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Abstract

Biodiversity conservation and ecosystem-service provision will increasingly depend on the existence of secondary
vegetation. Our success in achieving these goals will be determined by our ability to accurately estimate the structure and
diversity of such communities at broad geographic scales. We examined whether the texture (the spatial variation of the
image elements) of very high-resolution satellite imagery can be used for this purpose. In 14 fallows of different ages and
one mature forest stand in a seasonally dry tropical forest landscape, we estimated basal area, canopy cover, stem density,
species richness, Shannon index, Simpson index, and canopy height. The first six attributes were also estimated for a subset
comprising the tallest plants. We calculated 40 texture variables based on the red and the near infrared bands, and EVI and
NDVI, and selected the best-fit linear models describing each vegetation attribute based on them. Basal area (R2 = 0.93),
vegetation height and cover (0.89), species richness (0.87), and stand age (0.85) were the best-described attributes by two-
variable models. Cross validation showed that these models had a high predictive power, and most estimated vegetation
attributes were highly accurate. The success of this simple method (a single image was used and the models were linear and
included very few variables) rests on the principle that image texture reflects the internal heterogeneity of successional
vegetation at the proper scale. The vegetation attributes best predicted by texture are relevant in the face of two of the
gravest threats to biosphere integrity: climate change and biodiversity loss. By providing reliable basal area and fallow-age
estimates, image-texture analysis allows for the assessment of carbon sequestration and diversity loss rates. New and
exciting research avenues open by simplifying the analysis of the extent and complexity of successional vegetation through
the spatial variation of its spectral information.
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Introduction

In the dawn of the 21st century the magnitude of the human

footprint on the planet’s ecological systems has become undeniable

[1–4]. Although much emphasis has been placed on the effects of

industrial activities and their potential contribution to global change

through greenhouse gas emissions [5–8], the chronic effects of land

clearance for the purpose of food production on the Earth’s natural

vegetation are likely to be among the most long-lasting human

legacies [9–11]. Ecologists now acknowledge that the majority of the

planet’s vegetation during the present century will consist of

secondary or successional communities: from now on we will co-

exist with secondary forests, use them, and entirely depend on them

[12,13]. The maintenance of terrestrial biodiversity will be possible

as long as we are capable of keeping expanses of secondary forests

[14,15], and the regulation of the world’s ecosystems will be closely

linked to their existence [13,16]. Secondary forests have also been

identified as important carbon reservoirs and may play a crucial role

in mitigating future global warming [17–27].

Vegetation ecologists currently struggle in their attempts to

distinguish secondary forests from primary vegetation through

remote sensing [28–32]. More critical, however, is the difficulty in

differentiating the various successional stages that secondary

forests normally comprise and measure their extent [20,33–37].

As their structure and functions depend on their succesional status,

there is a strong need to efficiently evaluate the extent and

complexity of secondary vegetation existing in any region and to

discern its attributes.

Our success in achieving these goals will depend largely on our

ability to estimate accurately the structure and diversity of

secondary communities at broad geographic scales. Efforts to

assess the extent of secondary vegetation and to distinguish its

successional variants through remote sensing have followed several

routes. Most studies estimating forest structure and diversity

through satellite imagery have exclusively used image spectral

features and their derived vegetation indices [20,30,34,38–45].

There are, however, several problems related to this approach; for

example, some remotely-sensed vegetation indices face the
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problem of saturation, i.e. they are unable to discriminate different

plant communities beyond a certain biomass or canopy develop-

ment threshold [22,30,39,46,47]. Moreover, although some

studies have succeeded in discriminating forest successional stages

accurately, they have been limited to the recognition of few broad

stages, which do not reflect the continuous nature of the

successional process [28,34,48–52].

Recent theoretical developments in Landscape Ecology have

established the link between the structural and compositional

complexity of vegetation and the spatial variability of its remotely-

sensed signal [53–55]. This spatial variability is directly related to

the heterogeneity of the plant community and can be assessed by

analyzing the texture of a remotely-sensed image [33,56–58].

Texture refers to the spatial variation of the elements of which any

image is composed [59]. Although measures of texture have been

commonly used as image descriptors in remote sensing analyses

[46,60,61], the resolution of most sensors currently employed for

this purpose has prevented the examination of the internal

heterogeneity of plant communities, as the size of commonly-used

pixels is too large to detect such small-scale variation [37,62]. This

drawback may be overcome by using very-high resolution imagery

(VHR; pixels ,10 m), currently available for most of the Earth’s

surface, as it provides a better match between pixel size and the

internal variation of vegetation [33,56–58,63–66]. Therefore, we

hypothesized that the textural information contained in VHR

images has the potential to reflect the variability of secondary

vegetation, allowing us to model the successional process.

