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A RNA sequencing-based six-gene 
signature for survival prediction in 
patients with glioblastoma
Shuguang Zuo1,2, Xinhong Zhang3 & Liping Wang1

Glioblastoma (GBM) is an aggressive tumor of the central nervous system that has poor prognosis 
despite extensive therapy. Therefore, it is essential to identify a gene expression-based signature 
for predicting GBM prognosis. The RNA sequencing data of GBM patients from the Chinese Glioma 
Genome Atlas (CGGA) and The Cancer Genome Atlas (TCGA) databases were employed in our study. The 
univariate and multivariate regression models were utilized to assess the relative contribution of each 
gene to survival prediction in both cohorts, and the common genes in two cohorts were identified as a 
final prognostic model. A prognostic risk score was calculated based on the prognostic gene signature. 
This prognostic signature stratified the patients into the low- and high-risk groups. Multivariate 
regression and stratification analyses were implemented to determine whether the gene signature was 
an independent prognostic factor. We identified a 6-gene signature through univariate and multivariate 
regression models. This prognostic signature stratified the patients into the low- and high-risk groups, 
implying improved and poor outcomes respectively. Multivariate regression and stratification analyses 
demonstrated that the predictive value of the 6-gene signature was independent of other clinical 
factors. This study highlights the significant implications of having a gene signature as a prognostic 
predictor in GBM, and its potential application in personalized therapy.

Glioblastoma (GBM) is the most common and aggressive tumor of the central nervous system in adults. 
Currently, standard therapy for newly diagnosed GBM is surgical resection to the viable extent, followed by radi-
otherapy and adjuvant chemotherapy1,2. Although the survival of GBM patients has improved due to advances in 
modern combination therapies, GBM still has the worst 5-year overall survival rates among all human cancers3, 
with a dismal median duration of 14 months4,5. Accumulating evidence in recent years shows that tumors consist 
of multiple cancer cell populations, each harboring specific genetic abnormalities6. Large-scale transcriptome 
studies on GBM have indicated the possible mechanisms underlying its aggressive behavior7,8, and substantial 
effort has focused on identifying those genetic alterations that might predict patient prognosis and therapeutic 
response9.

GBM is a highly heterogeneous disease consisting of multiple molecular alterations7. The differential molecu-
lar characteristics of histologically similar tumors make it challenging to predict the clinical outcomes and select 
the optimum treatment strategies. Currently, prognosis and risk stratification of GBM patients are largely based 
on the clinico-pathological features including age, tumor size, performance status and grade10. Given the hetero-
geneity of GBM and the multitude of factors influencing disease progression, conventional clinical characteristics 
are insufficient to accurately predict individual outcomes and survival. Therefore, it is necessary to identify differ-
ent GBM specific genomic signatures to improve prognostic and therapeutic success.

The advances in sequencing and bioinformatics technologies have permitted genome-wide sequence analyses 
in many cancers including GBM. Sequencing data of a multitude of GBM samples have been archived in the 
open access databases, such as the Chinese Glioma Genome Atlas (CGGA, http://www.cgga.org.cn/) and The 
Cancer Genome Atlas (TCGA, https://portal.gdc.cancer.gov/). The aim of this study was to identify a prognostic 
signature of GBM using the RNAseq data of GBM patients from the CGGA and TCGA databases. A reliable 
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genomic prognostic signature can complement the conventional clinical prognostic factors, and further enable 
personalized therapy.

Results
Identification of prognostic gene signature.  There were 58,331 and 56,863 genes in the CGGA and 
TCGA cohorts respectively, and after filtering, 28,504 and 22,884 genes were used for Cox’s regression analyses 
to screen for candidate genes associated with overall survival. Using the cut-off values of P < 0.01 and HR > 1, we 
identified 1047 and 338 candidate genes in the CGGA and TCGA cohorts respectively, of which 49 were common 
in both. Step-wise multivariate Cox’s regression analysis identified 12 and 17 genes respectively in the CGGA 
and TCGA cohorts that were independent survival predictors, of which CD79B, MAP2K3, IMPDH1, SLC16A3, 
MPZL3 and APOBR were common to both and thus subsequently were analyzed (Fig. 1). The 6 genes are sum-
marized in Table 1.

