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Abstract: Indigoids are natural pigments obtained from plants by ancient cultures. Romans used
them mainly as dyes, whereas Asian cultures applied these compounds as treatment agents for several
diseases. In the modern era, the chemical industry has made it possible to identify and develop
synthetic routes to obtain them from petroleum derivatives. However, these processes require high
temperatures and pressures and large amounts of solvents, acids, and alkali agents. Thus, enzyme
engineering and the development of bacteria as whole-cell biocatalysts emerges as a promising green
alternative to avoid the use of these hazardous materials and consequently prevent toxic waste
generation. In this research, we obtained two novel variants of phenylacetone monooxygenase
(PAMO) by iterative saturation mutagenesis. Heterologous expression of these two enzymes, called
PAMOHPCD and PAMOHPED, in E. coli was serendipitously found to produce indigoids. These
interesting results encourage us to characterize the thermal stability and enzyme kinetics of these
new variants and to evaluate indigo and indirubin production in a whole-cell system by HPLC.
The highest yields were obtained with PAMOHPCD supplemented with L-tryptophan, producing
~3000 mg/L indigo and ~130.0 mg/L indirubin. Additionally, both enzymes could oxidize and
produce several indigo derivatives from substituted indoles, with PAMOHPCD being able to produce
the well-known Tyrian purple. Our results indicate that the PAMO variants described herein have
potential application in the textile, pharmaceutics, and semiconductors industries, prompting the use
of environmentally friendly strategies to obtain a diverse variety of indigoids.

Keywords: Baeyer-Villiger monooxygenase; phenylacetone monooxygenase; indigo derivatives;
biocatalysis; eco-friendly dye; indole; L-tryptophan

1. Introduction

Indigoid pigments of natural origin have been used for more than 4000 years. In
Mediterranean cultures, their main use was in the textile field, and in Indo-Asian cultures,
their medicinal properties were exploited [1,2]. At that time, these pigments were initially
extracted from plants (Indigofera tinctoria, true indigo; Isatis tinctoria, woad) or animals
(Hexaplex trunculus, sea snail). It was not until the end of the 19th century when a rapid
expansion in knowledge was generated by the interest of the Asian market in this pigment.
Consequently, extraction from natural resources was no longer viable due to the high
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production costs and the inaccessibility to these starting materials in the required quantities.
Thus, the development of a chemical synthesis became necessary.

It was not until 1883 that BASF (Badische Anilin und SodaFabrik) determined the
chemical structure of indigo (Figure 1), enabling the chemical synthesis from fossil-based
starting material such as benzene and aniline. After that, in 1897, this company became
the major producer of indigo on an industrial level based on fossil feedstocks and agreed
to form a business with China, where jackets dyed with natural indigo were traditional
clothing items [3].
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By 2010, the worldwide production of indigo reached nearly 50,000 tons/year, and the
textile industry consumed 95% of the total production for dyeing jeans [4]. The remaining
5% was used as a precursor for dyes in the food and pharmaceutical industries (indigo
carmine, FD&C Blue No. 2), mainly as its sulfonic salt, indigo carmine (Figure 1). Addition-
ally, further research has emerged for its application in the development of eco-friendly
organic semiconductors [5,6], and has demonstrated its positive effect in traditional Chinese
medicine to treat psoriasis and other inflammatory diseases [7–10].

As an alternative to synthesis based on fossil resources, extensive research has explored
the biosynthesis of this pigment [11,12]. Chemical analysis of the biosynthetic routes
in woad enabled the identification of intermediates in its formation, such as indoxyl,
determining that the main substrate is tryptophan, due to its indole ring [13]. Indoles
are compounds containing a benzene ring fused to a five-membered nitrogen-containing
pyrrole ring. Once oxidized, indole becomes indoxyl, which in the presence of air oxygen,
spontaneously dimerizes into indigo [14]. Another product of tryptophan oxidation, isatin,
can also dimerize into another indigoid called indirubin (Figure 1) [15], which has shown
several pharmacological activities in traditional Chinese medicine as a treatment for skin
diseases (psoriasis, eczema) or systemic inflammatory diseases [9,16].

Some environmental bacteria naturally synthesize indigo from indole only in the
presence of aromatic compounds. For instance, Pseudomonas sp. HBO1 produced indigo at
a yield of 246 mg/L from indole, as it harbors a naphthalene dioxygenase [17]. Likewise,
Pseudomonas putida synthesized the blue dye by the action of a styrene monooxygenase
from indole and Pseudomonas sp. PI1 in the presence of phenol [18].

Due to the importance of indigoids for textile and pharmaceutical industries, and
looking for environmentally friendly manufacturing strategies, several research groups are
working on their production using biocatalytic processes, such as the use of recombinant
bacteria, especially in Escherichia coli, overexpressing enzymes to catalyze the synthesis of
these molecules [14,19–23].

In this work, we describe new variants of an enzyme of the Baeyer–Villiger Monooxy-
genase (BVMO) family [24], a phenylacetone monooxygenase (PAMO) [25] from the hyper-
thermophilic bacterium Thermobifida fusca, which serendipitously were found to produce
indigoids upon recombinant protein overexpression in E. coli. While the wild-type enzyme
does not accept indole as substrate, these PAMO variants, derived from previous protein
engineering works [26–29], not only produce indigo and indirubin, but also can synthesize
several indigoids from alkylated or halogenated indoles as substrate [20,22].
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Altogether, this research puts forward the use of BVMOs as greener biocatalytic alterna-
tives to synthesize indigoids, using renewable resources as a starting material and avoiding
the use of toxic and contaminant industrial reagents such as aniline or naphthalene.

