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An AI based digital-twin for prioritising
pneumonia patient treatment

Neeraj Kavan Chakshu and Perumal Nithiarasu

Abstract
A digital-twin based three-tiered system is proposed to prioritise patients for urgent intensive care and ventilator sup-
port. The deep learning methods are used to build patient-specific digital-twins to identify and prioritise critical cases
amongst severe pneumonia patients. The three-tiered strategy is proposed to generate severity indices to: (1) identify
urgent cases, (2) assign critical care and mechanical ventilation, and (3) discontinue mechanical ventilation and critical
care at the optimal time. The severity indices calculated in the present study are the probability of death and the prob-
ability of requiring mechanical ventilation. These enable the generation of patient prioritisation lists and facilitates the
smooth flow of patients in and out of Intensive Therapy Units (ITUs). The proposed digital-twin is built on pre-trained
deep learning models using data from more than 1895 pneumonia patients. The severity indices calculated in the present
study are assessed using the standard benchmark of Area Under Receiving Operating Characteristic Curve (AUROC).
The results indicate that the ITU and mechanical ventilation can be prioritised correctly to an AUROC value as high as
0.89. This model may be employed in its current form to COVID-19 patients, but transfer learning with COVID-19
patient data will improve the predictions. The digital-twin model developed and tested is available via accompanying
Supplemental material.
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Introduction

The COVID-19 pandemic1 has put an unprecedented
stress on the already strained healthcare infrastruc-
ture.2,3 This situation has forced the healthcare provi-
ders to prioritise patients in critical need to access
Intensive Therapy Units (ITU) and mechanical ventila-
tion. Some of the currently used scoring systems for
patient prioritisation include SOFA (Sepsis-related
Organ Failure Assessment),4 APACHE (Acute
Physiology and Chronic Health Evaluation),5 and
SAPS II (simplified acute physiology score).6 These sys-
tems (see Table 1) have been validated over time for
analysis of intensive care treatments.7–10 In recent past,
several works have been published on severity scoring
using neural networks and other machine learning
algorithms.11–13 Majority of these algorithms were
trained on large ITU datasets to calculate severity
scores, covering a wide range of diseases and medical
conditions. Such systems, though valuable during nor-
mal times, may not be sufficiently specific to address
the current pandemic. In the case of COVID-19 (and in
other similar forms of influenza), more precise and

dynamically evolving system may be necessary to
address the sudden increase in severity and the need for
mechanical ventilation. With more mutations of the
virus being identified over time,14 an evolving knowl-
edge of the disease severity of each virus variant has
become extremely important. A robust and dynami-
cally adaptable model that takes into account the pro-
gression of severity over the course of care, which may
be different for different variants of the disease, is
therefore urgently needed.

A human digital-twin is one such model, widely used
in other areas,23–25 which is a digital replica of a human
system or sub-system. This replica is a personalised
digital representation, in terms of structure or
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functioning or both, of an individual or patient’s sys-
tem. It can provide real-time feedback on how a
patient’s health is likely to vary based on their current
known condition using periodic input data from the
patient’s vitals (such as heart rate, respiration rate).
The severity scores calculated by these digital replicas
(models), personalised to every patient using the indi-
vidual’s vitals and other readings, can form the basis
for prioritising potential pneumonia patients for ITU
and mechanical ventilation.

The three-tiered strategy of identify, assign and dis-
continue, as shown in Figure 1, is employed in the pres-
ent work to produce a patient priority list. The three-
tiers are: (1) identify urgent cases amongst those await-
ing care, (2) assign mechanical ventilation to critical
cases amongst patients receiving care, and (3) discon-
tinue mechanical ventilations and other care at the
optimal time, thereby freeing-up vital resources. In the
present work, each of these steps are enabled by artifi-
cial neural network models, a type of artificial intelli-
gence system, that are well established for complex
diagnosis with unprecedented levels of accuracy.26–29

These methods require significant amount of data for
training and testing. However, acquiring, de-identifying
and indexing huge amounts of COVID-19 patient data
from ITU is currently challenging. Hence, to expedite
progress, a transfer learning30 approach is adopted. In
such approaches, artificial neural networks are trained
using large amounts of data from similar backgrounds
to that of COVID-19. The trained model can be bol-
stered, known as transfer learning, with smaller
amounts of COVID-19 data, when available, to
improve accuracy. Since the background data used here
is from pneumonia patients, the model proposed
should be representative of severe COVID-19 patients.
All the artificial neural networks used in the three tiers
of Figure 1 together forms an individual patient’s
digital-twin system.