Validation of the 6-gene signature in the two independent GBM cohorts.  Based on the expression 
levels of the 6 survival-relevant genes and their relative contributions as per the multivariate regression analysis, 
we developed a prognostic model by the risk score method for survival prediction. This 6-gene signature-based 
prognostic model endowed a risk score for each GBM patient, and was validated in the CGGA and TCGA 
cohorts. In both the CGGA and TCGA cohorts, patients were divided into the low- and high-risk groups using 
the median risk score as cutoff threshold. The distribution of risk scores, the expression values of the six genes 
and the survival status of patients ranked according to the risk scores are shown in Fig. 2a–c. Kaplan-Meier sur-
vival curves with log-rank test showed that patients in the high-risk group had a significantly shorter survival 
duration compared to the low-risk group (Fig. 2d, log-rank P = 9.35e-06 for CGGA cohort; log-rank P = 4.36e-
04 for TCGA cohort). High risk score was therefore an adverse prognostic factor for GBM patients (HR = 2.6, 
95% CI = 1.68–4.03 for CGGA cohort; HR = 1.98, 95% CI = 1.34–2.91 for TCGA cohort). The 1-year and 2-year 

Figure 1.  Study outline.
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survival as predicted by the risk scores are shown in Fig. 2e,f, with AUC values of 0.699 and 0.779 for CGGA 
cohort, 0.718 and 0.704 for TCGA cohort, respectively, implying that the 6-gene signature had high specificity 
and sensitivity in predicting survival, and was competent for predicting the survival of GBM patients. Finally, the 
expression levels of all the six genes were significantly higher in the high-risk compared to the low-risk groups in 
both cohorts (Fig. 3).

The 6-gene signature is an independent prognostic factor of survival.  Cox’s regression models 
were used to determine whether the prognostic value of the 6-gene signature was independent of other clinical 
factors in each cohort. The results are shown in Table 2. Univariate regression analysis of the CGGA cohort indi-
cated that the 6-gene signature-based risk score (HR = 2.60, 95% CI = 1.68–4.03; P = 1.82e-05), radiation therapy 
(HR = 0.41, 95% CI = 0.26–0.66; P = 1.85e-04), MGMT expression (HR = 1.37, 95% CI = 1.12–1.68; P = 2.19e-
03) and chemotherapy (HR = 0.34, 95% CI = 0.21–0.53; P = 2.30e-06) were significantly associated with patient 
prognosis, while age, gender and other gene mutations showed no significant association with overall survival 
(P > 0.05). Multivariate regression analysis showed a significant correlation of the 6-gene signature with survival 
after adjusting for other clinical factors. The 6-gene risk score (HR = 2.40, 95% CI = 1.42–4.06; P = 1.11e-03) was 
an independent adverse prognostic factor, while radiation therapy (HR = 0.42, 95% CI = 0.25–0.69; P = 7.13e-04) 
and chemotherapy (HR = 0.35, 95% CI = 0.20–0.59; P = 8.50e-05) were independent favorable factors.

