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With increasing prevalence of diabetes and a progressively aging society, diabetic
retinopathy is emerging as one of the global leading causes of blindness. Recent
studies have shown that vascular endothelial growth factor (VEGF) plays a central role
in the pathogenesis of diabetic retinopathy and anti-VEGF agents have become the first-
line therapy for the vision-threatening disease. However, recent studies have also
demonstrated that diabetic retinopathy is a multifactorial disease and that VEGF-
independent mechanism(s) also underlie much of the pathological changes in diabetic
retinopathy. Acrolein is a highly reactive unsaturated aldehyde and is implicated in protein
dysfunction. As acrolein is common in air pollutants, previous studies have focused on it
as an exogenous causative factor, for instance, in the development of respiratory
diseases. However, it has been discovered that acrolein is also endogenously
produced and induces cell toxicity and oxidative stress in the body. In addition,
accumulating evidence suggests that acrolein and/or acrolein-conjugated proteins are
associated with the molecular mechanisms in diabetic retinopathy. This review
summarizes the pathological roles and mechanisms of endogenous acrolein production
in the pathogenesis of diabetic retinopathy.

Keywords: inflammation, oxidative stress, vascular adhesion protein-1, acrolein, diabetic retinopathy,
spermine oxidase
INTRODUCTION

The prevalence of diabetes is increasing worldwide (1) and the global prevalence has been estimated
at 10.2% (578 million) by 2030 and 10.9% (700 million) by 2045 (2). Diabetic retinopathy (DR) is a
retinal microvascular complication caused by diabetes with complex multifactorial pathogenesis.
Epidemiological studies have revealed that the prevalence and severity of DR increases with age and
duration of diabetes (3). For instance, 23% of patients with type II diabetes have non-proliferative
retinopathy after 11–13 years, 41% after 14–16 years, and 60% after 16 years (3). Hence, with
increasing diabetes prevalence and a progressively aging society, DR is emerging as one of the global
leading causes of blindness.

Early events in DR, such as thickening of the capillary basement membrane and pericyte loss,
both of which contribute to vascular instability in the diabetic retina, are well known. The changes in
retinal microvasculature are followed by capillary non-perfusion and ischemia-mediated pathology
org October 2020 | Volume 11 | Article 5895311
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such as pathologic neovascularization originating from retinal
vessels. The pathologic neovascularization due to retinal
ischemia causes the formation of fibrovascular tissues at the
vitreoretinal surface, which is a hallmark of proliferative diabetic
retinopathy (PDR), and leads to severe complications such as
vitreous hemorrhage and tractional retinal detachment. Furthermore,
retinal ischemia compromises the blood-retinal barrier (BRB) and
results in fluid accumulation in the center of the diabetic retina, i.e.,
diabetic macular edema (DME). During the past few decades
extensive efforts have been undertaken to develop therapeutic
strategies to control vascular complications in DR.

Recent advances in basic research have demonstrated that
vascular endothelial cell growth factor (VEGF) plays a major role
in the pathogenesis of DR (4, 5) and clinical application of anti-
VEGF agents have dramatically improved the therapeutic
outcomes of the vision-threatening disease. Nowadays, anti-
VEGF agents have become the standard first-line treatment for
DR, in contrast to the past where photocoagulation and vitreous
surgery for advanced DR were the only options.

However, accumulating evidence from clinical research has
highlighted a patient population with DME that is refractory to
anti-VEGF therapy (6). In fact, DME patients who suffer from
poor visual acuity caused by sustained exudative changes in the
macula despite frequent injections of anti-VEGF agents are often
encountered in the clinical setting. This indicates that DR is a
multifactorial disease and VEGF-independent mechanisms also
underlie many of the pathological changes.

Some of the reported pathological signs in DR include
chronic inflammation and oxidative stress (7). Macroscopic
signs of inflammation such as redness (Rubor), heat (Calor),
swelling (Tumor) and pain (Dolor), are not pathological features
in the diabetic retina and the classical definition of inflammation
is inadequate to describe the characteristics of DR. However, at a
microscopic level, inflammatory responses including vessel
dilatation, hemodynamic alteration, exudation and leukocyte
accumulation/migration are present in retinal and choroidal
tissues during development of DR (8). In addition, there is
growing scientific evidence that oxidative stress plays a crucial
role in the development of diabetic complications including
DR (9).

