeutic vaccination. One such vaccine, Sipuleucel-T, has recently been

approved for use on prostate cancer. This involves extracting the patient’s

antigen-presenting cells and activating them in vitro with the tumour-associated

antigen, prostate acid phosphatase, before injecting them back into the patient to

prime a T cell response against the tumour [11, 12].

Despite numerous advances in the field, many of these new targeting methods

are still not sufficiently specific to prevent off-target effects. Lipophilic conjugates

were found to accumulate in neovasculature regardless of the tissue type [8], while

many of the antibody conjugates and antibodies developed for cancer therapy

target entire classes of proteins such as epithelial growth factor receptors (EGFRs)

and kinases, which are found in both tumour and healthy tissues. As a

consequence, some drugs such as cetuximab and gefitinib can cause serious side
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effects [4]. Therapeutic vaccines appear to be fairly specific, but as they need to be

tailored specifically for the individual patient, they are extremely costly, with a full

course of Sipuleucel-T treatment currently priced at $93,000 [13].

While ever more sophisticated means of delivering medicine to specific

locations in the body are being developed to overcome this problem of non-

specificity, we observed that Nature has already evolved elegant ways of sending

biological molecules to where they are needed. The hormone binding globulins,

corticosteroid binding globulin (CBG) and thyroxine binding globulin (TBG), are

examples of naturally occurring site-specific carriers. These hormone carriers

release their respective ligands, cortisol in the case of CBG and thyroxine in the

case of TBG, when their reactive centre loops are cleaved by elastase, a protease

released by neutrophils at sites of inflammation [14], taking advantage of the site

and temporal specificity dictated by neutrophil elastase secretion. Despite not

possessing any inhibitory activity, CBG and TBG belong to a superfamily of

proteins known as serine protease inhibitors (SERPINS) [15, 16]. Upon cleavage

of their reactive centre loops, both hormone binding globulins undergo the

canonical serpin conformational change that involves the incorporation of the

cleaved reactive centre loop into the central b-sheet A as a new b-strand. This

pronounced conformational change is the basis for the inhibitory mechanism of

inhibitory serpins [17], and in CBG and TBG gives rise to a change in ligand

binding affinity, allowing the release of hormones at inflammatory loci [18–20].

In this work, we used CBG as a case study. We report that we have successfully

proved the concept that hormone binding globulins can, in principle, be engineered

to carry a non-physiological ligand to defined locations in the body. By optimising

the various physical characteristics of the engineered protein in the future, it could

potentially be employed as a drug delivery agent in cancer chemotherapy.

Materials and Methods

Recombinant CBG

Wild type and engineered human CBG were expressed in the BL21star (DE3) strain

of Escherichia coli using the pSUMO3 expression system and purified from the

bacterial lysate using fast protein liquid chromatography, as previously described

[21]. Purified samples of the protein were stored as 1 mg/ml solutions in 10 mM

Tris-HCl, pH 7.4, 150 mM NaCl, 1 mM EDTA at 280 C̊ until they were used.

Fluorimetric determination of binding affinity

CBG is known to bind cortisol with a one-to-one stoichiometry [18, 19].

Therefore, the dissociation constant, which is a measure of binding affinity, is

given by the following equation:

Kd~ E½ �f L½ �f=½E:L� ð1Þ
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where [E]f is the concentration of free CBG, [L]f is the concentration of free

ligand, and [E?L] is the concentration of the CBG-ligand complex.

Fluorescence spectroscopy was used to study the CBG-ligand interactions.

Experiments were performed on an LS55 120V fluorescence spectrometer (Perkin

Elmer), and the data were read and recorded using their proprietary FL WinLab

software. For binding studies of CBG with cortisol, the excitation wavelength was

set at 280 nm and the emission was detected at 350 nm, with a 315 nm cut-off

filter used to prevent the excitation laser from leaching into the emission channel.

For the binding studies of engineered CBG with L-T4-thyroxine-6-carboxy-

fluorescein, the excitation wavelength was set at 495 nm and emission was

recorded at 520 nm whilst applying a 515 nm cut-off filter.

The cortisol stock solution was prepared by dissolving lyophilised cortisol

(Sigma Aldrich) in 80% ethanol to make a 500 mM solution, which was then

diluted with water to make solutions of 20, 40 and 80 mM, with water being used

as a negative control. Aliquots of the ligand solutions were then titrated into

800 ml of a 200 nM solution of CBG made by diluting the protein stock with a

buffer containing 10 mM Tris-HCl, pH 7.4, 150 mM NaCl, 1 mM EDTA, 0.1%

v/v PEG 8000, and the decrease in fluorescence due to quenching was measured.