In the TCGA cohort, univariate analysis showed that age (HR = 1.03, 95% CI = 1.01–1.04; P = 1.26e-03), 
6-gene risk score (HR = 1.98, 95% CI = 1.34–2.91; P = 5.56e-04), MGMT expression (HR = 1.20, 95% CI = 1.01–
1.43; P = 3.81e-02), and radiation therapy (HR = 0.16, 95% CI = 0.09–0.26; P = 1.34e-12) were significantly asso-
ciated with overall survival, while gender had no significant correlation (P > 0.05). Multivariate Cox’s regression 
analysis showed that age was not an independent factor. Furthermore, the 6-gene signature had a significant 
prognostic value after adjusting for the other clinical factors. Taken together, the 6-gene risk score (HR = 1.70, 
95% CI = 1.10–2.63; P = 1.73e-02), and MGMT expression (HR = 1.26, 95% CI = 1.05–1.51; P = 1.10e-02) were 
independent adverse prognostic factors, while radiation therapy (HR = 0.12, 95% CI = 0.06–0.23; P = 7.76e-11) 
was an independent favorable factor.

Stratification analysis: prognostic value of 6-gene signature stratified by clinical factors.  In 
this study, radiation therapy, chemotherapy, and MGMT expression were identified as survival-associated 
factors. Therefore, patients were further stratified on the basis of whether they received radio-/chemotherapy 
and the MGMT expression level, in order to assess the prognostic value of the 6-gene signature. The patients 
in each cohort were first stratified into subgroups (such as chemotherapy (no/yes), radiation therapy (no/yes), 
and MGMT expression (low/high)), and each subgroup was further divided into the low- and high-risk groups 
using the 6-gene signature. In the radio-/chemotherapy subgroups of the CGGA cohort, patients in the high-risk 
group had a significantly shorter survival duration compared to those in the low-risk group (Fig. 4a,b, P < 0.05), 
indicating that the 6-gene risk score was an adverse prognostic factor and could predict the survival of patients 
receiving chemotherapy (HR = 2.51, 95% CI = 1.35–4.68) or radiotherapy (HR = 3.36, 95% CI = 1.77–6.37). In 
the radiation therapy and MGMT expression subgroups of the TCGA cohort, patients in the high-risk group had 
significantly poorer prognosis than those in the low-risk group (Fig. 4c, P < 0.05 for radiation therapy and Fig. 5c, 
P < 0.05 for MGMT expression), further validating that the 6-gene risk score can predict survival in patients 
receiving radiation therapy (HR = 1.77, 95% CI = 1.14–2.76) or with high/low MGMT expression.

Then, we analyzed the relationship of risk score with gene mutations including IDH1, TP53, EGFR, ATRX, 
EZH2, and MGMT. To begin with, the patients in the CGGA cohort were firstly divided into two subgroups 
based on whether these gene were mutated or not, and next each subgroup was further separated into high- 
and low-risk group relying on the 6-gene signature. In the subgroups (except ATRX subgroup), patients in the 
high-risk group had a significantly worse prognosis, relative to the low-risk group (Fig. 5a, P < 0.05), implicating 
that the 6-gene risk score can predict the survival status in GBM patients.

Taken together, our findings suggested that the prognostic value of the 6-gene signature was independent of 
other clinical features for predicting survival in GBM patients.

Comparison of selected genes expression between primary and secondary GBM.  Only primary 
GBM data are included in the TCGA database, and there are primary GBM data, recurrent GBM data, and sec-
ondary data in the CGGA database. In our analysis, we used all GBM cases to establish a prognosis signature. 
However, primary and secondary GBMs are different diseases from the molecular point of view. Thus, we per-
formed the grouping analysis for primary, secondary, and recurrent GBM data. The analysis results (Fig. 5b) 

Gene stable ID
Gene 
name Gene type Chromosome

Gene start 
(bp)

Gene end 
(bp)

ENSG00000007312 CD79B protein_coding 17 63928740 63932354

ENSG00000034152 MAP2K3 protein_coding 17 21284672 21315240

ENSG00000106348 IMPDH1 protein_coding 7 128392277 128410252

ENSG00000141526 SLC16A3 protein_coding 17 82228397 82261129

ENSG00000160588 MPZL3 protein_coding 11 118226690 118252350

ENSG00000184730 APOBR protein_coding 16 28494649 28498970

Table 1.  General information of 6 genes for constructing the prognostic signature.
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show that this 6-gene signature can be used as a prognostic indicator for primary and secondary GBM. However, 
for recurrent GBM patients, there is no difference in survival in different risk score groups, suggesting that this 
6-gene prognosis signature might not be applicable for recurrent GBM.