The goal of this study was to examine the potential of textural

properties of a VHR Quickbird image to model secondary

vegetation attributes measured in the field, in a seasonally dry

tropical region. We wanted to test the power of the texture of

remote images to describe and predict vegetation attributes, while

identifying those texture attributes with the highest predictive

potential. In modeling the relationship between textural and

vegetation attributes, we succeeded in producing simple models

that can be easily obtained for many regions, and that have a

straightforward biological interpretation.

Materials and Methods

Study area
The study was conducted in the dry tropical region of Nizanda,

Oaxaca State, Mexico (16u39.499N, 95u0.669W; Fig. 1). Mean

annual temperature is 26uC and the total average annual rainfall is

900 mm, largely concentrated between June and October. The

prevailing vegetation matrix is a low-stature (7–10 m) seasonally

dry tropical forest [67,68]. Traditional slash-and-burn agriculture

is practiced in the area. Fields are typically cropped for one or two

years before being abandoned [69], which results in a mosaic of

differently-aged fallows spread across the area.

Figure 1. Study area (UTM zone 15n) and location of the secondary plots (&) used for modeling their attributes from the texture
derived from a Quickbird satellite image.
doi:10.1371/journal.pone.0030506.g001
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Field data
Fourteen 30630 m fallows with time since abandonment (age)

ranging from 2 to ca. 60 years, and one mature forest site, were

selected from field surveys conducted in 2005. Site age was

obtained from interviews with landowners and verified through

dendrochronology [70]. This set of fallows included a large range

of environmental and vegetational heterogeneity [71,72], from

sites with a little dense canopy dominated by shrubs of open

foliage, to sites with a dense plant cover and a low percentage of

bare soil.

The sites were marked and designated as permanent sites in

2003 [69,71], and detailed structural and floristic information was

collected annually (Table 1 lists the variables used for vegetation

description and their abbreviations). In each fallow, four 2065 m

transects (400 m2, subdivided in four 565 m quadrats) were

established for the sampling of woody and succulent plants. In

each transect, all individuals $5 cm DBH were sampled in the

four quadrats; individuals with DBH$2.5 cm but ,5 cm were

sampled in two quadrats, and individuals with $1 but ,2.5 cm

DBH were sampled in one quadrat only. For each individual,

DBH and two orthogonal crown diameters (used to calculate

crown areas) were measured. Structural variables were obtained

by scaling the data to 1 ha. Based on this information, for each

plot the T and U sets (i.e. Total and Upper, respectively) of

structural and diversity attributes were prepared. The T set

included all sampled plants in the plot, whereas the U set included

only those plants that are more likely to be remotely sensed [73].

The U set comprised those plants above the median in the

frequency distribution of canopy cover; this subset represented

between 50% and 75% of the basal area in a sites. For these two

sets we calculated Dn (individuals in the sampled area), CC (the

sum of the individual crown areas), BA (the sum of individual basal

areas), S (number of species), and Simpson’s D’ and Shannon’s H’

diversity indices [74]. In addition, Hgt was calculated as the

average of the heights of eight trees, each the tallest tree in the

zones formed by two adjacent quadrats. Structural and diversity

data for the study sites are shown in Table 2; please refer to Table

S1 for information on within-site variability for those variables for

which the calculation of such variation is feasible and sensible.

Image processing
We used a high-resolution Quickbird satellite image (pixel

size = 2.6 m) acquired in early December 2005. This date, which

corresponds to the beginning of the dry season, was chosen to

minimize cloud cover while ensuring the presence of foliage in the

plants. The image was geometrically and atmospherically

corrected to surface reflectance following Krause [75].

From the four available bands in this image, we selected the red

(RED; 0.63–0.69 mm) and the near infrared (IR; 0.76–0.90 mm)

[41], both of which are known to reflect the condition of

vegetation functioning and overall condition. We also estimated

two commonly used vegetation indices, namely the normalized

difference vegetation index (NDVI) and the enhanced vegetation

index (EVI) [47], both derived from the combination of the two

bands, as follows:

NDVI~
IR{RED

IRzRED

� �

EVI~G
IR{RED

LzIRzC1|RED{C2|BLUEzL

� �

EVI incorporates empirical parameters (C1 = 6, C2 = 7.5) and the

blue band (BLUE, 0.45–0.52 mm) for atmospheric correction, and

sensitivity minimization of soil background reflectance variation

(L = 1). The EVI does not saturate under dense canopy conditions

as the NDVI does, and it also appears to be more sensitive to

canopy structural characteristics [76].