L-T4-thyroxine-6-carboxyfluorescein was previously synthesised and purified as

a 1.09 mM solution with acetonitrile as its solvent [20]. This was diluted into a 5 nM

solution with a buffer containing 10 mM Tris-HCl, pH 7.4, 150 mM NaCl, 1 mM

EDTA, 0.1% v/v PEG 8000. Aliquots of the engineered CBG were titrated into

800 ml of this solution, and increments in fluorescence signal were monitored.

In both cases, the data were fitted using Prism 5 (GraphPad Software) to the

following equation to obtain the dissociation constant, Kd:

DF~DFM L½ �tz E½ �tzKd
� �

�
�

L½ �tz E½ �tzKd
� �2�4 L½ �t E½ �t
� �1=2

�
= 2 E½ �t
� � ð2Þ

where DF is the fluorescence change, DFM is the maximum change in fluorescence

signal, [L]t is the total concentration of ligand added and [E]t is the total protein

concentration.

Biolayer interferometry

Biolayer interferometry was carried out on a ForteBio Octet Red apparatus

(ForteBio, Menlo Park, California, USA) to determine binding affinity where

fluorescence quenching experiments would not work due to mutation of Trp 371,

which is the main source of intrinsic fluorescence in the binding pocket. The system

uses a change in interference pattern of reflected light to detect the change in optical

thickness of the sensor tip. Cortisol was immobilised on the biosensor tip surface by

forming an adduct of hydrocortisone 21-hemisuccinate and a pentylamine-biotin

linker through an amide bond, then allowing the biotin moiety on this cortisol

adduct to bind to the streptavidin-conjugated biosensor tip. The cortisol-
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conjugated sensors were immersed into wells of a shaking microtitre plate

containing solutions of CBG at 0, 200, 500, 1000, 2500, 5000 and 10000 nM

concentrations in a 10 mM Tris-HCl, pH 7.4, 150 mM NaCl, 1 mM EDTA,

0.1 mg/ml bovine serum albumin buffer, and analysed against an internal reference.

Protease cleavage assay

To determine if a particular target protease is able to cleave the reactive centre

loop of an engineered CBG variant, the protease was incubated with CBG at a

molar ratio of 1:100 at 37 C̊ for half an hour unless otherwise specified. Reactive

loop cleavage is marked by a characteristic 4 kDa change in molecular weight

following release of a peptide when the R-state CBG is unfolded, such as when it is

subjected to the denaturing conditions of an SDS-PAGE [14, 22]. We used this as

a convenient means by which to check the engineered protein’s protease

specificity and, as a corollary, its site specificity.

Crystallisation and data collection

The structure of CBG-S100C-V236C-T349R was determined experimentally by X-

ray crystallography. The protein was expressed and purified from E.coli. It was

then concentrated to 5 mg/ml in 10 mM Tris-HCl, pH 7.4, 150 mM NaCl, 1 mM

EDTA and used to set up sitting drops containing 2 ml protein and 2 ml reservoir

solution (12% PEG 3350, 50 mM MES, pH 5.3, 200 mM NaCl). Initial attempts

gave no crystals, but cross-seeding the drops with fragments of crystals of reactive

loop-cleaved chimeric CBG-AAT yielded crystal clusters after incubating for three

days at 20 C̊. Single CBG-S100C-V236C-T349R crystals were eventually obtained

by macroseeding sitting drops containing 2 ml protein and 2 ml reservoir solution

(18% PEG 3350, 50 mM MES, pH 5.3, 200 mM NaCl) with fragments of crystals

from the clusters. It is worth noting that the initial seed crystals were a different

crystal form from the resultant CBG-S100C-V236C-T349R crystals. The CBG-

AAT seed crystals had P1 crystallographic symmetry, while CBG-S100C-V236C-

T349R crystallised in space group P212121.

The crystals were soaked in a cryoprotectant (12% PEG 3350, 50 mM MES,

pH 5.3, 200 mM NaCl, 20% ethylene glycol) and then cryocooled in liquid

nitrogen. A 1.8 Å data set was collected at station I03 of the Diamond Light

Source. The data were processed with Mosflm [23] and scaled with Aimless [24].

The structure was then solved by molecular replacement with Phaser [25], using

the coordinates of cleaved CBG-AAT chimera (PDB 2VDY [19]) as the search

model. Prior to molecular replacement, the search model was first prepared using

Sculptor [26] to downweight unreliable and non-identical parts of the structure.

The atomic model was then rebuilt in Coot [27] and refined using Phenix. refine

[28]. One copy of the protein was found in the asymmetric unit, and no external

model restraints were used for refinement. The structure was refined with good

geometry and validated using MolProbity [29]. Final refinement statistics are

listed in Table 1. The atomic coordinates and structure factors have been
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deposited in the Protein Data Bank as entry 4C41. Diagrams of the models were

generated using the open source molecular graphics software, PyMol (The

PyMOL Molecular Graphics System, Version 1.3 Schrödinger LLC).