Therefore, elucidation of “VEGF-independent” pathophysiology
in DR is critical to fulfill an unmet medical need for patients with DR
refractory to anti-VEGF therapy. In this review, we provide our
perspective on the VEGF-independent mechanisms in the
pathogenesis of DR, with focus on the unsaturated aldehyde acrolein.
Frontiers in Immunology | www.frontiersin.org 2
WHAT IS ACROLEIN?

Acrolein is a highly reactive unsaturated aldehyde that causes
protein dysfunction by reacting preferentially with Cys, Lys and
His residues of peptide chains via Michael-type reaction (10, 11)
(Figure 1A). In acrolein-conjugated proteins, the Lys adduct is a
more stable product than the other adducts. One of the major
acrolein-Lys adducts, Nϵ-(3-formyl-3, 4-dehydropiperidino)
lysine adduct (FDP-Lys) (Figure 1B), is known as a reactive
intermediate that can covalently bind to thiols, including
glutathione (GSH), through the retained electrophilic carbonyl
moiety (10). Since the reaction of GSH with acrolein and/or
FDP-Lys depletes intracellular reserves of GSH, which is a major
antioxidant enzyme, acrolein increases oxidative stress by
limiting oxidative stress resistance in the body (12). Notably,
previous studies have implicated acrolein in a wide range of
vascular diseases such as brain infarction (13) and neurodegenerative
diseases such as Parkinson’s disease (14) and Alzheimer’s disease
(15). Since DR is a representative retinal disease with characteristics
of both vascular disease and neurodegenerative disease, in recent
years much attention has been paid to acrolein as a possible
participant in the pathogenesis of DR.
ENDOGENOUS ACROLEIN GENERATION

Since acrolein is common in air pollutants such as cigarette
smoke, vehicle exhaust and overheated cooking oil, acrolein was
previously focused on as an exogenous causative substance in the
research of respiratory diseases such as lung cancer (16).
However, recent studies including ours have revealed that
acrolein is also generated endogenously through peroxidation
of unsaturated fatty acids (17) and polyamine metabolism (18),
resulting in cell toxicity and oxidative stress. Among the
molecules related to endogenous acrolein generation, the
current review focuses on two major enzymes, both of which
are implicated in the development of DR.

Vascular Adhesion Protein-1 (VAP-1)
Vascular adhesion protein-1 (VAP-1) is a homodimeric
sialylated glycoprotein expressed in vascular endothelial cells
and involved in leukocyte transmigration (19–21). Previous
studies have elucidated that VAP-1 is crucial in the pathology
of systemic inflammatory diseases, including rheumatoid
arthritis (22, 23), inflammatory bowel diseases (24), myocardial
A B

FIGURE 1 | Structures of (A) acrolein and (B) one of the major acrolein-conjugated proteins, Nϵ-(3-formyl-3, 4-dehydropiperidino) lysine adduct (FDP-Lys).
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infarction (25), and diabetes (26). In ocular tissues, we reported
that VAP-1 is localized to endothelial cells of retinal and
choroidal vessels (27), and VAP-1 is involved in the molecular
mechanisms of acute ocular inflammation and inflammation-
associated ocular angiogenesis (28, 29). In addition, we also
showed that VAP-1 blockade significantly reduced the
transmigration and capillary entrapment of leukocytes in the
retina in a diabetic animal model (30). Taken together, our prior
research demonstrates that VAP-1 plays a role in the pathogenesis
of DR by mediating leukocyte recruitment as a leukocyte
adhesion molecule.