Discussion
Studies show that gene alterations play significant roles in tumorigenesis and patient prognosis, indicating a 
potential application of characteristic gene signatures in cancer diagnosis and prognosis. Several reports are avail-
able on the correlation between altered genes and GBM prognosis. For example, Nicolasjilwan et al.11 analyzed 
the genetic biomarkers to predict the survival of GBM patients in the TCGA database based on clinical factors 
and imaging characteristics, but the sensitivity and specificity of the gene signature in survival prediction were 
not measured. Another study also using TCGA GBM data to detect an inverse correlation between IL-13Rα1 
and α2 expression and unsatisfied prognosis12. Moreover, Jia et al.13 have identified prognosis-related genes for 
GBM based on TCGA and CGGA databases. However, these studies have focused on single GBM-related genes, 
which have limited prognostic and predicative power. Therefore, we tested the predictive power of a panel of 
GBM-associated genes using regression analyses. We developed a risk score model based on 6 genes to predict 
clinical outcomes of GBM patients by analyzing the RNAseq data from two open access databases. The 6-gene sig-
nature competitively predicted patient survival, and according to the univariate and multivariate analyses, was an 
independent prognostic factor in addition to chemotherapy therapy, radiation therapy, and MGMT expression.

Due to extensive heterogeneity of GBM, even patients with similar histo-pathological characteristics differ 
in their genetic landscape, making it challenging to effectively target different patients using the same proto-
col. Therefore, individualized risk stratification and treatment are urgently needed. Omics-based patient-specific 
therapy is based on the genomics, transcriptomics and proteomics data of individual patients. An understanding 
of patient-specific mutations would help design the most effective therapeutic strategy for that particular patient. 
Omics-based techniques can be used at both pre- and post-treatment stages to track specific mutations as well as 
development of resistance, and help modify the treatment accordingly.

Univariate analysis showed that age was not significantly associated with overall survival in the CGGA cohort, 
while a significant association was observed in the TCGA cohort. Age at diagnosis is a major predictor of patient 
survival, and younger patients tend to survive longer than the older patients8,14,15. However, age alone is not a 

Figure 2.  Correlation between the 6-gene signature and overall survival of patients. (a) The distribution of risk 
scores. (b) The expression heatmap of the 6 prognostic genes. (c) Scatterplot of patient survival status. (d) Kaplan-
Meier curves of overall survival of the low- and high-risk groups. (e) ROC curve for 1-year survival prediction by 
the 6-gene signature. (f) ROC curve for 2-year survival prediction by the 6-gene signature. The black dotted line in 
a and c represents the median risk score cutoff dividing patients into the low- and high-risk groups.
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predictor for survival in GBM because older patients are less likely to receive adjuvant treatment16. Multivariate 
analysis confirmed that age was not an independent predictor for survival in our cohorts as well. Currently, sur-
gical resection, radiotherapy and adjuvant chemotherapy are the standard treatment options in GBM patients. 
For elderly patients, radiotherapy can improve survival without reducing life quality or cognition17. However, 
the survival is significantly reduced if radiotherapy is not initiated within 6 weeks after complete resection18. 
Furthermore, radiotherapy plus temozolomide provides a significant survival benefit compared to radiotherapy 
alone in treating GBM19,20. We also found that radiation therapy and chemotherapy were independent favorable 
prognostic factors. The 6-gene signature stratified the treated and untreated patients into the low- and high-risk 
groups that had significantly different prognosis, indicating that the 6-gene signature can improve survival pre-
diction and can also identify high-risk patients for adjuvant therapy in addition to the standard regimen.