2. Results
2.1. Thermostability of PAMO Variants

Two PAMO variants were developed as described in Section 4, and upon inducing
protein overexpression in E. coli TOP10 cells grown on Terrific Broth (TB) medium were
serendipitously found to produce a blue pigmentation (Figure S1), which was later con-
firmed to correspond to the acceptance of indole as substrate and its conversion into either
indigo or indirubin.

These two new variants are hereafter named PAMOHPCD and PAMOHPED due to their
substitutions in residues 441–444 (Figure 2). Substitutions Q93N, P94D, P440F, S441H,
A442P, and S444D are common for both, whereas L443 was substituted into cysteine (C)
and glutamate (E) for PAMOHPCD and PAMOHPED, respectively (Figure S2).
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variants of this enzyme harboring four equivalent substitutions out of the seven substitu-
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we first performed differential scanning calorimetry (DSC) to determine their melting 
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no significant changes in thermal stability in comparison to PAMOWT. 

The results demonstrate that the seven substitutions in these PAMO variants had no 
significant effect on the melting temperatures and, therefore, the thermal stability of the 
modified enzymes. In another study, the Tm for PAMOWT using a differential scanning 
fluorescence method was 60.5 °C [28], similar to the Tm determined for this enzyme using 
DSC in this work, corresponding to 60.3 °C. Moreover, the difference in Tm between 
PAMOWT and the PAMOHPCD and PAMOHPED variants was less than 1 °C (59.7 °C for 
PAMOHPCD and 59.5 °C for PAMOHPED) (Figure S4). However, both variants present a pre-

Figure 2. Location of the residue substitutions in the indigoid-producing PAMOHPCD and
PAMOHPED, mapped onto the structure of PAMOWT (PDB ID: 2YLR). The protein is presented
in cartoon representation and the cofactors NADP and FAD are presented in sticks. The residue
substitutions, which are in the vicinity of the cofactors within its active site, are shown as yellow
spheres. In yellow: substituted amino acids; FAD and NAPD in sticks; and protein loops in blue
and pink.

Once overexpressed in E. coli, His-tagged wild-type PAMO (PAMOWT), PAMOHPCD,
and PAMOHPED were purified by cell lysis, immobilized metal affinity chromatography
(IMAC), and clarified using a centrifugal concentrator of 50 kDa MWCO. Once purified, the
enzymes were loaded in an SDS-PAGE, confirming the success and apparent homogeneity
of the purification of all enzymes (Figure S3).

Given that PAMOWT is a thermophilic enzyme [25] and that other directed evolution
variants of this enzyme harboring four equivalent substitutions out of the seven substitu-
tions present in PAMOHPCD and PAMOHPED show small changes in thermostability [30],
we first performed differential scanning calorimetry (DSC) to determine their melting
temperature (Tm) and ascertained that the additional substitutions in these variants cause
no significant changes in thermal stability in comparison to PAMOWT.

The results demonstrate that the seven substitutions in these PAMO variants had no
significant effect on the melting temperatures and, therefore, the thermal stability of the
modified enzymes. In another study, the Tm for PAMOWT using a differential scanning
fluorescence method was 60.5 ◦C [28], similar to the Tm determined for this enzyme using
DSC in this work, corresponding to 60.3 ◦C. Moreover, the difference in Tm between
PAMOWT and the PAMOHPCD and PAMOHPED variants was less than 1 ◦C (59.7 ◦C for
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PAMOHPCD and 59.5 ◦C for PAMOHPED) (Figure S4). However, both variants present a
pre-transition process at 51–52 ◦C compared with the wild-type. This pre-transition state
has been reported for other enzyme variants and suggests that the additional mutations
in the PAMOHPCD and PAMOHPED could have a detrimental effect on the activity of these
enzymes at this temperature range [31].

2.2. Structural and Quantitative Analysis of Whole-Cell Biosynthesis of Indigoids

Several elements strongly suggested that the blue pigments observed in E. coli cell
cultures overexpressing PAMOHPCD and PAMOHPED corresponded to indigoids. First, the
pigments were produced in the absence of additional substrates, and the overexpression of
PAMOWT in E. coli did not result in pigmentation of the cell culture. Second, as E. coli natu-
rally converts tryptophan into indole due to the action of a tryptophanase (Figure 3) [32],
we also employed this amino acid as a biosynthesis precursor, which did not yield indigo
or indirubin. Third, it is important to emphasize that some flavin monooxygenase can
oxidize indole and enable the formation of indigo after non-enzymatic dimerization [33].
Fourth, the M446G variant of PAMOWT was described to produce indigo from indole as
substrate in kinetic assays using isolated enzymes [26]. Fifth, preliminary assays to deter-
mine the presence of indigoids using chloroform extraction from E. coli cells overexpressing
PAMOHPCD and PAMOHPED, followed by silica gel chromatography, enabled the extraction
of two pigments of blue and pink coloration, consistent with the production of indigo and
indirubin after oxidation of indole into indoxyl and isatin and non-enzymatic dimerization.
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Figure 3. Proposed route of biosynthetic production of indigo in E. coli cells overexpressing
PAMOHPCD and PAMOHPED.