Results and Discussion

Altering site specificity

CBG is secreted in the ‘‘stressed’’ (S) conformation, in which the reactive centre

loop is intact. In the body, cleavage of the reactive centre loop by neutrophil

elastase causes it to undergo a conformational change to the ‘‘relaxed’’ (R)

Table 1. Crystallographic statistics.

PDB 4C41

(cleaved CBG Ser100Cys-Val236Cys)

Wavelength (Å) 0.9763

Resolution range (Å) 40.0–1.80 (1.864–1.80)*

Space group P212121

Unit cell a542.13 b573.39 c5126.69

Total reflections 249310 (16711)

Unique reflections 31823 (2165)

Multiplicity 7.9 (7.7)

Completeness (%) 86.0 (98.4)

Mean I/sigma(I) 8.4 (2.6)

Wilson B-factor (Å2) 16.3

R-merge 0.148 (0.810)

R-meas 0.160

CC1/2 0.995 (0.644)

CC* 0.999 (0.886)

R-work 0.176 (0.254)

R-free 0.206 (0.261)

Number of atoms 3115

– macromolecules 2820

– solvent 295

Protein residues 367

RMS bonds (Å) 0.003

RMS angles (#) 0.80

Ramachandran favoured (%) 98.9

Ramachandran outliers (%) 0.3

Clashscore 0.51

Average B-factor (Å2) 20.6

– macromolecules 19.3

– solvent 32.0

*high resolution shell in parentheses.

doi:10.1371/journal.pone.0113402.t001
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conformation, resulting in the release of its ligand, cortisol [14]. It is therefore

evident that when and where CBG acts in the body is controlled to a large extent

by the proteolytic cleavage of the protein’s reactive centre loop. Consequently, the

primary determinants of a hormone binding globulin’s site specificity are the

amino acid sequence of its reactive centre loop, which decides its target serine

protease, and the localisation of this protease.

The reactive centre loop of CBG is a 17 residue region linking s3A of b-sheet A

on its N-terminal end to s1C of b-sheet C on its C-terminal end [17, 30]. X-ray

structures of protease-serpin complexes [31, 32] show that there are extensive

interactions between the serpin’s reactive centre loop from residue P4’ to P4

(Schechter-Berger nomenclature [33]) and the binding pockets of the serine

protease, suggesting that one or more of these residues are important for

recognition by the protease.

Targeting sites of thrombosis.

Thrombin, also known as Factor IIa, is a key component of the blood coagulation

cascade. It is a serine protease, and its interaction with various substrates and

cofactors in the coagulation network is vital to the maintenance of haemostasis. In

the event of vascular injury, activation of the coagulation cascade causes the

zymogen, prothrombin, to be cleaved to produce enzymatically-active thrombin,

which then goes on to cleave fibrinogen to fibrin. Fibrin polymerises to form the

beginning of a haemostatic plug [34]. The activity of thrombin is typically

regulated via both the coagulation cascade and the action of antithrombin, a

serpin that functions as a thrombin-specific suicide inhibitor. Dysregulation of the

coagulation network, and consequently thrombin function, can result in a

number of pathologies ranging from coagulopathic bleeding on one extreme to

atherothrombotic disease on the other.

We have previously shown that by substituting the P15 to P19 amino acid

residues of wild type human CBG (GVDTAGSTGVTLNLTS) with those of the

Pittsburgh variant of a1-antitrypsin (GTEAAGAMFLEAIPRS), we could make

CBG susceptible to cleavage by thrombin [19]. This variant of a1-antitrypsin was

first discovered in 1983 in a patient who died from an episodic bleeding disorder

[35], and bore a methionine to arginine substitution in the P1 position of the

reactive centre loop. This mutation alone turned a1-antitrypsin into the

functional equivalent of antithrombin. Although exosites such as the heparin

binding site in antithrombin contribute to protease recognition, this result

suggested that the identity of the residue at the P1 position is the single most

important factor for conferring specificity in serpins, and that changing the P1

residue to arginine can be sufficient to make a serpin susceptible to proteolysis by

thrombin. Therefore, we made a single point mutation in wild type CBG,

mutating the threonine in the P1 position of the reactive centre loop to an

arginine by PCR-based site-directed mutagenesis. This CBG-T349R variant was

found to have the same susceptibility to cleavage by thrombin as the CBG-

antitrypsinPittsburgh chimera previously described (Figure 1). This confirms the

feasibility of retargeting hormone binding globulins to deliver small molecules to
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new locations in the body by altering only a few residues on the reactive centre

loop.

Targeting hyperplastic prostate tissue.