Several gene mutations have been identified which correlate with the pathogenesis of GBM21. EGFR muta-
tions confer enhanced tumorigenicity by increasing proliferation and reducing apoptosis of GBM cells, especially 
in secondary GBM22. Mutations in IDH1 predict a more favorable prognosis23–25, and are often associated with 
TP53 and ATRX mutations26,27. The CGGA database includes gene mutations and gene expression profiles from 
a number of GBM patients. However, univariate and multivariate analyses showed that these mutations had no 
significant prognostic value, possibly because most of them are more common in patients with secondary GBM 
while most subjects in our study had primary GBM.

The results about the relationship of risk score with IDH1 mutations showed patients in the high-risk group 
had a significantly worse prognosis, relative to the low-risk group, which implicated that the 6-gene risk score is 
an independent prognostic factor independent of IDH1 mutation.

As we all know, MGMT promoter methylation ultimately determines the expression of MGMT, thus, we ana-
lyzed the relationship of prognosis and MGMT expression level in the CGGA and TCGA databases. Multivariate 
analysis exhibited that in the CGGA database, the expression of MGMT was not an independent prognostic fac-
tor, while MGMT was an independent prognostic factor in the TCGA database. The subgroup analysis based on 
MGMT expression level to reveal the relation between our risk score and MGMT expression showed that patients 

Figure 3.  The expression levels of the individual genes of the 6-gene signature. Violin plot showing the 
expression levels of the genes between low- and high-risk groups in the CGGA cohort (a) and TCGA cohort (b).
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in the high-risk group had a significantly worse prognosis, relative to the low-risk group, which demonstrated that 
the 6-gene risk score is an independent prognostic factor independent of MGMT expression.

Our 6 prognostic panel genes have established roles in oncogenesis. For example, CD79B has been associated 
with reduced survival, and is considered a suitable immunotherapeutic target for leukemia and lymphoma28,29. 
Several studies have highlighted the critical role for MAP2K3 in tumor progression and targeted therapies30,31. 
MAP2K3 inhibition sensitizes tumor cells to chemotherapy31, and has been identified as a putative target for 
molecular therapy against GBM32. SLC16A3 is typically over-expressed in GBM and patients with higher 
SLC16A3 levels have significantly poorer survival33,34, making it a potential prognostic biomarker and meta-
bolic target in GBM35. Based on the genomic locations for three genes (CD79B, MAP2K3, SLC16A3), we find 
that CD79B locates at chromosome 17q23.3, MAP2K3 locates at chromosome 17q11.2, and SLC16A3 locates at 
chromosome 17q25.3. Although these all locate on chromosome 17, these 3 genes are not close to one another. 
Chromosome 17, as one of 23 pairs of human chromosomes, whose abnormities and roles that have been inves-
tigated about the expression of genes in this chromosome influence the nervous system, especially cell differ-
entiation and maturation. Deletions in the region of chromosome 17 are the most common abnormal event 
in primary solid tumors36. Petitjean et al.37 have suggested that the deletion of the region of chromosome 17 is 
greatly important in carcinogenesis, as found in other examples including breast cancer, colon cancer, liver cancer, 
medulloblastoma and in head tumors36,38. Further, Sunpaweravong et al.39 have implicated that gains of cytoband 
17q25.3 are found in 61% lung cancer patients, underscoring a potential biological role for the genes within this 

Variables Patients (N)

Univariate analysis Multivariate analysis

HR (95% CI) P HR (95% CI) P

CGGA

Age <= 49/ > 49 73/64 1.00 (0.99–1.02) 5.76e-01 0.99 (0.96–1.02) 4.06e-01

Gender Female/Male 47/90 1.22 (0.79–1.88) 3.75e-01 1.59 (0.88–2.86) 1.23e-01

Radiation therapy No/Yes 44/79 0.41 (0.26–0.66) 1.85e-04 0.42 (0.25–0.69) 7.13e-04

