Metabolomics Reveals Unexpected Responses

to Oral Glucose

James R. Bain''? and Michael J. Muehlbauer'

n this issue of Diabetes, Ho et al. (1) present the

largest metabolomic study to date of oral glucose

challenges in humans at risk for type 2 diabetes

mellitus (T2DM). Their observations of unexpected
metabolic responses demonstrate the value of metabolomics
as a tool for discovery in diabetes research.

T2DM is widespread in developed countries, and its
prevalence continues to grow. Associated morbidity and
mortality are substantial, as is the economic burden im-
posed on society (2). Early interventions that modify diet,
increase activity level, and reduce excess body weight,
sometimes combined with drug therapy, are effective in
preventing progression of prediabetes to T2DM (3,4). The
risk of developing T2DM is currently evaluated using such
traditional clinical parameters as family history and fasting
plasma glucose. In the decade since the human genome
was first sequenced, rapid development of the “omics” sci-
ences and their enabling analytic technologies has fostered
a search for genes, proteins, and metabolites that will
strengthen existing models that predict T2DM risk (5). Di-
abetes is characterized by derangements in the processing
of metabolic fuels. Metabolomics, in which one makes
simultaneous measurements of many small metabolites,
holds promise for uncovering early biomarkers of risk that
can help to guide timely interventions and perhaps aid in
the exploration of underlying biochemical mechanisms, as
well (6).

Recent longitudinal metabolomic studies have found as-
sociations between circulating metabolites and future de-
velopment of insulin resistance (IR), prediabetes, or T2DM
in humans. For example, elevations in circulating branched-
chain amino acids (BCAAs) and aromatic amino acids (AAAs)
are biomarkers of risk (7-12). In several studies, inclusion
of biomarkers identified by metabolomics improved pre-
diction of risk models of T2DM over the use of conventional
metrics alone (8,9), and changes in metabolites that predict
the onset of T2DM might also correlate with positive out-
comes of clinical interventions (13,14). Mechanistic links of
these biomarkers to the onset of IR and T2DM are largely
unknown and in need of further study (15). The afore-
mentioned investigations of diabetic risk evaluated baseline
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measurements of metabolites in light of clinical outcomes
months (10) to years (7-9,11,12) later.

Diabetes profoundly affects minute-to-minute processing
of metabolic fuels, and investigators have begun deploying
metabolomic tools to study complex, short-term responses to
such challenges as feeding and exercise. The oral glucose
tolerance test (OGTT) provides a dynamic view of the body’s
metabolic machinery in action and has long been used to
detect early shifts in metabolism that mark incipient IR. Re-
cently, metabolomic studies of the OGTT in small groups of
humans have found that a glucose challenge causes a fall in
free fatty acids and acylcarnitines (16,17), glycerol (18), the
“ketone body” B-hydroxybutyric acid (18), a purine, hypo-
xanthine (18), and numerous amino acids, including the
BCAAs, three of the AAAs, and three players in the urea cycle
(18). In addition to glucose, an oral glucose challenge was
followed by a rise in circulating lactic acid (18), free carnitine
(17), hippuric acid (18), and lysophosphatidylcholines (16).
Glutathione fell then rose after glucose was consumed (19).
Importantly, Shaham et al. (18) presented preliminary evi-
dence relating diminished insulin sensitivity to a blunted
OGTT response in glycerol and the isomeric pair of BCAAs,
leucine and isoleucine, suggesting that metabolomic analy-
sis of samples taken before and after a glucose challenge
might help in the early identification of disorders in specific
biochemical pathways during the progression from early IR
to the full-blown T2DM phenotype.

In the community-based study of Ho et al. (1) reported
in this issue, nondiabetic men and women enrolled in
the Framingham Offspring cohort (n = 377) donated blood
before and 2 hours after oral glucose (756 g) after an over-
night fast. Patients were middle-aged (average, 57 years),
with a mean BMI of ~30 kg/m® Half were resistant to
insulin. An impressive 91 of 110 measured metabolites
changed significantly in response to the glucose challenge.
Detection of these changes was no doubt favored by an
inherent strength of metabolomic studies of paired sam-
ples in the OGTT: each subject serves as his or her own
control. For those who wonder about the scientific value
of frozen blood products stored for long periods, it is
worth noting that samples for this study were collected
between 1995 and 1998.

Expected responses (Fig. 1) included reductions in
“ketone bodies,” amino acids and their metabolites, and
intermediates of the Krebs cycle, as well as an increase in
glycolysis. The observed decrease in urea-cycle metabolites
after oral glucose might reflect a diminished need to dispose
of nitrogenous wastes from amino acid catabolism. As in
their previous study (18), circulating hippuric acid increased
greatly during the OGTT, ascribed to the conjugation of
glycine to the benzoic acid preservative in the glucose so-
lution consumed by the subjects.

But there were unexpected metabolic changes as well
(Fig. 1), and none of these is easily explained. Numer-
ous purines and pyrimidines fell, perhaps an effect of
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insulin-stimulated synthesis of nucleotides and nucleic
acids. Previous reports varied regarding response of con-
jugated bile acids to the OGTT (16,18). In the current
study (1), a rise in conjugated bile acids, concomitant with
a drop in unconjugated bile acids, was attributed to the
action of bile acid CoA, amino acid N-acyltransferases, or
perhaps involvement of the enteric microbiota. Five distinct
B vitamins fell during the OGTT—the underlying mecha-
nisms are unclear. Also puzzling was a more than twofold
drop in circulating serotonin, accompanied by decreases
in its precursor, tryptophan, and its principal catabolite,
5-hydroxyindole-3-acetic acid. Clearly, metabolomics is
proving its usefulness for bringing new, functional aspects
of metabolism to light.

Blunted responses to glucose in IR subjects were noted
in four metabolites belonging to four different biochemical
classes (Fig. 1). Further work is needed in a larger and
more diverse human population to ascertain whether these
findings are broadly applicable, but the study of Ho et al.
(1) inspires hope that metabolomic analysis of samples
from the OGTT will give sensitive and specific insight into
early changes in the progression from a healthy, normo-
glycemic state toward T2DM.
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an OGTT (1). Four metabolites showed blunted responses in IR subjects

“ketone body” (B-hydroxybutyric acid), a product of glycolysis (lactic acid), and an amino acid
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