Based on these results, we quantified the amount of biosynthetically produced indigo
and indirubin by HPLC. In these assays, ~5 mL samples obtained from 50 mL cell cultures of
E. coli TOP10 overexpressing either enzyme and grown in TB medium for 24 h were treated
with lysis buffer and subjected to sonication and then to indigoid extraction with ethyl
acetate. For quantification, we employed a calibration curve obtained using commercially
available and pure indigo and indirubin as standards (Figure S5). Moreover, by injecting a
mixture of these calibration standards, we verified that the retention time was sufficiently
different for each indigoid to enable their quantification (Figure 4a).
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Figure 4. Quantification of indigo and indirubin production in whole-cell biocatalysis using
PAMOHPCD and PAMOHPED. (a) Mixture of calibration standards for indigo and indirubin (5 ppm
for each indigoid), measured by absorbance at 268 and 293 nm, demonstrating their sufficient sep-
aration in retention time. (b) Quantification of indigo production at 268 nm under different cell
culture conditions. (c) Quantification of indirubin production at 293 nm under different cell culture
conditions. Culture conditions: TB alone (HPCD/HPED), TB supplemented with indole 20 µM
(HPCD/HPEDindole), TB supplemented with L-tryptophan 200 µM (HPCD/HPEDtryptophan).

As seen in Figure 4b and Table 1, PAMOHPCD produces ~0.4 mg/g dry cell weight
(DCW) of indigo (3000 mg/L), which is 26-fold higher than the production observed for
PAMOHPED under the same conditions.

Table 1. Production of indigo and indirubin by whole-cell biocatalysis using E. coli cells overexpress-
ing PAMOHPCD and PAMOHPED under different cell culture conditions.

HPCD HPCDindole HPCDtryptophan HPED HPEDindole HPEDtryptophan

Indigo (mg/g
DCW) 0.388 ± 0.009 0.484 ± 0.125 0.498 ± 0.024 0.015 ± 0.006 0.007 ± 0.002 0.016 ± 0.007

Indirubin
(mg/g DCW) 0.009 ± 0.001 0.013 ± 0.001 0.019 ± 0.001 0.008 ± 0.002 0.009 ± 0.001 0.016 ± 0.001

Previous works on indigo biosynthesis by whole-cell biocatalysis using E. coli cells
overexpressing either a cytochrome P450 monooxygenase from Streptomyces cattleya [20]
or a flavin monooxygenase Corynebacterium glutamicum [34] showed a significant increase
in the production of indigo by supplementation of the culture media with tryptophan or
indole. Thus, we also performed these experiments on TB medium supplemented with
either 20 µM indole or 200 µM L-tryptophan.

A 28% and 25% increase in indigo production for PAMOHPCD was observed when E. coli
cell cultures were supplemented with L-tryptophan and indole, respectively. PAMOHPED
showed no significant changes in indigo production between the different cell culture
conditions. For indirubin, both PAMOHPCD and PAMOHPED produced similar amounts
(~0.008 mg/g DCW) in the absence of indole or tryptophan (Figure 4c and Table 1). While
PAMOHPED showed non-significant differences in indirubin production for all condi-
tions, a statistically significant increase (p < 0.0001) of more than 2-fold was recorded
for PAMOHPCD upon addition of 200 µM L-tryptophan.

Considering the measured production of indigo per DCW and that approximately
7 g DCW are typically obtained from a 1 L culture of E. coli cells in this culture medium
overnight the expected production of indigo via whole-cell biocatalysis using PAMOHPCD
corresponds to 3.00 g/L of cell culture without requiring supplementation with indole
or L-tryptophan. This is 3-fold higher than the production obtained by E. coli whole-
cell biocatalysis using a flavin monooxygenase from Methylophaga aminisulfidivorans for
indigo [35]. For indirubin, the production upon supplementation with 200 µM L-tryptophan



Int. J. Mol. Sci. 2022, 23, 12544 6 of 13

corresponds to 133.0 mg/L of cell culture, which is similar to the value recently reported
for whole-cell biocatalysis using E. coli overexpressing an active site variant (R292A) of a
BVMO from Acinetobacter radioresistens (138 mg/L) [36].

2.3. PAMOHPCD and PAMOHPED also Accept Substituted Indoles as Substrates

Beyond the biosynthesis of indigo and indirubin, there is increasing interest in the biocat-
alytic production of halogenated indigoids. For example, Tyrian purple (6,6′-dibromoindigo),
the oldest known purple dye used in imperial clothes thousands of years ago, which is
now being employed in semiconductor materials [37], requires 10,000 sea snails that are
the natural source to produce merely 1 g of this indigoid [38]. Halogenations constitute a
suitable leaving group to enable the synthesis of indigo copolymers used as semiconductor
films [39].

To test the substrate scope of PAMOHPCD and PAMOHPED for alkylated or halogenated
indoles, we performed enzyme activity assays against indole and substituted indoles using
crude extracts of E. coli cells overexpressing either enzyme, which were supplemented with
phosphite dehydrogenase and its corresponding substrate to maintain the availability of
NADPH during the reaction (Figure 5) [40,41]. These indole derivatives contain different
groups, from methyl substituents to bigger halogenated heteroatoms, such as iodine, on C5
or C6 (Table 2).
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Figure 5. Scheme of the system to oxidize substituted indole into functionalized indigoids, using
PAMO and phosphite dehydrogenase as a cofactor (NADPH) regenerator.