Having demonstrated that the site specificity of hormone binding globulins can be

altered with minor sequence changes, we went on to test an example with greater

immediate relevance to cancer chemotherapy. Prostatic hyperplasias, both benign

and malignant, are among the most common diseases in men, particularly in the

developed world. Indeed, it was found that benign prostatic hyperplasia affects

70% of men over the age of seventy, and is the leading cause of lower urinary tract

related morbidity [36–38]. Prostate cancer, a malignant form of prostatic

hyperplasia, is the leading cause of cancer death in men living in the developed

world. Although the etiological link between these two diseases is currently

unclear, there is definitely a statistical association in their occurrences;

importantly, they share common features, one of which is the overproduction of

prostate-specific antigen (PSA) [38].

PSA belongs to the kallikrein-related peptidase (KLK) subgroup of serine

proteases with chymotrypsin-like activity. PSA production typically increases with

the enlargement of the prostate gland, regardless of the malignancy of the

hyperplasia [39], making it one of the molecular markers used for the diagnosis of

prostate hyperplasia, and an attractive target protease for an engineered CBG

Figure 1. Thrombin specificity assay. Wild type and engineered CBG were incubated with thrombin. Only
CBG-antitrypsinPittsburgh and CBG-Thr349Arg were successfully cleaved by thrombin, while wild type CBG
remained unreactive. Lane 1: wild type CBG (negative control); Lane 2: wild type CBG + human neutrophil
elastase; Lane 3: wild type CBG + thrombin; Lane 4: CBG-antitrypsinPittsburgh (negative control); Lane 5: CBG-
antitrypsinPittsburgh + human neutrophil elastase; Lane 6: CBG-antitrypsinPittsburgh + thrombin; Lane 7: CBG-
Thr349Arg (negative control); Lane 8: CBG-Thr349Arg + human neutrophil elastase; Lane 9: CBG-Thr349Arg
+ thrombin; Lane 10: thrombin; Lane 11: human neutrophil elastase. Lanes 5 and 8 show that further
engineering would be required to remove elastase cleavage.

doi:10.1371/journal.pone.0113402.g001
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variant that is to deliver a therapeutic drug to hyperplastic prostate tissue. To

engineer CBG’s specificity, its reactive centre loop was mutated to mimic the

substrate for PSA.

PSA has previously been reported to exhibit preferential binding for certain

types of peptide sequences, and these small peptides typically contain a medium to

large hydrophobic residue at the P1 position, a leucine at P2, a medium sized

hydrophobic residue at P3, and a medium sized uncharged residue at P4 [40].

This corroborated an earlier report by Akiyama and coworkers, who used

modified lysozyme and insulin as substrates for PSA, and found that the fastest

rate of hydrolysis was obtained from the mutant bearing the SALLSSDI sequence

in the P4 to P49 position [41]. On the other hand, using a combination of phage

display and iterative optimisation, Coombs and colleagues found that the P4 to

P29 sequence of SSYYSG was the best substrate for PSA [42].

We mutated a segment of the wild type CBG’s reactive centre loop from

STGVTLNL to SALLSSDI and SSYYSGNL by site-directed mutagenesis, altering

the presumed elastase cleavage site [43], which is located at residues P6-P5 in the

canonical numbering for inhibitory serpins, to potential PSA cleavage sites on

CBG. Unlike the CBG-T349R mutant, for which the protease cleavage site of the

reactive centre loop was placed at the canonical P1 residue (in line with the crystal

structure of the similar CBG-antitrypsin chimera that was previously solved by

Figure 2. Prostate specific antigen (PSA) assay. Engineered CBG variants were incubated with PSA. In both gels, Lane1: uncleaved CBG; Lane 2:
2 hours incubation with PSA; Lane 3: 4 hours incubation with PSA; Lane 4: 8 hours incubation with PSA; Lane 5: 16 hours incubation with PSA; Lane 6:
24 hours incubation with PSA; Lane 7: 48 hours incubation with PSA; Lane 8: 72 hours incubation with PSA. (A) Of the two variants of PSA-sensitive CBG,
the one with the reactive centre loop sequence EEGVDTAGSSYYSGNLTSKPII is cleaved the more rapidly. (B) CBG-EEGVDTAGSALLSSDITSKPII.

doi:10.1371/journal.pone.0113402.g002
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our group [19]) we had no a priori knowledge of the effect of inserting a PSA-

specific sequence on the structure and biochemical behavior of CBG. The

predicted PSA cleavage sites were therefore chosen to align with the main elastase

cleavage site in wild type CBG, in order to keep the length of the reactive centre

loop the same as the wild type in both the cleaved and intact forms. We then

demonstrated that incubating the engineered CBG variants with PSA resulted in

the cleavage of their respective reactive centre loops as shown in Figure 2, with the

variant bearing the SSYYSGNL motif the better substrate for PSA. Inspection of

this region in the structure of cleaved CBG shows that the change of the residues