Image texture analysis
Image texture refers to the spatial variation and arrangement of

the pixels of which any image is composed [59,77]. Although this

property can be extracted through a wide array of methods

[77,78], we chose to follow a statistical approach for this study. We

calculated texture variables known as first-order and second-order

measurements. First-order texture measures are statistical proper-

ties that do not consider pixel neighbor relationships and are

derived from the original image values within a certain window

(group of pixels); for this group of texture measures, the spectral

variability within the window was assessed by calculating the range

and the skewness of the values.

Unlike the textural variables from the first group, second-order

measurements consider the spatial relations between groups of two

neighboring pixels within the window [59], therefore these

measurements were also selected because of their greater potential

to reflect the heterogeneity in successional vegetation stands. The

calculation of second-order variables involves the construction of

Table 1. Vegetational attributes used in the analysis and their abbreviations.

Vegetational attribute Description Abbreviation

Age Time since abandonment of the fallow (years) Age

Density Individuals in the sampled area (individuals/ha) Dn

Canopy cover Sum of all individual crown areas by site (m2/ha) CC

Basal area Sum of all individual basal areas by site (m2/ha) BA

Richness Number of species S

Height Mean height (see Methods; m) Hgt

Shannon’s index Diversity index (logits) H’

Simpson’s index Diversity index (logits) D’

Total set All sampled plants T

Upper set Plants above the median of the CC cumulative U

doi:10.1371/journal.pone.0030506.t001
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Gray-Level Co-occurrence Matrices (GLCMs), which are matrices

containing the probabilities of co-occurrence of pixel values for

pairs of pixels in a given direction and distance. To construct such

matrices we used a spatial distance of one pixel, four directions (0u,
45u, 90u, 135u), and 64 levels of gray. A co-occurrence matrix was

constructed for each direction, and from each co-occurrence

matrix a specific texture measurement was calculated for the

window. The texture measurements of each direction were then

averaged to obtain a single spatially-invariant texture value. This

procedure was applied for the variables described in Table 3,

which correspond to three groups of variables describing the

degree of contrast between pixels (homogeneity, contrast,

dissimilarity), the regularity in the pixels within a window (entropy,

angular second moment), and the statistics derived from the

GLCM (mean, variance, correlation).

The ten textural variables (two first-order and eight second-

order variables) were calculated for the RED and the IR bands, as

well as for the two vegetation indices (NDVI and EVI). We used a

moving-window approach with a window size of 15 pixels to

match the size of the sampling plots in the field; the central pixel

value of this window was extracted from each of the 40 texture

layers (four layers and ten variables). The entire procedure was

programmed in the ENVI+IDL environment [79].

Statistical analysis
We assessed the potential of the 40 texture variables to describe

the observed changes in each of the 14 vegetation variables by

means of linear models. In all cases the response variables were

log-transformed before model fitting. This procedure guaranteed

that the estimated values, when transformed to their original scale,

would be positive; additionally, such transformation tends to

homogenize the residuals, which are usually proportional to the

mean in most probability density functions restricted to the

positive numbers domain.

Assuming that different texture variables provide supplementary

information about the remotely-sensed vegetation, we fitted three

types of models, depending on whether they included one (560

models), two (10,920) or three (138,320) texture variables; no

interaction was examined due to the limited degrees of freedom.

For each of the three model types we selected the one having the

largest coefficient of determination (R2). For our analysis it was

crucial to be able to compare the potential of textural variables to

model different vegetational variables; for this purpose, R2 was

appropriate owing to its fixed range (from 0 to 1), unlike the

commonly used Akaike’s Information Criterion (AIC), whose

range depends, among other things, on the sum of squares of the

error of the dependent variable [80], making it impossible to

compare models produced for different vegetational attributes.

Nevertheless, R2 does not provide a good measure to determine

whether, for any given vegetational variable, increasing the

number of variables incorporated into the model improves its

performance. Therefore, we compared the best-fit models of each

type (i.e. with one, two, or three textural variables) through the

small-sample-size bias-correction version of AIC (AICc); two

models were considered to be equally good when the difference in

AICc between them was ,2 [80].