In the presence of the novel PAMO variants, coloration was observed from deep blue
to purple (Figure 6 and Figure S6) after overnight incubation in the substituted substrates
(Table 2). The supernatant for each solution was further analyzed by high-resolution mass
spectrometry to determine the reaction products (Figures S7–S16). Both enzymes utilized
most of the C5- and C6-alkylated and halogenated indoles.

Table 2. Substrates tested in the new enzymes and confirmed through exact mass in HRMS assay.

Substrate HPCD HPED Product * Exact Mass (g mol−1) Product
Nomenclature

Indole + + Indigo 262.0742 I
5-Cyanoindole + + 5,5′-dicyanoindigo 312.0647 IV
5-Fluroindole + + 5,5′-difluoroindigo 298.0554 V

5-Chloroindole + + 5,5′-dichloroindigo 329.9963 VI
5-Hidroxyindol + + 5,5′-hydroxyindigo 296.0641 VII
5-Methylindol + + 5,5′-dimethylindigo 290.1055 VIII

5-Methoxyindol + + 5,5′-dimethoxyindigo 322.0954 IX
6-Fluoroindole + + 6,6′-difluoroindigo 298.0554 X
6-Chloroindole + + 6,6′-dichloroindigo 329.9963 XI
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Table 2. Cont.

Substrate HPCD HPED Product * Exact Mass (g mol−1) Product
Nomenclature

6-Bromoindole + − 6,6′-dibromoindigo 417.8953 XII
5-Nitroindole − − - - -
5-Iodoindole − − - - -

5-(Benzyloxy)Indole − − - - -
Indole-5-carboxaldehyde − − - - -

* HRMS spectra of the indigo derivatives in Figure S6.
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Figure 6. Indigoid derivatives, obtained by enzyme catalysis of the substrates indicated in Table 2
using clarified crude extracts of E. coli cell cultures overexpressing PAMOHPCD, showing their
color shifts due to their substitutions. Enzymatic reactions were performed in phosphate buffer
supplemented with phosphite dehydrogenase and sodium phosphate for cofactor regeneration. Then,
the products were extracted in ethyl acetate and resuspended in DMSO. The first row corresponds
to commercial indigoid standards. First row: I, indigo; II, indirubin; III, indigo carmine (water);
IIIa, indigo carmine (HCl 0.10 N); IIIb, indigo carmine (NaOH 0.10 M). Second row: I, indigo; IV,
5,5′-dicyanoindigo; V, 5,5′-difluoroindigo; VI, 5,5′-dichloroindigo; VII, 5,5′-hydroxyindigo. Third
row: VIII, dimethylindigo; IX, 5,5′-dimethoxyindigo; X, 6,6′-difluoroindigo; XI, 6,6′-dichloroindigo;
XII, 6,6′-dibromoindigo.

Importantly, only PAMOHPCD catalyzed the production of Tyrian purple using 6-
bromoindole as substrate. Recent developments for the biosynthetic production in E. coli of
this indigoid dye from tryptophan designed a consecutive two-cell reaction system, where
one of the bacteria produces halogenated tryptophan and the second bacteria overexpresses
tryptophanase and a flavin monooxygenase for the oxidation of the halogenated tryptophan
and the final production of Tyrian purple [42]. In this regard, PAMOHPCD could also be
employed to produce Tyrian purple in these biosynthetic two-cell reactions.

2.4. Steady-State Kinetic Parameters of the PAMO Variants

Both designed PAMO variants have shown activity using oxidizable substrates as
indole, as well as many halogenated and alkylated derivatives, but a few differences were
observed in both whole-cell biocatalysis and substrate scope assays. First, the production of
indigo is much higher for E. coli cells overexpressing PAMOHPCD than PAMOHPED. Second,
only HPCD can produce Tyrian purple from halogenated 6-bromoindole.

Reasoning that these features are not due to differences in the protein expression yields
for each enzyme but attributable to differences in their catalytic activity and catalytic site,
we performed steady-state kinetic assays of NADPH depletion [23], in which the depletion
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in the presence of indole is measured spectrophotometrically at 341 nm. It is worth noting
that NAPDH depletion can occur even in the absence of the indole substrate, which is why
we used PAMOWT as control.

From these assays, the kinetic parameters for each enzyme were determined, as
summarized in Table 3. For enzyme kinetic assays as a function of increasing concentrations
of NADPH, it is observed that the PAMO variants have similar Michaelis constants (Km) for
this substrate, which are 5- to 10-fold higher than the Km for PAMOWT. In contrast, when
these experiments are performed as a function of increasing concentrations of indole, the
Km for PAMOHPCD is half of that obtained for PAMOHPED. Additionally, PAMOWT does not
utilize indole as substrate. Moreover, the catalytic constant (kcat) for PAMOHPCD is similar
to PAMOWT, but it is 3-fold higher than the kcat for PAMOHPED. Overall, the catalytic
efficiency, expressed in terms of the ratio kcat/Km, is ~6 times higher for PAMOHPCD over
PAMOHPED, consistent with the differences in indigo production in whole-cell biocatalysis.

Table 3. Kinetic parameters obtained for PAMO and both variants.