Figure 3. Ligand binding pocket of the hormone binding globulins. (A) The ligand binding pocket (solid
surface, PDB entry 2VDY [19]) is formed by Helix A (yellow), Helix D (blue), b-sheet B (red), the s2B/s3B loop
(orange) and the s4B/s5B loop (green). (B) R-state human CBG (PDB 2VDY [19], chain A) showing the
interactions of pocket residues with cortisol. (C) Corticosteroid binding globulin (PDB 2VDY, chain A), and (D)
Thyroxine binding globulin (PDB 2CEO [54], chain A). Electrostatic map: negative potential (red); positive
potential (blue), uncharged/hydrophobic (white). (C) and (D) (inset). Orientation represented in the
electrostatic maps, with the key secondary structural elements coloured as in (A).

doi:10.1371/journal.pone.0113402.g003
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GV in native CBG to LL or particularly YY in the two PSA substrate mutants is

likely to create steric strain on loop insertion. This would lead to a loss of stability

and may render the cleaved mutant proteins more susceptible to further

proteolysis, explaining the apparent reduction in total cleaved CBG (Figure 2).

As a control, we incubated wild type CBG with PSA for 72 hours and found no

evidence of reactive centre loop cleavage (data not shown). As a consequence of

the mutations, it is now possible for CBG to discharge its ligand where there are

high levels of PSA, such as in hyperplastic prostate glands. Nevertheless, the

current rate of reactive centre loop cleavage by PSA would need to be further

optimised to a timescale suitable for drug delivery, as substantial cleavage was only

seen after incubation for greater than 24 hours.

Altering ligand specificity

CBG is particularly promising in the creation of a prostatic hyperplasia specific

drug delivery system because of the properties of its ligand binding pocket. CBG’s

physiological ligands are steroid hormones, and it has a moderately high affinity

for progesterone [44]. Since the 1980s, the synthetic progestin, megestrol acetate,

has been used in the treatment of some forms of prostatic hyperplasia because it

lowers the levels of testosterone, luteinising hormone and follicle-stimulating

hormone, which are responsible for stimulating the unwanted proliferation of

tissue in the prostate gland [45–49]. It also functions as an androgen receptor

antagonist, starving prostate carcinomas of the testosterone and dihydrotestos-

terone required for their growth and maintenance [45, 48]. However, endocri-

nological treatment of prostate cancer is becoming less commonplace due to its

reportedly limited efficacy in many cases [50]. Currently, the most common

chemotherapeutic treatment for malignant metastatic prostate cancer is docetaxel,

a mitotic poison [51]. In the next part of this proof-of-concept experiment, we

sought to show that it is possible to alter the physicochemical characteristics of

CBG’s binding pocket sufficiently to bind a non-steroid compound.

Designing CBG to bind a thyroxine derivative.

CBG and its sister protein, TBG, have adapted to the function of hormone

transport by developing a deep hydrophobic cleft in the region bounded by helix

A, helix H, b-sheet B and the s2B/s3B and s4B/s5B loops, as shown in Figure 3A.

This cleft serves as the binding pocket for both physiological and non-

physiological ligands. As a carrier of glucocorticoid hormones, this pocket in CBG

is lined primarily with uncharged amino acid residues, which complement the

mainly hydrophobic surface of its steroid ligands. In fact, the main interaction

between cortisol and CBG is thought to be the p-p stacking between the indole side

chain of Trp 371 and the A, B and C cycloalkene rings of cortisol [18, 52]. A host of

other hydrophobic interactions between the pocket residues and cortisol help

contribute to the high affinity of binding, while other residues form a hydrogen

bond network contributing to the selectivity of CBG for biologically-active C-21
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steroids such as glucocorticoids [18, 19, 53]. These interactions are illustrated in

Figure 3B.

TBG, on the other hand, binds thyroxine, which is a more polar molecule than

cortisol. This is evident from the physical properties of the TBG binding pocket,

which is considerably more polar and positively charged than that of CBG, as seen

in Figures 3C and D. Arg 381 in TBG, like its analogous residue in CBG, Trp 371,

appears to play an instrumental role in the protein-ligand interface. The

positively-charged guanidium side chain of Arg 381 is believed to contribute to a

cation-p interaction with thyroxine and its fluorescent derivatives [20, 54]. In this

part of the study, we attempted to redesign the pocket of CBG to bind the

thyroxine derivative, L-thyroxine-6-carboxyfluorescein.