VAP-1 also exists as a soluble form (sVAP-1) in mammals
and is known to participate in theinitiation and development of
systemic disorders (31–33). In addition to its role as anadhesion
molecule, both membrane and soluble forms of VAP-1 function
as semicarbazide-sensitiveamine oxidase (SSAO), which oxidizes
aliphatic and aromatic primary monoamines and converts them
tothe corresponding aldehydes with the release of hydrogen
peroxide and ammonia (Figure 2) (34). Of note, oursubsequent
analyses revealed that high glucose, inflammatory cytokines such
as tumor necrosisfactor-a (TNF-a) and interleukin-1b (IL-1b)
and angiogenic factor VEGF facilitate proteolytic cleavage of the
membrane-bound VAP-1 from retinal capillary endothelial cells
mediated by matrix metalloproteinase (MMP)-2 and MMP-9 (35,
36), both of which are important in fibrovascular tissue formation
(Figure 3) (37). In addition, our in vitro study revealed that sVAP-
1 mediates acrolein production via spermine metabolism, a
polyamine in retinal endothelial cells (18). Polyamines are low
molecular weight polycations that have two or more primary
amine groups, and are known to play an important role in cell
proliferation and differentiation (38). In mammals, there are three
naturally occurring polyamines: putrescine, spermidine, and
spermine (39). In patients with PDR, spermine levels are
elevated 15-fold in the vitreous fluid compared to non-DR
patients (40), indicating that the vitreous cavity is a substrate-
enriched environment for sVAP-1. Indeed, sVAP-1 and FDP-Lys
are increased and are correlated in the vitreous fluid of patients
with PDR (18). Evidence suggests that acrolein is generated by
Frontiers in Immunology | www.frontiersin.org 3
intravitreal sVAP-1 released from retinal capillary endothelial
cells in the presence of participant molecules such as
inflammatory cytokines and proteinases in eyes with DR.

Spermine Oxidase
Spermine oxidase (SMOX) is a flavin adenine dinucleotide-
containing enzyme that catalyzes the oxidative degradation
of spermine to produce spermidine, hydrogen peroxides, and
3-aminopropanal (41) that is non-enzymatically converted to
acrolein (Figure 4) (42). SMOX is a highly inducible enzyme and
its expression is upregulated by inflammatory cytokines,
including TNF-a and IL-6 (43, 44), both of which are
increased in eyes with PDR. Recent studies have revealed that
FDP-Lys is accumulated in Müller glial cells of streptozotocin
(STZ)-induced diabetic rats (45) and in migrated glial cells in the
fibrovascular tissues obtained from patients with PDR (46).
Therefore, both observation in humans and experimental
evidence indicate that acrolein is generated and/or accumulates
in retinal glial cells under diabetic conditions. However, retinal
glial cells lack VAP-1 expression, and the exact mechanism of
acrolein generation in these cells was unclear. Recently, our
group discovered that SMOX mediates acrolein generation in
cultured retinal glial cells, and that hypoxia induces SMOX
production via HIF-1 binding to SMOX promoter (47). In
addition, the localization of SMOX was seen predominantly in
glial cells of fibrovascular tissues (47). In the advanced stage of
DR, obliteration of retinal microvasculature elicits a decrease in
tissue oxygen concentration (48, 49) and tissue hypoxia induces
extensive cellular responses, including neovascularization that
eventually results in proliferative changes at the vitreoretinal
surface in eyes with DR. Our in vitro study revealed that hypoxia
increases FDP-Lys and hydrogen peroxide levels in cultured
retinal glial cells, which were abrogated by the potent SMOX
inhibitor MDL72527 (47). Overall, the experimental evidence
indicates that SMOX produces acrolein through the enzymatic
conversion of spermine to spermidine in retinal glial cells under
hypoxic conditions and presumably exacerbates oxidative stress
in eyes with DR.
FIGURE 2 | Enzymatic oxidation of spermine mediated by vascular adhesion protein-1 (VAP-1) function as semicarbazide-sensitive amine oxidase (SSAO). VAP-1
converts spermine to acrolein and hydrogen peroxide, both of which increase oxidative stress in the body.
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ROLES OF ACROLEIN IN DR