NADPH Indole

Variant kcat (s−1) Km (µM) kcat/Km
(s−1M−1) kcat (s−1) Km (µM) kcat/Km

(s−1M−1)

PAMOWT 4.8 0.9 5,200,000 - - -
PAMOHPCD 6.8 7.6 900,000 5.4 58.2 93,000
PAMOHPED 1.9 4.4 430,000 1.7 109.0 16,000

3. Discussion

The PAMO variants described herein, PAMOHPCD and PAMOHPED, were determined
to accept indole as substrate in E. coli cells to produce indigoids, given the change in
coloration of the cell culture medium. This change was not observed in the PAMOWT
medium, even with long cell culture times. Some of the amino acid substitutions contained
in these variants occur on residues that are part of loops of the FAD-binding domain and
next to residue R337 in the active site, which were previously modified to increase the
catalytic rate of PAMO against cyclohexanone as substrate [30]. Similar substitutions now
allow these PAMO variants to produce indigo and indirubin.

Both a higher yield of indigo production in whole-cell biocatalysis and a higher kcat
was determined for PAMOHPCD, which only differs from PAMOHPED in the amino acid on
residue position 443. The indigo production yield in E. coli overexpressing PAMOHPCD,
which is 3-fold higher than the 1.00 g/L production obtained using a flavin monooxygenase
from M. aminisulfidivorans [35] without requiring supplementation of the cell medium with
indole or L-tryptophan, propose this PAMO variant as a suitable biocatalyst.

Additionally, screening assays demonstrated that both PAMO variants can also in-
corporate indole derivatives with large halogen heteroatoms and alkylations, with only a
few of the tested substrates not being accepted. We argue that this is due to electronic and
structural characteristics of these derivatives, such as charges in the nitroindole compound,
too large heteroatoms such as iodine, or the highly reactive warhead of the indole-5-
carboxaldehyde. Importantly, only PAMOHPCD was capable of synthesizing Tyrian purple,
for which a whole-cell biosynthetic production in E. coli was recently described [42]. Thus,
PAMOHPCD can be further tested in these whole-cell biocatalysis platforms assessing po-
tential increases in the production yield of this industrially relevant indigoid.

4. Materials and Methods
4.1. Chemical and Reagents

All chemical reagents used in this study were of analytical grade or higher. Indigo,
indole, indirubin, indigo carmine, and L-tryptophan were purchased from AK Scientific
(Ahern Avenue Union City, CA, USA). Terrific broth medium (TB) and L-arabinose were
purchased from Thermo Fisher (Waltham, MA, USA). Solvents for HPLC analysis and
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the KOD Hot Start DNA polymerase were purchased from Merck KGaA (Darmstadt,
Germany). DpnI restriction enzyme was purchased from New England Biolabs GmbH
(Frankfurt am Main, Germany).

4.2. Creation of PAMO Variants

Plasmid pPAMO_PAC, derived from pPAMO [25] and carrying three substitutions
in the protein sequence (P440F [43], Q93N, P94D [27]), was used as a template to create a
saturation mutagenesis library for residues 441–444 by randomizing 2 amino acids using
the QuikChange PCR method [44]. The codon degeneracy used was a mixture of NDT,
VHG, and TGG. The mixing ratio of the primers was described in previous works [45].
The amplification reaction (20 µL) contained 10X KOD Buffer, dNTPs (2 mM each), MgCl2
(25 mM), mutagenic primers (3.5 µM each), template plasmid (50 ng), and KOD Hot Start
polymerase (0.5 U). The PCR conditions were 1 cycle at 95 ◦C for 3 min; 27 cycles at 95 ◦C
for 60 s, 55–65 ◦C (annealing temperature depending on the set of primers) for 60 s, 68 ◦C
for 8 min; and a final additional extension step at 68 ◦C for 16 min. To hydrolyze the
template plasmid, PCR products were directly digested with 1 µL of DpnI at 37 ◦C for 1.5 h,
then another 1 µL DpnI was added to the reaction, and the incubation was continued for
90 more minutes. An aliquot of 2 µL was used directly to transform 50 µL of E. coli TOP10
chemo-competent cells by thermal shock. The transformation mixture was incubated with
1 mL of LB medium at 37 ◦C with shaking. After 1 h, 30 µL was spread on LB agar plates
supplemented with 100 µg/mL carbenicillin (CB). PAMO variants found to serendipitously
produce a blue coloration in cell cultures of the transformed E. coli TOP10 bacteria on LB
medium were sequenced and subjected to further analysis. These enzymes correspond to
PAMOHPCD (Q93N, P94D, P440F, S441H, A442P, L443C, S444D) and PAMOHPED (Q93N,
P94D, P440F, S441H, A442P, L443E, S444D).

4.3. Enzyme Characterization

Enzymes (PAMOWT, PAMOHPCD, PAMOHPED) were purified from 500 mL cell cul-
ture in TB medium, inoculated with a 5 mL preinoculum of the corresponding plasmid-
harboring bacteria in LB media that were obtained by overnight incubation at 37 ◦C.
Overexpression was induced by adding L-arabinose to a final concentration of 2 mg·mL−1

upon reaching an optical density at 600 nm (OD600) of 0.6, followed by overnight incu-
bation at 37 ◦C. Cells were then sedimented by centrifugation (20 min, 5000 rpm) and
resuspended in 50 mM phosphate buffer pH 8.0 containing 1 mM phenylmethanesulfonyl
fluoride (PMSF) protease inhibitor, after which they were lysed on a sonicator (12 cycles of
20 s ON, 40 s OFF, 40% amplitude) keeping the tube in an ice bath.

