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Trout (Oncorhynchus gilae)
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ABSTRACT
Macrhybopsis tetranema and Oncorhynchus gilae are fish species endemic to the Southwestern United
States. We present the complete mitochondrial genomes for these species. Each genome consisted of
13 protein-coding genes, two ribosomal (rRNA) genes, 22 transfer RNA (tRNA) genes, and the control
region (D-loop). Mitogenome lengths were 16,916 base pairs (bp) for M. tetranema, and 16,976bp for
O. gilae. The GC content was 41% for M. tetranema and 46% for O. gilae. The relationships of M. tetra-
nema and O. gilae were consistent with previous phylogenetic analyses.
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Introduction

Members of the family Cyprinidae and Salmonidae restricted to
the Southwestern United States are threatened by catastrophic
events including severe droughts and wildfires. Consequently,
numerous species are safe-guarded by captive populations.
These populations should reflect standing genetic diversity of
the species including protection of genetically distinct lineages
such as Evolutionary Significant Units (ESUs) and Management
Units (MU) (Moritz 1999). For example, mitochondrial sequences
from the control region were used to designate Gila Trout
(Oncorhynchus gilae Miller 1950) and Apache Trout (O. apache
Miller 1972) as distinct ESUs relative to other populations within
the Rainbow Trout O. mykiss clade, and to designate O. gilae
from the San Francisco River and Gila River drainages as separ-
ate MUs (Riddle et al. 1998). Subsequently, Wares et al. (2004)
identified four unique haplotypes in the remnant San Francisco
population. Here, annotated mitochondrial genomes were con-
structed for the Spruce Creek lineage (San Francisco drainage)
of Gila Trout (Figure 1A); a salmonid closely related to Rainbow
Trout and for the cyprinid Peppered Chub (Figure 1B)
(Macrhybopsis tetranema Gilbert et al. 2017). These species are
listed as threatened (US Fish and Wildlife Service 2006) and
endangered, respectively (US Fish and Wildlife Service 2020).
Macrhybopsis tetranema belongs to the M. aestivalis species
complex (Eisenhour 2004; Gilbert et al. 2017) and is now
restricted to a 218-km reach of the South Canadian River in
New Mexico (NM) and Texas (TX). Its restricted distribution and
the constant threat of drought have made establishing a refu-
gial captive population of this species a high priority for

management. Oncorhynchus gilae is restricted to isolated popu-
lations in the Gila and San Francisco river drainages in southern
NM and Arizona (AZ). Populations of O. gilae are threatened by
wildfires and introgression with the non-native Rainbow Trout
and this species is also supported by captive breeding and
augmentation.

Materials

A M. tetranema individual was collected from the South
Canadian River, NM (approximate geographic coordinates:
35.389376, �103.355331) in August 2021. Macryhybopsis tet-
ranema is the only species of Macryhybopsis found in the NM
portion of the Canadian River. The fish was euthanized with
an overdose of MS222. A fin clip from a live O. gilae was col-
lected in December 2021 from the Spruce Creek lineage held
at the Mora National Fish Hatchery, NM (approximate locality:
35.994948, �105.319576). In both cases, species identity was
determined by visual examination of external morphology by
experienced personnel from US Fish and Wildlife Service.
Remaining tissue and/or DNA isolates were deposited in the
Museum of Southwestern Biology (MSB Cat no. 110774.00 for
O. gilae; MSB Cat no. 117041 for M. tetranema; https://msb.
unm.edu/, contact: E. DeArmon, esdearmon@unm.edu).

Methods

High-molecular-weight genomic DNA was isolated from
muscle and fin tissue from M. tetranema (n¼ 1) and O. gilae
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(n¼ 1), respectively, using QIAGENVR genomic-tips and the
protocol outlined by the manufacturer. Whole genomes were
sequenced using a PacBio SequelVR II machine for O. gilae (3
SMRTVR cells) and M. tetranema (1 SMRTVR cell) at the UC Davis
Genomics Core using PacBio HiFi SMRTbellVR library prepar-
ation. Genome assemblies (nuclear plus mitochondrial) were
initially constructed from raw PacBio reads with the HiFiAsm
assembler v.0.18.1-r466 (Cheng et al. 2021) using default
parameters for both species, except that the number of hap-
lotypes for O. gilae was set to four since the nuclear genome
is tetraploid. Mitogenomes of O. gilae Main Diamond lineage
(GenBank: MW300334) and M. hyostoma (GenBank:
KX139437) were used to search de novo assemblies for mito-
chondrial sequences using the CoGeBlast tool (https://
genomevolution.org/CoGe/CoGeBlast.pl). For M. tetranema we
did not find a good mitogenome assembly using this method
and thus a new assembly was performed. First, we searched
for potential mitochondrial reads only. Raw reads were
mapped to the M. hyostoma mitogenome (GenBank:
KX139437) with Bowtie2 v.2.4.2 (Langmead and Salzberg
2012) using the “local alignment” and “very sensitive”
options. Reads that mapped to the M. hyostoma mitogenome
were used as input to HiFiAsm disabling “purge level” and
“bloom filter” as suggested by HiFiAsm authors for homozy-
gotic/haploid genomes. Macrhybopsis hyostoma mitogenome
was then used to confirm the new assembly using the
CoGeBlast tool. Annotation of the mitochondrial genomes