So far, it has been demonstrated that acrolein plays a significant
role in the pathogenesis of systemic disorders, such as
neurodegenerative diseases (50), cardiovascular diseases (51),
and diabetes (52). With respect to diabetes, acrolein was
reportedly increased in the serum and urine of patients with
diabetes (52, 53). In the eye, previous studies demonstrated that
Frontiers in Immunology | www.frontiersin.org 4
FDP-Lys markedly increased in retinal glial cells of
experimental diabetic rodents (45, 54, 55). We also reported
that FDP-Lys was elevated in the vitreous fluid of patients with
PDR (18). In addition, we found that FDP-Lys largely
accumulated in glial cells (46) and endothelial cells (18) of
fibrovascular tissues obtained from patients with PDR.
Therefore, these data suggest that acrolein participates in the
development of DR.
FIGURE 3 | Sequential steps of release of the soluble form of VAP-1 from retinal capillary endothelial cells. (A) VAP-1 and other leukocyte adhesion molecules
facilitate leukocyte recruitment upon inflammation. (B) Recruited leukocytes secrete inflammatory cytokines such as tumor necrosis factor-a (TNF-a), interleukin-
1b(IL-1b) and vascular endothelial cell growth factor (VEGF). (C) MMP-2 and MMP-9 induced by the inflammatory cytokines proteolytically cleave the VAP-1 protein.
(D) Soluble form of VAP-1 was released from the surface of endothelial cells.
FIGURE 4 | A schematic of oxidative degradation of spermine by spermine oxidase (SMOX). SMOX catalyzes spermine and produces spermidine, hydrogen
peroxides, and 3-aminopropanal, which is non-enzymatically converted to acrolein.
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In the following section, we summarize the role of acrolein in
the pathogenesis of DR.

Inflammation
Recent studies have shown that chronic, low-grade inflammation
underlies much of the vascularcomplications of DR (56, 57).
Previously, it was demonstrated that acrolein activated the NF-
kBpathway and induced pro-inflammatory cytokines including
cyclooxygenase-2 (58). In addition, it was shown that acrolein
induced pulmonary inflammation anddeath of lung epithelial
cells via induction of NF-kB signaling in a mouse in vivo study
(59). Acrolein also induced TNF-a, IL-6, and IL-8 mRNA
expression through NF-kB activation in human umbilical vein
endothelial cells (HUVECs) (60).

In the retina, it was reported that acrolein induced
transforming growth factor beta-1(TGFb1), TGFb2, and VEGF
production in retinal pigment epithelium inhyperglycemic
conditions (61). In contrast, anacrolein-scavenging agent
significantly suppressed C-C motif chemokine ligand 2(Ccl2),
IL-1b, and intercellular adhesion molecule 1 (Icam1) mRNA
expression in the retina of diabetic rats (55). Accumulating
evidence clearly indicates the involvement of acrolein in the
inflammatory aspect of DR; however, further analysis is needed
for the association between acrolein and pro-inflammatory
cytokine production in DR.

Increase in Oxidative Stress
The role of oxidative stress in the pathogenesis of DR has been
extensively investigated in experimental and clinical studies. The
levels of various reactive oxygen species (ROS), including
superoxide (62) and hydrogen peroxide (63), have been shown
to be elevated in the retina of diabetic animals. Conversely, the
antioxidant defense systems in eyes of patients with DR have
Frontiers in Immunology | www.frontiersin.org 5
been shown to be functionally damaged (64). We previously
demonstrated that acrolein reduces the intracellular reserves
of GSH, leading to consequent increase in oxidative stress
and cell death in retinal microvascular endothelial cells and
glial cells (18, 65). Furthermore, the subsequent analysis
further revealed that spermine oxidation by VAP-1 or SMOX
results in acrolein generation and exacerbates oxidative stress
in the microenvironment by both limiting the anti-oxidant
defense system and enhancing ROS generation (18, 47). As
aforementioned, VAP-1 and FDP-Lys are increased and are
correlated in the vitreous fluid of patients with PDR (18).
VAP-1 and N epsilon-(hexanoyl)lysine (HEL), an oxidative
stress marker, are also correlated in the vitreous fluid from
PDR patients (35). These data indicate that increased acrolein
generated by VAP-1 and SMOX participates in the pathogenesis
of DR.