Due to the large number of models that were fitted and the

small data set, it was expected that large R2 values would be

obtained by chance. To minimize this possibility, we produced

null models by randomly sorting the texture- and vegetation-

attribute data, fitting the same linear models as above, and

selecting those with the largest R2-values. This procedure was

repeated 1,000 times and an empirical distribution of the largest

expected R2 was obtained. We then estimated the P-value

associated with each model as the fraction of the simulated R2

values that were greater than the observed ones. The median of

the empirical distribution was used as a measure of the expected

magnitude of R2 under a completely random scenario.

To assess the predictive power of the models, we used leave-two-

out cross-validation, i.e. we used a linear model fitted to the data

from 13 plots (the calibration data) to predict the vegetation

attribute of the remaining two plots (the validation data). We fitted a

model for each possible split of the data set into calibration and

validation subsets, and calculated the sum of squares between the

estimated and observed values of the vegetation variable for the two

validation plots. The model with the highest predictive power would

Table 2. Structural and diversity attribute values for 15 plots.

Age Hgt ST SU DnT DnU BAT BAU CCT CCU H’T H’U D’T D’U

2 2.4 7 3 1850 40 1.023 0.808 4996.664 2954.275 1.325 0.518 0.394 0.728

3 2.7 5 4 4850 102 1.756 1.092 13929.704 7424.604 0.538 0.424 0.756 0.815

5 4.6 4 2 4750 66 6.526 3.887 18587.796 10168.898 0.571 0.136 0.734 0.940

7 4.7 6 1 1825 18 6.150 3.438 18949.464 9832.621 1.293 0 0.367 1

9 4.6 19 7 6775 91 11.068 6.341 31597.844 16515.046 1.975 0.954 0.245 0.539

12 6.1 15 5 4100 46 10.201 6.590 28930.809 14945.067 1.835 1.240 0.281 0.325

13 6.6 29 14 6475 82 15.344 10.523 32446.110 16544.336 2.561 1.851 0.139 0.264

18 7.3 17 10 6925 73 14.604 10.672 31694.175 15909.057 1.730 1.469 0.311 0.391

20 7.0 22 8 4425 58 14.234 8.744 29682.050 15220.037 2.250 1.387 0.220 0.358

25 6.4 12 5 3850 45 11.042 7.022 23283.665 12097.390 1.591 0.814 0.323 0.611

32 6.5 21 9 5600 70 15.464 10.401 33259.234 16699.067 2.299 1.404 0.162 0.372

38 6.5 41 28 7725 122 26.040 17.116 36110.813 18559.764 3.055 2.615 0.070 0.120

42 6.8 27 12 5550 99 21.611 11.820 32099.665 16774.770 2.720 1.640 0.093 0.278

60 8.3 36 11 4500 46 21.441 14.374 36176.727 18135.708 2.993 1.614 0.085 0.330

M 7.0 36 17 7675 57 29.641 15.329 42411.829 21630.317 3.019 2.314 0.071 0.147

See Table 1 for vegetational attributes abbreviations and units of measurement.
doi:10.1371/journal.pone.0030506.t002
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be the one with the smallest average sum of squares (SS) averaged

over all the possible splits of the data set. We used a leave-two-out

procedure to avoid the problems arising from the more popular

leave-one-out approach [81–83], while keeping a sample size as

large as possible for the estimation of the four parameters of the

most complex models (those based on three texture variables).

The actual values of SS cannot be compared between

vegetation attributes as they depend on the scale of measurement.

A more informative statistic is given by the proportion of the

variation of the vegetation attribute that can be predicted by the

model. This statistic, expressed as a leave-d-out cross-validation

R2
CV, is:

R2
CV~1{

1

d
�SS�SS

1

n

Xn

i~1

yi{�yyð Þ2

where yi is the vegetation attribute for the ith plot, and n is the

number of plots. R2
CV ranges from 2‘ to 1, where a value of 1

means that a model predicts the validation data perfectly, while a

negative value means that a model is over-fitted, because it would

make worse predictions than those made by a null model. This

statistic is dimensionless, so it can be used for comparing

vegetation variables.

All statistical analyses were performed using R [84].