Methodology

An interconnected system, comprising multiple inde-
pendent neural networks, designed to assist a concerted
decision making process, is proposed. Independent
severity indices are calculated at the three tiers shown
in Figure 1 to assist in identifying cases that are severe
but with a high chance of survivability. The indices
used in each of the tiers are as follows (see Figure 1):

(i) Tier 1, Patients awaiting intensive care – (a)
Difference between probabilities of death with and
without mechanical ventilation support and (b)
Probability of requiring mechanical ventilation.

(ii) Tier 2, Intensive care inpatients awaiting mechani-
cal ventilation support – (a) Probability of death
(based on data from continuous monitoring of
vitals), (b) Probability of requiring mechanical

ventilation support (based on data from continu-
ous monitoring of vitals), and (c) Severity indices
used in Tier 1.

(iii) Tier 3, Discontinuation of mechanical ventilation
support amongst inpatients – (a) Probability of
requiring mechanical ventilation support (based
on data from continuous monitoring of vitals) and
(b) Probability of death (with consideration of
mechanical ventilation data).

Within each tier, based on probabilities calculated,
thresholds can be set by the ITU professionals for deci-
sion making. Independent severity score thresholds can
be set within each tier to allow situations in which dif-
ferent stages of ITU care may be needed at different
healthcare units or settings (Example – A patient mov-
ing from one hospital to another).

Data selection and pre-processing

Primary sources of data used in this work are from
MIMIC-III22,31 and eICU Collaborative Research
Database v2.0,32,33 obtained from PhysioNet.34

MIMIC III is a publicly-available database comprising
de-identified health-related data associated with
approximately 60,000 admissions of patients who
stayed in critical care units of the Beth Israel Deaconess
Medical Centre between 2001 and 2012. eICU
Collaborative Research Database v2.0 is multi-centre
database comprising de-identified health data associ-
ated with over 200,000 admissions to ITUs across the
United States between 2014 and 2015 (see Table 2).
Both of these databases consist of various vital sign
measurements, de-identified information on patient
stay, diagnosis information, records of medical proce-
dures carried out, drugs administered, and various
other intensive care information.

Since severe COVID-19 patients suffer from pneu-
monia,35 the selection and aggregation of data here is
based on critical symptom of pneumonia. Therefore,
various subsets of MIMIC-III and eICU databases with

Table 1. A brief list of proposed or existing severity scoring
methods and their examples.

Severity scoring method Name

Aggregate of weights subjectively
assigned to variables.

APACHE15

APACHE II16

SAPS17

Aggregate of weights assigned
to variables using

statistically pre-defined
value range.

APACHE IV,5

SAPS II6

MPM II (Mortality
probability models)18

Neural networks Various unnamed
models19–21

Super learner algorithm SICULA (Super ICU Learner
algorithm)22
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pneumonia are chosen for training. All patient data
with missing vital information are ignored. The subsets
chosen are:

(a) Pneumonia Mortality subset – Patients who suf-
fered from any form of pneumonia. This subset
included both survived and died cases at the time
of discharge.

(b) Pneumonia Ventilator subset – This consists of all
survived patients at the time of discharge, but suf-
fered from some form of pneumonia.

In the case of MIMIC-III database, a total of 493
ITU stays of pneumonia patients were considered.
Patient data with available matching and admissible
quality waveform data (collected from MIMIC-III
matched waveform subset) were considered. Out of
which, 211 (42.79%) stays required mechanical ventila-
tion and 95 (19.26%) stays resulted in death.

Neural networks and architecture

The proposed three-tiered system is constructed pri-
marily using multiple independent neural networks.
However, the type of neural networks used can be clas-
sified into two categories, Multilayer Perceptron
(MLP) and Recurrent Neural Networks (RNN).
Artificial neural networks may be used to perform
functions such as classification and prediction. MLP
models use a series of cascaded non-linear transforma-
tions of weighted coefficients, as shown in Figure 2(a),
to perform these functions. The MLPs typically accept
discrete values as inputs. In the case of patient data,
some examples of discrete inputs are patient gender,
blood glucose level, and sodium levels. These input val-
ues can be used to calculate the probability of death
and the probability of a patient requiring mechanical
ventilation.