To establish the importance of Trp 371 in CBG’s interaction with cortisol, we

first mutated it to alanine. The resultant CBG-Trp371Ala protein had no

detectable affinity for cortisol when measured using the ForteBio Octet Red

biolayer interferometry system. This confirmed previous inferences from

biochemical [55] and structural [18, 19] studies about the crucial role of Trp 371

in the function of CBG. We then mutated Trp 371 to arginine, so that the binding

site of CBG now begins to resemble that of TBG. Again, using biolayer

interferometery, we found that CBG-Trp371Arg has no measurable affinity for

cortisol. However, unlike wild type CBG, which showed no affinity for L-

thyroxine-6-carboxyfluorescein, the CBG-Trp371Arg mutant was able to bind the

thyroxine derivative, albeit at a lower affinity than TBG (CBG-Trp371Arg: Kd at

25 C̊ 5840 nM, TBG: Kd at 25 C̊ 50.73 nM). This experiment has demonstrated

the principle that the binding pocket of CBG can be redesigned by means of

carefully chosen mutations to carry a non-physiological ligand. This same

principle can be applied in the future to design CBG to carry other therapeutic

compounds such as docetaxel to hyperplastic prostate tissue, or indeed any

number of combinations of drugs and targets in the body.

Increasing the amount of ligand released at the target

Next, we explored the fine-tuning of this drug-delivery vehicle to discharge a

greater fraction of the bound ligand at the target site. We previously reported that

recombinantly expressed wild type CBG undergoes a 2.6-fold decrease in affinity

for cortisol upon cleavage of its reactive centre loop [21]. However, unlike

cortisol, where a relatively small change in binding affinity to CBG is enough to

perturb an existing equilibrium to result in a physiologically relevant change in

free levels of the hormone, a much greater specificity of release is needed for

therapeutic agents used for chemotherapy of solid tumours. In order to deliver a

sufficiently high concentration of these drugs to the tumour by means of a protein

carrier-based deliver system, a large proportion of the drug bound to the carrier

needs to be released without affecting tissues outside the target.

For a protein carrier that binds the drug with a one-to-one stoichiometry,

equation (1) describes the binding equilibrium. It can be seen from this equation

that the concentration of free ligand is determined by the value of Kd, and to
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achieve the dual aims of releasing biologically active amounts of therapeutic drug

whilst avoiding off-target effects, the protein carrier would ideally bind its ligand

with very high affinity (small Kd) in the S-state, and experience a large decrease in

binding affinity (large Kd) upon reactive centre loop cleavage to release most of

the bound compound at the target site in the R-state.

Figure 4. Reactive centre loop P14 residue. The P14 residue in CBG (PDB entry 2VDY [19]), Val 336,
shown in yellow spheres, is believed to displace Tyr 235 (blue spheres) on the s2B/s3B loop when the
reactive centre loop is inserted into the central b-sheet A (red), leading to conformational changes in the
binding pocket (pale green). CBG’s interaction with cortisol is provided by a network of side chains (bright
green ball-and-stick representation), which can be perturbed by any slight movement in the pocket and its
surrounding regions.

doi:10.1371/journal.pone.0113402.g004

Table 2. Comparing the changes in cortisol binding affinity of CBG mutants.

CBG variant Conformation Kd (nM) Fold change in Kd

wild-type S (uncleaved) 279¡18

R (cleaved) 734¡48 2.6

P1-Arg + V336I S (uncleaved) 326¡46

R (cleaved) 3420¡440 10

P1-Arg + V336L S (uncleaved) 295¡44

R (cleaved) 2420¡200 8.2

P1-Arg + S100C-V236C S (uncleaved) 278¡64

R (cleaved) 1800¡49 6.5

P1-Arg + S100C-V236C-V336I S (uncleaved) 297¡40

R (cleaved) 2260¡320 7.6

P1-Arg + S100C-V236C-V336L S (uncleaved) 252¡17

R (cleaved) 1600¡320 6.4

Dissociation constants of various forms of CBG in the S- and R-states. Each pair of results for a given CBG
variant represents the Kd of the intact S-state and the reactive centre loop-cleaved R-state (larger Kd).

doi:10.1371/journal.pone.0113402.t002
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Replacing the P14 residue with a bulkier amino acid.

It has previously been reported for TBG that the P14 threonine on the reactive

centre loop is a key component of the mechanism by which thyroxine is reversibly

released by the S-state protein. The residue is believed to displace Tyr 241 on the

neighbouring b-sheet B when the reactive centre loop of intact TBG is reversibly

and partially inserted into b-sheet A, thus disrupting the hydrogen bond network

that stabilises the steroid binding pocket [54, 56]. The same is believed to happen

during the irreversible S-to-R conformational change, when the reactive centre

loop is cleaved and inserted, this time irreversibly, into b-sheet A to form a novel

fourth b-strand. Due to the structural homology of TBG and CBG, we inferred

that the P14 valine in CBG might play a similarly important role (Figure 4).

By mutating this residue to amino acids with slightly bulkier side chains and

similar chemical characteristics, we were able to amplify the effect of loop

insertion on the adjacent hormone binding pocket without making it so sterically

hindered as to prevent the process altogether. The two aliphatic natural amino

acids chosen were leucine and isoleucine, with the mutations being made on a

T349R background to allow cleavage by thrombin. These substitutions resulted in

greater disruption to the ligand binding pocket upon reactive centre loop cleavage

than valine in the wild type protein, and as a result, at physiological temperature,

the binding affinity of CBG-V336L-T349R decreased by 8.2 times, while that of

CBG-V336I-T349R decreased by 10 times following cleavage of its reactive centre

loop (Table 2).