was performed using the MitoFish webserver v.3.90 (http://
mitofish.aori.u-tokyo.ac.jp/; Iwasaki et al. 2013, 2018; Zhu et
al. 2023). DNA sequences were aligned using ClustalW
(Thompson et al. 1994) implemented in MEGAX (Kumar et al.
2018, Stecher et al. 2020). Nucleotide substitution models
were compared using the maximum likelihood method and
the models with the lowest BIC (Bayesian Information
Criteria) values were subsequently used for phylogenetic
tree construction based on nucleotide sequences. For plac-
ing O. gilae in phylogenetic context, Tamura-Nei distances
(Tamura and Nei 1993) were used and Coho salmon
(O. kisutch) was included as an outgroup (Table 1). For M.
tetranema, the GTRþG model was specified and Roundnose
Minnow (Dionda episcopa) was included as an outgroup.
Phylogenetic trees were constructed using the program
PhyML v. 3.0 (http://atgc.lirmm.fr/phyml; Guindon et al.
2010). Due to slightly different lengths of the control region
between species, only the coding mitochondrial genes were
used to construct phylogenetic trees. Bootstrapping (100
replicates) was used to assess support for nodes. Sequence
divergence was calculated between the Spruce Creek indi-
vidual and other O. gilae lineages and between M. tetra-
nema and other species with the genus for which whole
mitogenomes were available.

Results

For O. gilae, the mitochondrial genome was assembled from
48 reads with an average length of 17,019.3 base pairs (bp)
ranging from 16,687 to 18,236 bp and coverage was 36.8 �
(Supplementary Material, Figure 1). Mitochondria for this spe-
cies comprised 13 protein-coding genes, two rRNA genes, 22
tRNA and a control region (Figure 2). The length of the O.
gilae mitogenome was 16,976 bp. The control region was
1,321 bp in length including a 322bp insertion comprised of
three repetitive elements. This length increase is unique to
the Spruce Creek lineage. There was minimal sequence diver-
gence (0.07–0.09%) between the Spruce Creek lineage and
the other O. gilae lineages. The Spruce Creek lineage was
0.4% divergent from O. apache. Previous research (Figure 3,
Camak et al. 2021) indicated that the Spruce Creek lineage of
O. gilae was distinct from the Gila drainage lineages.

For M. tetranema, the mitochondrial genome was
assembled from 51 reads with an average length of
17,045.4 bp ranging from 16,782 to 20,343 bp. Mitogenome
coverage was 40� for M. tetranema. The length of the M. tet-
ranema mitogenome was 16,916 bp and it also comprised 13
protein-coding genes, two rRNA genes, 22 tRNA and a con-
trol region (Figure 2). The control region was 1,256 bp in
length and contained a 55 bp repeat. The length of the con-
trol region was within the range observed in other species
within the genus (1,054 bp [M. storeriana] to 1,264 bp [M.
meeki]). Sequence divergence within Macrhybopsis ranged
from 0.4% � 10%. Results of the phylogenetic analysis indi-
cate a close relationship between M. tetranema and M. hyo-
stoma while M. meeki is the sister group of this clade as
described previously (Echelle et al. 2018).

Figure 1. Photographs showing (A) Oncorhynchus gilae (photo credit: Thomas
Kennedy, used with permission) and (B) Macrhybopsis tetranema (photo credit:
Daniel Fenner, used with permission). Oncorhynchus gilae are characterized by
having a stocky, golden-yellowish body, large spots on the adipose fin, numer-
ous fine spots above the lateral line and large spots on the adipose fin (Behnke
2002).
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Discussion and conclusions

In this study, mitochondrial genomes were sequenced and
assembled for two imperiled species. The order of

mitochondrial genes was identical between O. gilae and
M. tetranema, members of the Salmonidae and Cyprinidae,
respectively. This result is consistent with previous studies
showing the mitochondrial gene order is highly conserved

Figure 2. Mitochondrial genome maps showing 13 protein coding genes, 2 ribosomal RNAs, 22 transfer RNAs and the control region (D-loop) for (A) Oncorhynchus
gilae (GenBank: OQ301638) and (B) Macrhybopsis tetranema (GenBank: OQ301637) generated using the program proksee v. 6.0.2 (https://proksee.ca/) using the rela-
tive scale option. Plots of GC content and skew used a window size of 500 and reflect GC content/skew scores on a scale of 0 to 1 using a baseline of 0.5. Positive
and negative skew are indicated by values above and below the midpoint respectively. Asterisks in the control region indicate the approximate location and num-
ber of repetitive elements. The order of mitochondrial genes is conserved between species.
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among fishes with few exceptions (Miya and Nishida 2015).
Results presented were consistent with previous research
including the distinctness of the Spruce Creek lineage of

O. gilae, specifically an increase in the size of the control
region caused by repetitive elements in this lineage (Riddle
et al. 1998). The sequence data presented here could be

Figure 3. Maximum likelihood trees constructed with the coding sequences of the mitochondrial genomes (A) from Oncorhynchus species including the Spruce
Creek lineage of O. gilae (GenBank: OQ301638). Coho salmon (Oncorhynchus kisutch) was included as an outgroup. (B) a subset of cypriniform fishes, including M.
tetranema (GenBank: OQ301637) new mitogenome. Roundnose minnow (Dionda episcopa) was included as an outgroup. Node support values were generated with
100 bootstrap replicates. Asterisks and light blue highlighting denote novel sequences presented in this study. GenBank accession numbers are provided near
branch tips for all sequences used. References used for comparative analysis are provided in the Table 1.
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used to develop a PCR-based diagnostic tool for the identifi-
cation of Spruce Creek lineage fish. Repeats at the 50 end on
the control region were also identified in M. tetranema while
a 74 bp repeat is also present in the control region of M.
meeki but not in the basal member of the group (M. storeri-
ana). A close relationship was identified between M. tetra-
nema and M. hyostoma as noted previously and suggesting
heterospecific mitochondrial transfer (Echelle et al. 2018). The
mitochondrial genomes presented here provide an additional
resource for ongoing population genetic studies and can be
used to inform management efforts for these species.
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