An RNN, a type of neural network, is capable of
handling time series or other sequential input and/or
output data. In ITU, waveforms (time series) of body
vitals measured are examples of sequential input. A
special type of RNN is a Long Short-Term Memory
(LSTM) cell.36–38 In order to predict or classify
patients, LSTM cells are designed to ‘retain’ and/or
‘forget’ parts of input data sequence(s). These abilities
make them the appropriate choice of neural networks
to calculate severity indices and assess patient criticality
continuously or at regular time intervals. The RNN
based models used in the present work use a combina-
tion of sequential and discrete value inputs. As seen in
Figure 2(b), a combination of LSTM cell layer and
additional MLP model is used to predict severity index
of interest using fully connected neural layers. All mod-
els were built using Tensorflow library,39 using Keras40

library, on Python.
The MLP Models consisted of three dense hidden

layers. These layers are non-linearly activated using
either Rectified Linear Unit (ReLU) functions.
Depending on the severity index to be predicted, the
input layer consisted of 21–22 input parameters. As the
final value being predicted in these models is a single
value between 0 and 1, an output layer with single neu-
rone and sigmoid activation is used. Detailed architec-
ture of MLP models and training parameters are
provided in Supplemental Appendix A.

Figure 1. Three tiered patient prioritisation strategy to reduce
mortality rate in intensive care units.

Table 2. Baseline characteristics of subset selected from eICU
Collaborative Research Database v2.0.

Overall population, n = 1895

Age 68 [56–79]
Gender (Male) 994
On mechanical ventilation 1155 (60.94%)
HR (bpm) 112 [98–128]
MAP(mmHg) 62 [51–123]
RR (cpm) 33 [25–41]
Na (mmol/l) 138 [133–141]
Glucose (mmol/l) 146 [96–201]
WBC (103/mm3) 9.7 [5.33–15.06]
PaO2/FiO2 1.66 [1.12–2.37]
Bilirubin (mg/dl) 0.6 [0.4–0.9]
Dead 230 (12.13%)
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In the case of RNN based models, sequential input
data was processed by a network model with single or
double LSTM layer(s). These layers use input arrays
with eight input parameters. Discrete inputs are pro-
cessed by an independent network model with a 21–26
input parameters, depending on the severity index. The
outputs of these networks are then merged and fed to
final model activated with ‘ReLU’ functions. Similar to
the MLP models, the final model has an output neu-
rone with sigmoid activation. Dropouts and activity
regularisers, were used in these models to avoid over-fit-
ting. A detailed description of RNN based model archi-
tectures and training parameters have been provided in
the Supplemental Appendix B.

The discrete input data was standardised within a
similar range. All MLP models were trained and cross-
validated on data subsets chosen from eICU
Collaborative Research Database v2.0. All RNN based
models were trained on the MIMIC-III database,
owing to the waveform datasets available in them.
Datasets were split into training (80%) and testing
dataset (20%). Cross-validation of models were carried
out on the training to tune the hyper parameters and
analyse model performance using K-fold method, for
which the training dataset was divided into 10-folds.

Tier 1-‘‘Identify’’: Identification of ill patients amongst
those awaiting intensive care

Since this class of patients are not monitored continu-
ously, data obtained within 24 h of hospital admission
is used. A subsystem of two MLP models were trained
on a subset containing pneumonia patient data from
eICU Collaborative Research Database v2.0 database.
One was used to predict the probability of death, and
the other for calculating the probability of requiring
mechanical ventilation.

The first model was trained on ‘Pneumonia mortal-
ity subset’, consisting of 1895 patients and the second
model was trained on ‘Pneumonia ventilator subset’,
consisting of 1665 patients. The 20 input fields chosen
for the first MLP are age, gender, ventilation status (a
binary value), intubation status (a binary value), dialy-
sis status (a binary value), heart rate, respiration rate,
Glasgow coma scale, white blood cells (WBC) count,
blood glucose levels, partial pressure of oxygen in arter-
ial blood (PaO2), partial pressure of carbon dioxide in
arterial blood (PaCO2), mean blood pressure, body
temperature, sodium, potassium, bicarbonate, biliru-
bin, concentration of oxygen in the inhaled gas mixture
(FiO2), chronic diseases (Metastatic cancer, AIDS or
Haematologic malignancy), and Blood Urea Nitrogen
(BUN) levels. These inputs are also used by APACHE
IV scale. The second MLP for predicting probability of
requiring mechanical ventilation used the same input
parameters as the first except for ventilation status,
which is now added as additional parameter. To remind
the reader, the data set used for this model consists of
only patients who survived at the time of discharge.
Thus, the training criteria should include mechanical
ventilation support data to successfully discharge the
patient alive.