The lysate was centrifuged at 13,000 rpm and then filtered with 0.22 µM syringe
filters before loading them onto a 5 mL HisTrap column (Cytiva, Marlborough, MA, USA),
followed by elution using an increasing imidazole gradient from 20 to 100 mM on a
buffer containing 50 mM phosphate buffer pH 8.0, 500 mM NaCl, and 10% glycerol. The
purified enzymes can be detected by a strong yellow color due to the covalent-bound flavin
adenine dinucleotide (FAD). The homogeneity of the enzyme solution was determined
by SDS-PAGE.

4.4. Thermostability

The thermostability of PAMOHPCD and PAMOHPED was compared to PAMOWT by
differential scanning calorimetry (Nano DSC, TA Instrument, New Castle, DE, USA), where
the melting temperature (Tm) necessary to unfold each enzyme was determined, using the
same protein concentration for each enzyme. The Tm was determined by fitting the molar
heat capacity data as a function of temperature to a two-state temperature unfolding model.

4.5. Indigo Production Using E. coli Expressing PAMO Variants

Cells producing PAMOHPCD and PAMOHPED were cultured in 5 mL of LB medium,
and after 16 h of incubation at 37 ◦C, they were transferred to 50 mL of TB medium. Whole-
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cell reactions were initiated by adding L-arabinose solution (final concentration 2 mg·mL−1)
to the medium. Whole-cell production proceeded at 37 ◦C for 48 h in a high-speed incubator
(180 rpm), after which the reaction was quenched by centrifugation and resuspension in
an equal volume of ethyl acetate, followed by vigorous mixing. The mixtures were then
centrifuged at 13,000 rpm for 10 min, after which the blue-colored organic solvent layer
containing indigo and indirubin was separated.

4.6. Optimization of the Whole-Cell Reaction

To optimize the reaction, different variables such as time, temperature, L-tryptophan,
and indole concentrations were tested. The same culture method at two different tempera-
tures, 30 ◦C and 37 ◦C, was performed, taking samples at 4, 8, 12, 16, 24, 48, and 72 h and
measuring the production yields for indigo and indirubin. Once we determined the optimal
time and temperature, the concentration of supplements such as indole and L-tryptophan
were determined in the same way, with concentrations of 1, 10, and 20 µM for indole and
10, 100, and 200 µM for L-tryptophan.

4.7. Structural and Quantitative Analysis of Biosynthetically Produced Indigo

The fractions collected from the indigo-producing cell culture were separated by cen-
trifugation and further subjected to thin layer chromatography (TLC) and HPLC analysis.
For TLC analysis, the mobile phase was composed of hexane:ethyl acetate (1:1). The indigo
and indirubin standard solutions were prepared by dissolving synthetic compounds in
DMSO (0.1 to 100 ppm). Real sample indigoids products were standardized by dry cell
weight (DCW) and then resuspended in acetonitrile (ACN). For the quantification, the
samples were diluted 1:10 and injected into a HPLC (LC-4000 UV/Vis, JASCO corporation,
Japan) equipped with a C18 reverse-phase column (Inertsil-C18 GL Sciences Inc., 250 mm,
4.6 mm, 3.5 mm, Tokyo, Japan) and eluted at 1.0 mL·min−1 with ACN/water (50:50 v/v)
as mobile phase. The absorbance of the eluent was monitored using the JASCO UV-4075
UV/Vis dual absorbance detector at 268 and 293 nm. The production yield of indigo and
indirubin was further determined using a standard calibration curve obtained using the
same quantification methods with commercially available synthetic indigo and indiru-
bin (Figure S4). In addition, the collected indigoids were analyzed by HRMS for further
confirmation of the obtained products.

4.8. Steady-State Kinetics

Kinetic assays were performed in triplicates on a UV–Vis spectrophotometer (JASCO
V-730, JASCO corporation, Tokyo, Japan), monitoring the change in absorbance at 341 nm to
determine the depletion of the cofactor NADPH. Experiments were performed in a mixture
containing 50 mM phosphate buffer pH 8.0, 1 µM freshly purified enzyme, and variable
concentrations of NADPH (5.0 to 500 µM) and indole (0.05 to 1 mM), leaving one of the
substrates fixed at saturating concentrations for the determination of the kinetic parameters
for each substrate.

Kinetic parameters Vmax and Km for each enzyme were determined with the kinetic
module of the JASCO Spectra Manager suite (JASCO Corporation), using a Michaelis–
Menten model. Then, kcat and the catalytic efficiency (kcat/Km) were determined from
this data.

4.9. Substituted Indoles Assay

This assay was performed to evaluate if the PAMO variants accept indoles with
substituents in positions 5 or 6 of the heterocyclic ring. The substituents, either small
alkanes or large halide atoms, are shown in Table 2.

The assays were performed using clarified crude extracts of E. coli cell cultures over-
expressing the PAMO variants (total protein concentration ~5 µM), completing a 5 mL
mixture containing 50 mM phosphate buffer pH 8.0, 10 µM phosphite dehydrogenase,
10 mM sodium phosphite, 200 µM NADPH, and 2 mM substituted indole. The reactions
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were carried out under vigorous shaking at 37 ◦C for 18 h, and then quenched by adding
ethyl acetate to extract the organic compounds.