Figure 5. CBG-S100C-V236C-T349R structure. (A) Under non-reducing conditions, residues 100 and 236
form a disulphide bridge. Ligand binding pocket elements are identified by the same colour scheme as
Figure 3. In this figure, cortisol from a previous structure (PDB 2VDY [19]) was superimposed on our
unliganded structure (PDB 4C41, this work) to highlight the position of the pocket. It is represented as a white
silhouette bound by broken lines. (B) When the disulphide bridge is formed, there is an obvious distortion of
the steroid binding pocket, as shown here by superimposing the R-state structures of CBG (pale blue,
transparent) and CBG-S100C-V236C-T349R (coloured as in A).

doi:10.1371/journal.pone.0113402.g005
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Covalently linking s2A/hD loop to binding pocket amplifies change in binding

affinity.

Based on our previous structures of CBG (PDB 2VDX, 2VDY [19]), we designed a

mutant form of CBG that directly couples changes in helix D to the steroid

binding pocket. Ser 100 on the s2A/hD loop and Val 236 on the s2B/3B loop of b-

sheet B were mutated to cysteines so that under non-reducing conditions, they

may be induced to form a disulphide bridge. This forms a direct covalent bond

between the s2A/hD loop at the top of helix D and b-sheet B, which along with

helices A and H make up the steroid binding pocket. We predicted that by

covalently linking the s2A/hD loop to the binding pocket, any effect caused by the

movement of the loop as a result of the S-to-R conformational change would be

amplified.

The disulphide mutations were made on the T349R background to allow

cleavage by thrombin. When binding assays were performed at 37 C̊ in the

presence of the reducing agent, TCEP, the change in binding affinity of CBG-

S100C-V236C-T349R after reactive loop cleavage was very similar to that of wild-

type CBG. However, in the absence of TCEP, cleavage of the reactive centre loop

resulted in a 6.5-fold decrease in binding affinity for cortisol, as shown in Table 2.

We went on to obtain the crystal structure of reactive centre loop-cleaved CBG-

S100C-V236C-T349R, which revealed that the binding pocket was indeed

perturbed by the presence of the disulphide bridge (Figure 5). Cleavage after

Arg349 was supported by clear density for this residue, located at the bottom of

sheet A after insertion of the RCL, and for Pro352, located more than 60Å away at

the other end of the molecule, though density for Ser350 and Lys351 could not be

interpreted unambiguously. The X-ray data also showed that the disulphide

linkage has an occupancy of only about half, which suggests either that the

disulphide bond is broken by radiation damage during data collection or, more

likely, that even under non-reducing conditons, only about half of a given

population of the CBG-S100C-V236C-T349R molecules have the desired

disulphide bond at a given time. This could explain the relatively small effect of

these mutations. Nonetheless, this amplified change in binding affinity is a

definite step towards the rational optimisation of ligand release by CBG.

Combining mutations at Ser100Cys, Val236Cys and P14 residue of reactive

centre loop.

Having observed the augmented changes in cortisol binding affinities upon S-to-R

conformational change either by covalently linking the s2A/hD loop with the

steroid binding pocket, or by substituting the P14 valine with a bulkier residue, we

tested if the effect of combining the two would be cumulative. It was found that

the change in binding affinity of CBG-S100C-V236C-V336L-T349R was, in fact,

diminished from the CBG-V336L-T349R mutant, and was only 6.4-fold.

Similarly, the CBG-S100C-V236C-V336I-T349R mutant proved to have a mere

7.6-fold decrease in cortisol binding affinity following reactive centre loop

cleavage (Table 2).
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Conclusions

In this study we have shown that, by means of targeted mutations, CBG can be

engineered to bind and release compounds other than its physiological ligands,

glucocorticoid hormones. In principle, this can be designed to occur at locations

other than its physiological target, inflamed tissues. We hope that by proving the

feasibility of this concept, the scope of future developments in targeted drug

delivery can be expanded to include similar carrier proteins. Mutations made at

and around the P1 residue of the reactive centre loop gave two CBG variants that

had altered protease specificities, becoming susceptible to cleavage by either

thrombin or prostate specific antigen. Since cleavage of the reactive centre loop

triggers ligand release, there is a direct correlation between the protease specificity

and CBG’s site of action, and by targeting these engineered mutants to proteases

that are localised to certain parts of the body, one can then direct the ligand to be

released at very defined loci. Therapeutically, such a strategy could allow a lower

total dose of the drug to be used while maintaining a higher local concentration of

the compound at the desired site than current methods employed in

chemotherapy. Moreover, since the drug is sequestered by the carrier protein until

it is released at the target tissue, the risk of off-target effects would be minimised.