Using the predicted severity indices, a patient prior-
ity list may be generated to admit patients with more
urgent need for care into ITU. Since mechanical venti-
lation is the indication of severity in COVID-19
patients, probability of requiring mechanical ventila-
tion is the primary severity index in preparing such a
list. The patients with similar probabilities of requiring
ventilation are prioritised using difference between
probabilities of death, with and without ventilation.
The probability of death with mechanical ventilation
may also be used to further refine the prioritisation list.
The prioritised patients in Tier1 may be admitted to

Figure 2. Multilayer Perceptron (MLP) and Recurrent Neural Networks (RNN) for calculating severity indices: (a) MLP and
(b) RNN.
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the ITU and the prioritisation list may be further
refined in Tier 2 for providing mechanical ventilation.

Tier 2-‘‘Assign’’: Identifying and providing mechanical
ventilation support amongst intensive care patients

The patients selected from Tier 1 to go into ITU can
now be continuously monitored. However, with limited
number of mechanical ventilators it becomes a neces-
sity to provide this support to the more urgent cases.
To identify urgent cases amongst the inpatients in an
ITU, a continuous monitoring based severity index is
required. The primary severity indices used here are
probability of requiring mechanical ventilation support
(based on continuous monitoring) and probability of
death (based on continuous monitoring). The RNN
based model shown in Figure 2(b) is used to predict
these severity indices. The sequential (continuous)
inputs used here are heart rate, pulse, systolic and dia-
stolic blood pressures, respiration rate, and spot oxygen
saturation (SpO2), in addition to multiple discrete input
fields,41 AADO2 (alveolar-arterial difference of oxygen
partial pressure), bicarbonate (HCO3), carboxyhaemo-
globin, chloride, calcium, base excess, glucose, haema-
tocrit, haemoglobin, sodium, potassium, oxygen
saturation in arterial blood (SO2), FiO2, PaO2, methae-
moglobin, temperature, age, and gender. The lowest
measured discrete input value in a 24h period is used in
the training. A direct allocation of ventilation support
at the first tier is also possible when required.

Tier 3-‘‘Discontinue’’: Identifying patients who can
discontinue mechanical ventilation support

The patients identified in Tier 2 to receive mechanical
ventilation can now undergo continuous monitoring to
decide when to discontinue treatment. The probability
of requiring mechanical ventilation support (based on
continuous monitoring of patient) and probability of
death (considering continuous ventilation support) are
used as the indices to safely remove the mechanical
ventilation support. The RNN used in Tier 2 with simi-
lar inputs is continued here to observe the probability
of still requiring mechanical ventilation support. The
patients with probability of requiring mechanical venti-
lation lower than a set threshold may be removed from
the ventilator support. To reduce the risk of false nega-
tives, probability of death is also monitored in this tier.
An additional RNN based model is trained to take ven-
tilator settings along with the inputs used in Tier 2 to
predict probability of death. The additional input fields
include positive end-expiratory pressure (PEEP),
required O2, tidal volume and ventilation rate. The per-
son with probability of requiring mechanical ventila-
tion less than the set limit must also have a probability
of death lower than the set threshold limit to discon-
tinue treatment.

Results and discussion

All three tiers discussed in the previous section together
form the digital-twin of a patient. A total of five inde-
pendently trained neural network models take the mea-
sured patient vitals and provide various severity indices
as output. All models in the present work are designed
with ease of use in mind. Many healthcare units lack
the state of the art IOT (Internet of Things) based
health monitoring systems or face issues with platform
compatibility. Manual inputting of data, including time
dependent sequential inputs, would be necessary in
units where electronic recording capabilities are una-
vailable. Thus, all inputs are designed to allow manual
intervention (see Supplemental Information). The MLP
models are designed to take, the most severe value for
each input field, within a 24h period. All RNN based
models require two types of inputs, discrete input fields
once every 24 h period, that are most severe, and all
sequential input fields such as heart rate, SpO2, and
blood pressures at regular time intervals. These models
inherently take note of time elapsed from the start of
care and use latest data for calculating severity indices.
The two patient databases used for training the models
are explained in the previous sections (see for example
Table 2).