The reaction products were analyzed in a high-resolution mass spectrometer (Exactive
Plus Orbitrap, Thermo Fisher Scientific, Bremen, Germany), using the following scan
parameters: resolution: 140,000; AGC target: 1 × 106; max. inject time: 200; HESI source:
sheath gas flow: 15; aux gas flow rate: 5; sweep gas flow rate: 0; capillary temp: 250 ◦C;
S-lens RF level: 100; heater temp: 100 ◦C; negative polarity; ionization voltage: 4 kV.

5. Conclusions

We developed monooxygenase enzymes through iterative saturation mutagenesis
that was able to spread the scope of accepted substrates. They were obtained from T. fusca
and called PAMOHPCD and PAMOHPED due to substituted residues (441–444), and then
expressed in E. coli TOP10 to characterize the enzyme and their biocatalytic characteristics.
These two new variant enzymes were serendipitously able to produce indigo in a rich
media by L-tryptophan metabolism. Through HPLC analysis, we could identify two
indigoids, indigo and indirubin, which have different means of production with each
enzyme. With bibliographic reviews, we performed an optimization of the production by
adding supplements to the media, such as indole or L-tryptophan. The highest productive
yields of indigo were achieved by the addition of L-tryptophan to the culture media, which
boosted indigo production to ~3.00 g/L. The indirubin productions of PAMOHPCD and
PAMOHPED are close to 0.13 g/L of cell culture. Additionally, we explored the substrate
acceptance of these variant enzymes, and they were shown to be able to oxidize almost all
indole derivatives assayed.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ijms232012544/s1.

Author Contributions: Conceptualization, N.N.-N., F.C.Z., C.A.R.-S., and L.P.P.; methodology, N.N.-
N. and J.S.M.; software, N.N.-N., J.S.M., F.C., and C.A.R.-S.; investigation, N.N.-N.; resources, F.C.Z.
and C.A.R.-S.; data curation, N.N.-N. and I.P.-C.; supervision, C.A.R.-S. and F.C.Z.; visualization, F.C.
and C.A.R.-S.; writing—original draft preparation, N.N.-N.; writing—review and editing, N.N.-N.,
J.S.M., F.C.Z., F.C., I.P.-C., L.P.P., and C.A.R.-S.; funding acquisition, F.C.Z., L.P.P., and C.A.R.-S. All
authors have read and agreed to the published version of the manuscript.

Funding: This work was financially supported by Pontificia Universidad Católica de Chile through
Proyecto Interdisciplina 2017-VRI-UC II170079 (F.C.Z. and L.P.P.) and ANID Millennium Science
Initiative Program (ICN17_022) (C.A.R.-S.).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: N.N.-N. thanks CONICYT-PCHA/Doctorado Nacional/2018-21181735. J.S.M.
thanks CONICYT-PCHA/Doctorado Nacional/2017-21171302. The authors thanks Fernando Danilo
González-Nilo from the Center for Bioinformatics and Integrative Biology, Universidad Andrés Bello
(Chile), for access to the nanoDSC instrument, Fondequip EQM140174.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or
in the decision to publish the results.

https://www.mdpi.com/article/10.3390/ijms232012544/s1
https://www.mdpi.com/article/10.3390/ijms232012544/s1


Int. J. Mol. Sci. 2022, 23, 12544 12 of 13

References
1. Balfour-Paul, J. Indigo: Egyptian Mummies to Blue Jeans; Firefly Books: Richmond Hill, ON, Canada, 2012; ISBN 1554079896.
2. Yang, Q.-Y.; Zhang, T.; He, Y.-N.; Huang, S.-J.; Deng, X.; Han, L.; Xie, C.-G. From Natural Dye to Herbal Medicine: A Systematic

Review of Chemical Constituents, Pharmacological Effects and Clinical Applications of Indigo Naturalis. Chin. Med. 2020, 15, 127.
[CrossRef]

3. Paul, J.B. Indigo and Blue: A Marriage Made in Heaven—ProQuest; University of Texas at Austin; University of Texas Press: Austin,
TX, USA, 2020.

4. Hsu, T.M.; Welner, D.H.; Russ, Z.N.; Cervantes, B.; Prathuri, R.L.; Adams, P.D.; Dueber, J.E. Employing a Biochemical Protecting
Group for a Sustainable Indigo Dyeing Strategy. Nat. Chem. Biol. 2018, 14, 256–261. [CrossRef] [PubMed]

5. Głowacki, E.D.; Voss, G.; Sariciftci, N.S. 25th Anniversary Article: Progress in Chemistry and Applications of Functional Indigos
for Organic Electronics. Adv. Mater. 2013, 25, 6783–6800. [CrossRef] [PubMed]

6. Klimovich, I.V.; Zhilenkov, A.V.; Kuznetsova, L.I.; Frolova, L.A.; Yamilova, O.R.; Troyanov, S.I.; Lyssenko, K.A.; Troshin, P.A.
Novel Functionalized Indigo Derivatives for Organic Electronics. Dye. Pigment. 2021, 186, 108966. [CrossRef]