Chemotherapy No/Yes 41/82 0.34 (0.21–0.53) 2.30e-06 0.35 (0.20–0.59) 8.50e-05

IDH1 mutation No/Yes 104/33 0.64 (0.38–1.07) 8.57e-02 1.24 (0.54–2.83) 6.16e-01

TP53 mutation No/Yes 62/75 0.70 (0.46–1.05) 8.64e-02 0.87 (0.54–1.41) 5.72e-01

EGFR mutation No/Yes 101/36 0.74 (0.46–1.21) 2.34e-01 0.57 (0.31–1.03) 6.64e-02

ATRX mutation No/Yes 125/12 0.79 (0.38–1.63) 5.17e-01 0.76 (0.26–2.28) 6.28e-01

EZH2 mutation No/Yes 115/22 1.13 (0.65–1.98) 6.68e-01 1.57 (0.81–3.06) 1.84e-01

MGMT expression Low/High 69/68 1.37 (1.12–1.68) 2.19E-03 1.23 (0.94–1.62) 1.30E-01

Risk score Low/High 69/68 2.60 (1.68–4.03) 1.82e-05 2.40 (1.42–4.06) 1.11e-03

TCGA

Age <= 60/ > 60 80/78 1.03 (1.01–1.04) 1.26e-03 1.01 (0.99–1.03) 2.33e-01

Gender Female/Male 56/102 0.95 (0.65–1.41) 8.08e-01 1.22 (0.77–1.95) 4.03e-01

Radiation therapy No/Yes 21/130 0.16 (0.09–0.26) 1.34e-12 0.12 (0.06–0.23) 7.76e-11

MGMT expression Low/High 79/79 1.20 (1.01–1.43) 3.81E-02 1.26 (1.05–1.51) 1.10E-02

Risk score Low/High 81/77 1.98 (1.34–2.91) 5.56e-04 1.70 (1.10–2.63) 1.73e-02

Table 2.  Univariate and multivariate Cox’s regression analyses of the gene signature in two independent cohorts.

Figure 4.  Kaplan-Meier analysis of overall survival of patients stratified by treatment. (a) Chemotherapy 
stratification analysis in CGGA cohort. (b) Radiation therapy stratification analysis in CGGA cohort. c: 
Radiation therapy stratification analysis in TCGA cohort.
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region in the progression of lung cancer, which further substantiates the fact that there are many oncogenes 
located at chromosome 17. Significantly, loss of heterozygosity for the short arm of chromosome 17 has been 
demonstrated in a 4-year-old boy with GBM40. According to the importance of chromosome 17 described above, 
losses or changes in genes in chromosome 17 might potentially involve in GBM. In our study, it is more convinced 
that CD79B, MAP2K3, and SLC16A3 on chromosome 17 play important roles in GBM.

Figure 5.  Kaplan-Meier analysis of overall survival of patients stratified by gene mutations or different GBM 
types. (a) Stratification analysis in CGGA cohort based on gene mutations (IDH1, TP53, EGFR, ATRX, EZH2, 
and MGMT). (b) Stratification analysis for primary, secondary, and recurrent GBMs in CGGA cohort. (c) 
Stratification analysis in TCGA cohort based on MGMT mutations.
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IMPDH1, one isotype of IMPDH, is ubiquitously expressed in mammals41. IMPDH1 up-regulation has been 
found in many types of cancer, such as bladder cancer, brain cancer, lung cancer, ovarian cancer, and GBM42. 
Increased MPZL3 is found to exert important function in ovarian cancer via regulating metablolism43. Moreover, 
RNA expression of MPZL3 has been reported to be highly expressed in radio-resistant rectal cancer cell lines44. 
APOBR mutation is observed in hepatocellular carcinoma45. In our study, this 6-gene signature would inde-
pendently predict overall survival in GBM patients. The advantage of this work was to combine the clinical char-
acteristics and CGGC/TCGA data to assess the GBM patients survival through establishing a genes-associated 
risk score. Therefore, the combination of these 6 genes (CD79B, MAP2K3, IMPDH1, SLC16A3, MPZL3 and 
APOBR) could be regarded as a novel risk factor that might function as a prognosis indicator for GBM patients.