Glial Cell Activation
Glial cell activation is the initial response during the early stages
of DR (66, 67) and retinal glial cells are known to proliferate and
migrate into the vitreoretinal interface, which eventually leads to
fibrovascular tissue formation during PDR progression (68, 69).
Acrolein stimulated cell migration of Müller glial cells through
induction of C-X-C motif chemokine ligand 1 (CXCL1) protein
(65), a member of the C-X-C family of chemokines that
promotes neutrophil and tumor cell migration through binding
to the receptor C-X-C motif chemokine receptor 2 (CXCR2) (69,
70). It has been previously shown that the vitreous level of
CXCL1 was increased in eyes affected by PDR (71) and in the
retinal tissue of diabetic mice (72). In addition, we reported that
CXCL1 was localized in GFAP-positive cells of fibrovascular
tissues (65). Since FDP-Lys largely accumulates in the glial cells
of fibrovascular tissues (46), it suggests that CXCL1 stimulates
FIGURE 5 | A schematic summary illustrating the role of acrolein in diabetic retinopathy.
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retinal glial cells in an autocrine fashion through its receptor,
CXCR2, in response to acrolein under diabetic conditions (65).
Previously, it was reported that an acrolein-scavenging agent
could suppress glial fibrillary acidic protein (GFAP) expression, a
representative marker of glial cell activation, in Müller glial cells
of diabetic rats (55). Therefore, these data indicate that acrolein is
potentially one of the molecules triggering retinal glial cell
activation in diabetic eyes.

Neurodegeneration
The retinal tissue consists of vascular and neural components.
Whereas microvascular changes are integral to the formation
and devastating effects of DR, DR has been recently recognized as
a neuro-vascular disease. There is a growing body of evidence to
indicate that neural components are damaged in the early phase
of DR, even in the absence of vascular complications such as
retinal hemorrhage and microaneurysm formation (73, 74).
Basic research findings obtained from postmortem human
specimens (75) and diabetic animals showed that diabetes
causes cellular disturbance in neural cells, particularly in
retinal ganglion cells (RGC) (76).

As mentioned, SMOX produces acrolein through its
enzymatic activity. Liu et al. reported elevated levels of FDP-
Lys in the ganglion cell layer and inner nuclear layer of the retina
in a diabetic animal model (77). It was shown that SMOX
inhibitor MDL72527 reduced the upregulation of FDP-Lys,
retinal tissue thinning and RGC loss (77), suggesting that
acrolein is potentially involved in the neurodegeneration in
diabetic eyes.
THERAPEUTIC APPROACHES
TARGETING ACROLEIN

As described thus far, acrolein plays a significant role in DR and
may be an important target for the prevention and treatment of
DR. 2-Mercaptoethanesulfonate (MESNA) is a potent thiol based
scavenger of acrolein that has already been used clinically to prevent
urothelial toxicity by inactivating metabolites from antineoplastic
agents, such as ifosfamide or cyclophosphamide (78). It was also
reported that acrolein-scavenging agent 2-hydrazino-4,6-
Frontiers in Immunology | www.frontiersin.org 6
dimethylpyrimidine (2-HDP) reduced Müller cell gliosis and
retinal inflammatory marker expression in STZ-induced diabetic
rats (55). Alternatively, SMOX inhibitor MDL72527 treatment
improved electroretinogram response and reduced retinal
neurodegeneration in STZ-induced diabetic mice (77, 79).
Therefore, inhibitors of acrolein and SMOX are potential
therapeutic drugs for the treatment of DR.
CONCLUSIONS

Previous studies have shown that levels of inflammatory
cytokines and oxidative stress markers are elevated in the
specimens of patients with DR, indicating the roles of the
inflammatory process and oxidative stress in retinal
microvascular complications caused by diabetes.

The pathogenesis of DR is not entirely known. However,
based on the preceding discussion, growing evidence suggests a
pathological role for acrolein in the development of DR (Figure 5).
Our group and others have demonstrated that diabetic conditions,
which include high glucose, inflammation and hypoxia, enhance
acrolein production through VAP-1/SSAO and SMOX induction,
suggesting that acrolein contributes to the exacerbation of DR via
enhancement of inflammation, oxidative stress, glial activation,
and neurodegeneration.
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