7. Gaitanis, G.; Magiatis, P.; Velegraki, A.; Bassukas, I.D. A Traditional Chinese Remedy Points to a Natural Skin Habitat: Indirubin
(Indigo Naturalis) for Psoriasis and the Malassezia Metabolome. Br. J. Dermatol. 2018, 179, 800. [CrossRef]

8. Min, G.-Y.; Kim, J.-H.; Kim, T.-I.; Cho, W.-K.; Yang, J.-H.; Ma, J.-Y. Indigo Pulverata Levis (Chung-Dae, Persicaria Tinctoria)
Alleviates Atopic Dermatitis-like Inflammatory Responses In Vivo and In Vitro. Int. J. Mol. Sci. 2022, 23, 553. [CrossRef]

9. Sugimoto, S.; Naganuma, M.; Kanai, T. Indole Compounds May Be Promising Medicines for Ulcerative Colitis. J. Gastroenterol.
2016, 51, 853–861. [CrossRef]

10. Liu, N.; Zhang, G.-X.; Niu, Y.-T.; Wang, Q.; Zheng, J.; Yang, J.-M.; Sun, T.; Niu, J.-G.; Yu, J.-Q. Anti-Inflammatory and Analgesic
Activities of Indigo through Regulating the IKKβ/IκB/NF-KB Pathway in Mice. Food Funct. 2020, 11, 8537–8546. [CrossRef]

11. Saling, P.; Kicherer, A.; Dittrich-Krämer, B.; Wittlinger, R.; Zombik, W.; Schmidt, I.; Schrott, W.; Schmidt, S. Eco-Efficiency Analysis
by Basf: The Method. Int. J. Life Cycle Assess. 2002, 7, 203–218. [CrossRef]

12. Wenda, S.; Illner, S.; Mell, A.; Kragl, U. Industrial Biotechnology—The Future of Green Chemistry? Green Chem. 2011, 13,
3007–3047. [CrossRef]

13. Hartl, A.; Proaño Gaibor, A.N.; van Bommel, M.R.; Hofmann-de Keijzer, R. Searching for Blue: Experiments with Woad
Fermentation Vats and an Explanation of the Colours through Dye Analysis. J. Archaeol. Sci. Rep. 2015, 2, 9–39. [CrossRef]

14. Chen, T.; Wang, X.; Zhuang, L.; Shao, A.; Lu, Y.; Zhang, H. Development and Optimization of a Microbial Co-Culture System for
Heterologous Indigo Biosynthesis. Microb. Cell Fact. 2021, 20, 154. [CrossRef] [PubMed]

15. Kim, J.; Lee, J.; Lee, P.-G.; Kim, E.-J.; Kroutil, W.; Kim, B. Elucidating Cysteine-Assisted Synthesis of Indirubin by a Flavin-
Containing Monooxygenase. ACS Catal. 2019, 9, 9539–9544. [CrossRef]

16. Lin, Y.-K.; Leu, Y.-L.; Huang, T.-H.; Wu, Y.-H.; Chung, P.-J.; Su Pang, J.-H.; Hwang, T.-L. Anti-Inflammatory Effects of the Extract
of Indigo Naturalis in Human Neutrophils. J. Ethnopharmacol. 2009, 125, 51–58. [CrossRef] [PubMed]

17. Pathak, H.; Madamwar, D. Biosynthesis of Indigo Dye by Newly Isolated Naphthalene-Degrading Strain Pseudomonas sp. HOB1
and its Application in Dyeing Cotton fabric. Appl. Biochem. Biotechnol. 2010, 160, 1616–1626. [CrossRef]

18. Wang, J.; Zhang, X.; Fan, J.; Zhang, Z.; Ma, Q.; Peng, X. Indigoids Biosynthesis from Indole by Two Phenol-Degrading Strains,
Pseudomonas Sp. PI1 Acinetobacter Sp. PI2. Appl. Biochem. Biotechnol. 2015, 176, 1263–1276. [CrossRef]

19. Liu, C.; Xu, J.; Gao, S.Q.; He, B.; Wei, C.W.; Wang, X.J.; Wang, Z.; Lin, Y.W. Green and Efficient Biosynthesis of Indigo from Indole
by Engineered Myoglobins. RSC Adv. 2018, 8, 33325–33330. [CrossRef]

20. Kim, H.J.; Jang, S.; Kim, J.; Yang, Y.H.; Kim, Y.G.; Kim, B.G.; Choi, K.Y. Biosynthesis of Indigo in Escherichia Coli Expressing
Self-Sufficient CYP102A from Streptomyces Cattleya. Dye. Pigment. 2017, 140, 29–35. [CrossRef]

21. Yin, H.; Chen, H.; Yan, M.; Li, Z.; Yang, R.; Li, Y.; Wang, Y.; Guan, J.; Mao, H.; Wang, Y.; et al. Efficient Bioproduction of Indigo
and Indirubin by Optimizing a Novel Terpenoid Cyclase XiaI in Escherichia Coli. ACS Omega 2021, 6, 20569–20576. [CrossRef]

22. Namgung, S.; Park, H.A.; Kim, J.; Lee, P.-G.; Kim, B.-G.; Yang, Y.-H.; Choi, K.-Y. Ecofriendly One-Pot Biosynthesis of Indigo
Derivative Dyes Using CYP102G4 and PrnA Halogenase. Dye. Pigment. 2019, 162, 80–88. [CrossRef]
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