Performance measures

All models, performing classification to calculate prob-
abilities, are evaluated using the Area Under Receiving
Operating Characteristic Curve (AUROC), reported
with corresponding 95% confidence interval. Receiving
Operating Characteristic (ROC)42,43 curve is a prob-
ability curve. Performance is measured using the
AUROC. It represents the degree of separability
between classes. In the context of the present work, this
separability represents the difference between severe
and not so severe cases, for each severity index. Higher
AUROC represents better performance. The para-
meters used to estimate AUROC are true and false pos-
itive rates. The graphs representing ROC are plotted
for false positive rate (one-specificity) versus true posi-
tive rate (sensitivity). At AUROC of 0.5, the model
loses its discrimination capacity to distinguish between
classes. It is represented by a dashed diagonal line in
the figures below for reference.

Tier 1-‘‘Identify’’

Here, two MLP models are used to predict the prob-
ability of death and the probability of requiring
mechanical ventilation using patient vital data, mea-
sured over a period of 24 h. The AUROC obtained
over the total dataset are respectively shown in Figure
3(a) and (b). An AUROC of 0.89 (95% CI: 0.88–0.91)
is obtained for the probability of death and 0.84 (95%
CI: 0.82–0.86) is obtained for the probability of requir-
ing mechanical ventilation. Cross-validated accuracy
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scores of 0.86 (SD: 60.005) and 0.70 (SD: 60.055),
respectively, were obtained in these models on the
training dataset. Furthermore, an accuracy score of
0.88 and 0.72 over the testing dataset. Figure 3(a) also
shows APACHE IV score with a predicted probability
of death with an AUROC of 0.72. Thus, the proposed
approach appears to be a substantially better predictor.
The model shows that the probability of death and the
probability of requiring ventilation with respectively
86% and 85% chances of accurate prediction. From
the data computed, a patient prioritisation list for ITU
admission may be created by calculating

(a) Difference in probabilities of death with and with-
out mechanical ventilation.

(b) Probability of death with mechanical ventilation.
(c) Probability of requiring mechanical ventilation

support.

Tier 2-‘‘Assign’’

The inpatients within ITUs, whose vitals are continu-
ously monitored, can be assessed for severity of lung
disease periodically using the RNN model. As seen in
Figure 4(a), an AUROC of 0.86 (95% CI: 0.81–0.90) is
obtained from the model for the probability of death,
over the entire dataset. The probability of requiring
mechanical ventilation is calculated with an AUROC
of 0.83 (95% CI: 0.79–0.86) as shown in Figure 4(b).
These models obtained a cross validated accuracy
scores of 0.73 (SD: 60.04) and 0.74 (SD: 60.12) respec-
tively. Furthermore, accuracy scores of 0.82 and 0.71
respectively were obtained over the testing dataset. This
indicates that with continuous or regular inputs of mea-
sured vitals (heart rate, respiration rate, SpO2, and
blood pressures) and discrete inputs such as haemoglo-
bin, WBC, and sodium, need for mechanical ventilation
can be identified with 83% chance. This calculation can

be
c-
o-

Figure 3. AUROC (shaded area) curve for MLP models used to predict the probability of death and the probability of requiring
mechanical ventilation support: (a) probability of death and (b) probability of requiring mechanical ventilation.

Figure 4. AUROC (shaded area) curve for RNN based model results of the probability of death for patients and the probability of
requiring mechanical ventilation support: (a) probability of death and (b) probability of requiring mechanical ventilation.
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ntinued into Tier 3 to discontinue ventilation as demon-
strated below.