Results

Structural and diversity attributes of secondary
vegetation

Two sets of structural and diversity attributes (T and U) were

analyzed for each sampled plot (see Table 2). For the T set, which

included all sampled plants in the plot, most structural variables

exhibited clear increasing trends with successional development.

However, this was not the case for DnT, which did not show a

clear successional pattern, and for DT (dominance), which tended

to decrease from young to old fallows. Some variables clearly

showed stabilizing trends, particularly Hgt and CCT, or non-

monotonic responses, as was the case of ST.

The U set was arbitrarily defined as those trees that were above

the median of the canopy cover cumulative distribution of each

fallow. The proportion of BAU with respect to BAT was generally

high, mostly above 60%, and often higher in mid-age fallows,

despite the very low number of individuals included in this

community’s subset (in all cases less than 2% of stem density of the

entire community).

Descriptive models of successional vegetation attributes
We constructed three types of linear models to describe the

relationship between the 14 vegetation attributes and the 40 image

texture variables. These types corresponded to the number of

texture variables used in constructing the model: one, two or three

texture variables.

Most of the best fit models had relatively high significant R2

values, and these increased as more variables were included. Among

one-variable models, five out of 14 models had R2.0.80, and this

number increased to 10 and 12 for two- and three-variable models,

respectively (Table 4). According to AICc, the latter were always the

best-fit models (Table 4, TV entries in bold typeface). However, it

must be noted that for half of the 14 vegetational variables the best

two-variable models were equally good.

We measured the expected magnitude of R2 under a completely

random scenario through the median of its empirical distribution.

The difference between this median and the observed one

decreased as more variables were included, from 0.37 for models

with one variable, to 0.24 and 0.11 in two- and three-variable

models, respectively (Fig. 2). Also, the proportion of non-

significant best-fit models increased from 0.14, through 0.21 to

0.43 as more variables were included. There were small, non-

significant differences (paired t = 0.190, P = 0.851) between the R2

values calculated using the two data sets (T and U).

Table 3. Texture variables derived from the grey-level co-occurrence matrix (GLCM).

Texture variable Formula Description

Mean
MEAN~

PN{1

i,j~0

iPi,j

Mean of the probability values from the GLCM. It is directly related to the
image spectral heterogeneity.

Variance
VAR~

PN{1

i,j~0

Pi,j (i{MEAN)2
Measure of the global variation in the image. Large values denote high levels
of spectral heterogeneity.

Correlation
COR~

PN{1

i,j~0

Pi,j
(i{MEAN)(j{MEAN)

VAR

h i Measure of the linear dependency between neighbouring pixels.

Contrast
CONT~

PN{1

i,j~0

Pi,j(i{j)2
Quadratic measure of the local variation in the image. High values indicate
large differences between neighbouring pixels.

Dissimilarity
DISS~

PN{1

i,j~0

Pi,j i{jj j
Linear measure of the local variation in the image.

Homogeneity
HOM~

PN{1

i,j~0

Pi,j

1z(i{j)2

Measure of the uniformity of tones in the image. A concentration of high
values along the GLCM diagonal denotes to a high homogeneity.

Angular second moment
ASM~

PN{1

i,j~0

Pi,j
2

Measure of the order in the image. It is related to the energy required for
arranging the elements in the system.

Entropy
ENT~{

PN{1

i,j~0

Pi,j ln Pi,j

Measure of the disorder in the image. It is inversely related to ASM.

The abbreviations, formulas and descriptions of the eight texture variables used to model successional vegetation attributes are presented. Pi,j is the (i, j) element of the
GLCM, and represents the probability of finding the reference pixel value i in combination with a neighbor pixel value j. Note that Si,j Pi,j = 1.
doi:10.1371/journal.pone.0030506.t003
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Table 4. Best descriptive linear models for 14 vegetation attributes (VA) as a function of 1, 2 and 3 textural variables (TV) with
corresponding R2, P and R2

CV values.