To summarize, we combined 6 GBM specific genes into a single diagnostic panel using regression analyses, 
and established its predictive value in overall survival of the patients. We selected only those survival-related 
genes that were common to both the CGGA and TCGA cohorts, which is more reliable and stable relative to 
single cohort analysis.

In conclusion, we identified a 6-gene signature for predicting survival in GBM by analyzing RNAseq-based 
gene expression profiles in the CGGA and TCGA patients. Multivariate and stratified analysis demonstrated that 
the gene panel was independent of other clinical and pathological features, and therefore is a potential prognostic 
biomarker of GBM.

Methods
Patients.  The transcriptomic data of GBM patients were obtained from two independent data portals (CGGA 
and TCGA). As part of the CGGA project, Zhao et al.46 provided the RNA-seq transcriptomic profiles of 325 
gliomas samples. The raw RNA-seq data were downloaded from the NCBI Sequence Read Archive (SRA, https://
www.ncbi.nlm.nih.gov/sra) using the accession numbers SRP027383 and SRP091303. The raw fastq files were 
converted from SRA using Fastq-dump app (version: 2.8.1), and the sam and read count data were obtained by 
the hisat2 (version 2.1.0) and htseq software (version 0.10.0), respectively. A total of 137 GBM samples with clin-
ical data were selected from the CGGA cohort. Data of an independent cohort of 158 patients was obtained from 
the TCGA database. The transcriptomic profiles (level 3 data) and corresponding clinical data of these patients 
were downloaded from the Data Coordinating Center. All RNA-seq libraries were sequenced using the Illumina 
HiSeq2000 Systems. The raw count data were normalized by the trimmed mean of M-values (TMM) method47, 
and genes with extremely low total abundance (count per million <1) were filtered out. The data preprocessing 
was performed using edgeR package48 (version 3.20.9) in Bioconductor.

Screening for the prognostic gene signature.  The schematics of our study are illustrated in Fig. 1. 
Univariate Cox’s proportional hazards regression analysis was used to evaluate the correlation between the 
expression level of each gene and overall survival in both cohorts. Only genes with P values < 0.01 and hazard 
ratio (HR) > 1 were considered as candidate genes for the correlation analysis, and those common genes to both 
CGGA and TCGA cohorts were used to construct the predictive model. The common candidate genes were 
then fitted in step-wise multivariate Cox’s regression model to assess the relative contribution of each gene to 
survival prediction in both cohorts. The genes that correlated with survival and were common to both cohorts 
were included in the prognostic signature. According to the estimated regression coefficients in multivariate Cox’s 
regression model, a prognostic risk score for predicting overall survival was then calculated as follows,

∑ β= ∗
=

Risk score exp
i

n

i i
1

where n is the number of prognostic genes, expi is the expression level of prognostic gene i, and βi is the regres-
sion coefficient of gene i. Using the median risk score in CGGA cohort as the cutoff value, GBM patients in each 
cohort were divided into low- and high-risk groups.

Statistical analysis.  Kaplan-Meier analysis was used to determine the survival in the low- and high-risk 
groups in each cohort, and log-rank test was used to assess the statistical significance. Multivariate Cox’s regres-
sion model and stratification analysis were implemented to determine whether the gene signature was inde-
pendent of other clinical features. The time-dependent receiver operating characteristic (ROC) curve was used 
to compare the sensitivity and specificity of the gene signature in survival prediction. The area under the curve 
(AUC) was calculated from the ROC curve. For both log-rank test and Cox regression analysis, the significance 
was set at P value < 0.05.
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