We also showed that, by carrying out site-directed mutagenesis of selected

residues in the hormone binding pocket, CBG can be redesigned to carry a ligand

of our choosing. By changing a binding pocket tryptophan normally involved in

interaction with cortisol to an arginine, the ligand specificity of CBG was altered

such that it now binds a thyroxine adduct, L-thyroxine-6-carboxyfluorescein,

Figure 6. The conserved serpin fold. The canonical serpin fold comprises three b-sheets (yellow), eight to
nine a-helices (red) and the reactive centre loop (blue). The proposed sites of the new ligand binding pocket
are highlighted in blue (bounded by b-sheet A and helix D) and magenta (bounded by b-sheet A and helix F).
(A) The reactive centre loop intact S-state of a typical serpin. (B) The reactive centre loop cleaved R-state of a
serpin, showing the insertion of the loop into the middle of b-sheet A.

doi:10.1371/journal.pone.0113402.g006
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instead of cortisol. Using this same principle, one can potentially mutate the

pocket to suit the chemistry of a wider variety of ligands. There are various

computational tools to help in identification and redesign of residues involved in

ligand binding so as to alter the ligand specificity more dramatically. Among

them, the Rosetta protein modelling software suite has had some notable success

in recent years [57, 58].

To increase the efficiency of ligand carriage and release, as well as to ensure that

the amount of ligand released by the carrier whilst in circulation is negligible, the

change in the dissociation constant, Kd, upon reactive centre loop cleavage needs

to be amplified. By mutating the P14 residue of the reactive centre loop to leucine

and isoleucine, we have increased the change in binding affinity post-cleavage to

about eight to ten-fold from the 2.6-fold difference seen in the recombinant wild

type CBG. Covalently linking the s2A/hD loop to b-sheet B of the binding pocket

with a disulphide bridge also resulted in a greater (6.6 times) loss in binding

affinity, although the effects of the two alterations were not additive.

In the course of this project, we have come to appreciate that the release of

hormone from the hormone-binding globulins is more subtle and modulated

than was previously believed [21], and it has proven to be more difficult than

anticipated to enhance the effect of cleavage. Perhaps if the ligand binding pocket

were moved to a site where the conformation changes on cleavage are more

pronounced, such as the region bounded by b-sheet A and helix D, or the region

bounded by b-sheet A and helix F (Figure 6), the effects of S-to-R conformational

change would have a significantly larger effect. Engineering a binding pocket ab

initio, instead of making use of an existing site, would be a challenging task, but

significant advances have been made by the Baker group in the development of

Rosetta towards the computational design of proteins from scratch. In particular,

they have demonstrated the rational design of novel proteins with small molecule

binding sites in silico that have high affinities and specificities for their target

ligands/substrates [57, 59, 60]. It is therefore reasonable to expect that the same

technique can be used to build a high affinity binding site for a pre-specified

ligand into an existing protein.

One possible risk associated with using a modified form of an endogenous

protein as a drug carrier is the small but potentially dangerous possibility of

raising an immune response against the mutant protein, which could affect the

pharmacokinetics of the protein and/or result in hypersensitivity, as is observed in

a small number of lysosomal storage disease patients receiving enzyme

replacement therapy [61]. Just as worrying is the prospect of triggering an auto-

immune response against endogenous CBG. However, we expect that by using a

human protein as the starting scaffold, with only a small number of point

mutations, most of which are not solvent exposed, the danger of developing an

immune response against the drug carrier can be kept low. In the context of T

cell-mediated responses, epitopes are typically defined by nonameric peptides

[62], while B cell epitopes seem to involve about eight residues around an

‘‘epitope core’’ [63]. Moreover, seminal work on humanising mouse antibodies

has demonstrated that retaining the mouse variable region, which makes up about
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10% of an immunoglobulin, does not pose a problem with immunogenicity [64].

In general, it appears that it is often easier to destroy antigenicity than to create it,

as a single point mutation has been known to destroy an epitope and result in

immune evasion [65]. This combination of reasons suggests that in vivo

administration of engineered CBG would not necessarily give rise to an immune

response.

In summary, we have demonstrated in this study that by making targeted

mutations to various structural features of CBG, we can, in principle, engineer the

protein to carry a therapeutic drug and to release it upon cleavage of its reactive

centre loop by site-specific serine proteases. Future work will need to strive

towards optimising the efficiency of ligand release, and to test out other potential

payload and protease specificities if this drug delivery system were to be

successfully employed in vivo. Nonetheless, as a proof of principle, this study has

opened the prospect of yet another means of targeted drug delivery to combat the

persistent problem of off-target side effects in cancer chemotherapy.
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