Tier 3-‘‘Discontinue’’

For patients in ITU an approach for the probability of
death must be calculated by including the mechanical
ventilation. Unlike the RNN based model used in Tier
2, the model here includes mechanical ventilator set-
tings along with the other inputs to calculate the prob-
ability of death. As seen in Figure 5, the model
performed classification with an AUROC of 0.89 (95%
CI: 0.85–0.93) over the entire dataset. This model
obtained a cross validated accuracy score of 0.81 (SD:
60.025) and testing accuracy score of 0.80. This sever-
ity index is required to support the probability of still
requiring mechanical ventilation support. A combined
analysis of probability of requiring mechanical ventila-
tion support and death is necessary to reduce the
chances of erroneous decisions of early removal of sup-
port. If both indices are substantially low, the mechani-
cal ventilation may be discontinued.

Conclusions

The digital-twin system proposed in the present study
to construct a subject-specific digital twin appears to
provide better results than existing scoring methods.
Although the data used to train the models is for non-
COVID-19 patients with pneumonia, the similarity of
the data to COVID-19 patients appears to be strong.
Thus, the proposed digital-twin can be used as a start-
ing point to further refine the scoring system. Overall,
the accuracy of prediction is excellent with a minimum
AUROC of 0.8 in all cases. By adapting transfer learn-
ing on emerging COVID-19 data, this accuracy may be
substantially enhanced for severe COVID-19 patients.

Supplementary material provided with this manu-
script makes the code open to everyone to download

and train on additional data. With further refinement
by the community and our own research group, we
believe that the model will serve the healthcare commu-
nity to deal not only with the COVID-19 pandemic but
any future influenza patient prioritisation.
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Appendix A: MLP models

The neural network architecture of the MLP models
used in Tier one and the parameters employed during
training are presented in this section. Table A describes
the training parameters used along with the activation
functions employed. Figure A1 are graphical represen-
tations of the two models used in the first tier.

In Figure A1, L1 (l=0:0003) is an activity regulari-
ser in the first hidden layer of MLP model used for pre-
dicting probability of death. L2 with l=0:0038 and
l=0:0018 respectively are weight regularisation and
activity regularisation, in the first hidden layer of MLP
model to predict probability of requiring mechanical
ventilation (See supplementary material). First and sec-
ond dropout layers of MLP model for predicting prob-
ability of death has 50% and 40% dropouts
respectively. Similarly, both dropout layers in MLP for
predicting probability of requiring mechanical ventila-
tion have a dropout of 50%.

The performance of the model is shown in Figure
A2. This figure shows the loss seen over epochs, aver-
aged over 10-folds, during training. The convergence of
training and validation losses confirm an optimal fitting
of the model. Figure A3 shows the calibration curve for
the three models, showing close to a perfect calibration.

Appendix B: RNN based models

The neural network architecture of the MLP models
used in tiers 2 and 3, and the parameters employed dur-
ing training are presented in this section. Table B
describes the training parameters used along with the
activations functions employed. Figures B1 and B2 are
graphical representations of the three RNN models
used in the tiers 2 and 3.

The performance of the model is shown in Figure
B3. This figure shows the loss seen over epochs, aver-
aged over 10-folds, during training. The convergence of

Table A. Neural network parameters used in architecture and
training of MLP models.

Activation functions

Hidden layers: ReLU
Output layer: Sigmoid
Number of epochs: 100
Batch size: 150
Cost function: Binary cross-entropy
Optimizer: Adam
Regularisers used:
L1 & L2

Figure A1. Neural network architecture used for MLP models.
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training and validation losses confirm an optimal fit-
ting of the model. Figure B4 shows the calibration
curves for the three models, showing close to a perfect
calibration.

In Figures B1 and B2, all dropout layers have 30%
dropout except for the RNN model used in predicting
probability of requiring mechanical ventilation in which
the dropout is 50%. All weights were initialised, during
training, with Glorot Normal function.

Figure A3. Calibration curves for MLP models.

Table B. Neural network parameters used in architecture
and training of RNN based models.

Activation functions

Dense hidden layers: ReLU
Output layer: Sigmoid
LSTM: Tanh & Sigmoid (Recurrent activation)
(Default for CuDNNLSTM)
Number of epochs: 100
Batch size: 10
Cost function: Binary cross-entropy
Optimizer: Adam
Regularizers: L1 (l = 0:02)(All LSTM layers)

Figure A2. Loss observed over epochs during training for MLP models.
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Figure B1. Neural network architecture used for RNN based models in Tier 2.
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Figure B2. Neural network architecture used for RNN based models in Tier 3.
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Figure B3. Loss observed over epochs during training for MLP models.

Figure B4. Calibration curves for RNN models.
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