VA TV R2 P R2
cv IR

M
E

A
N

R
E

D
V

A
R

R
E

D
M

E
A

N

N
D

V
I A

S
M

E
V

I A
S

M

IR
C

O
R

R

R
E

D
D

R

N
D

V
I S

K
E

W

N
D

V
I M

E
A

N

E
V

I M
E

A
N

N
D

V
I D

IS
S

R
E

D
C

O
N

T

IR
V

A
R

E
V

I S
K

E
W

BAT 1 0.802 ,0.001 0.755 2

2 0.926 ,0.001 0.900 2 +

3 0.958 ,0.001 0.907 2 2 +

BAU 1 0.784 0.001 0.733 2

2 0.916 ,0.001 0.875 2 +

3 0.957 ,0.001 0.906 2 2 +

Hgt 1 0.819 0.003 0.772 2

2 0.887 0.004 0.841 2

3 0.939 0.005 0.861 2 2 +

Age 1 0.822 ,0.001 0.755 2

2 0.851 0.001 0.761 2

3 0.937 0.001 0.872 2 2 +

CCU 1 0.802 0.001 0.629 2

2 0.884 0.002 0.777 2 2

3 0.931 0.002 0.807 2 2 +

CCT 1 0.809 0.003 0.630 2

2 0.885 0.003 0.769 2 2

3 0.923 0.015 0.797 2 2 +

SU 1 0.597 0.028 0.442 2

2 0.877 0.005 0.792 2 2

3 0.910 0.012 0.849 2 2 +

ST 1 0.743 0.001 0.636 2

2 0.869 0.002 0.778 2

3 0.897 0.036 0.776 2 2 +

H’U 1 0.603 0.019 0.464 2

2 0.820 0.012 0.721 2 2

3 0.881 0.062 0.678 2 2 2

D’T 1 0.721 0.002 0.560 +

2 0.813 0.009 0.736 2 +

3 0.849 0.163 0.732 + 2 +

D’U 1 0.573 0.049 0.423 +

2 0.774 0.035 0.650 + +

3 0.843 0.178 0.436 +

H’T 1 0.674 0.018 0.440 2

2 0.751 0.115 0.511 2 2

3 0.810 0.329 0.584 2 2

DnU 1 0.513 0.119 0.314

2 0.685 0.252 0.497 2

3 0.778 0.548 0.379 2 2

DnT 1 0.354 0.530 0.142 2

2 0.652 0.360 0.417 2 2

3 0.750 0.691 0.459 2 2 +

Only those textural variables that were included in at least two models are shown. For the descriptive models conventional R2 values are reported, while for the
predictive models R2

CV is reported, so the values are not strictly comparable (see Methods for explanation). P–values calculated from the empirical distribution of the
largest expected R2. TV entries in bold typeface are the best models according to AICc when comparing, for each VA separately, models of different type. The plus (+)
and minus (2) symbols denote the sign of the coefficients in the models (values reported in Table S2). See Table 1 for vegetational attributes abbreviations. IR: near
infra-red band, RED: red band, NDVI: Normalized Difference Vegetation Index, EVI: Enhanced Vegetation Index. See Table 3 for the description of textural variables
denoted by subindices MEAN, VAR, ASM, CORR, DR, SKEW, DISS, and CONT.
doi:10.1371/journal.pone.0030506.t004
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BAT and BAU were the response variables for which the best

descriptive models were obtained (Table 4). For the best two-

texture variable models, R2 values were 0.93 and 0.92 for BAT and

BAU, respectively. These vegetation attributes had an R2 value of

0.96 for the best three-texture variable models. Conversely, R2 for

the best descriptive model with one textural variable was 0.82.

Unlike most vegetation variables, the best-fit models for Dn had

much lower R2 values, and these did not differ significantly from

the values derived from the null model. The same occurred for the

best-fit models for H’ and D indices, both for the entire community

and for the upper canopy, in the case of the three texture-variable

models.

Comparison between the three types of models revealed that the

most complex models did not necessarily incorporate the same

variables as simpler models (Table 4). Most descriptive one-

variable models included REDVAR or REDMEAN as the best

explanatory variables of the behavior of vegetation variables (See

Methods and Table 3 for a full description of texture variables and

their abbreviations); NDVICORR and NDVISM were important

only for DnU and DnT. For two-variable models, either REDVAR

or REDMEAN were retained in six models only, whereas variables

incorporating textural information derived from vegetation indices

(NDVI and EVI) became prominent. When moving to three-

texture variable models, IRMEAN emerged in eight models as

capable of making a significant contribution to the descriptive

power of the models. Conversely, in this set REDMEAN and other

RED-related textural variables became much less important,

which indicates their limited descriptive ability in the presence of

other textural variables.

The signs of the coefficients of the textural variables in the

models changed according to the way in which they relate to the

different response variables. Within the group of one-variable

models, DT and DU were the only vegetation variables whose

models had positive coefficients associated to the textural variables.

This relation is less obvious for two- and three-texture variable

models, yet the coefficients of the textural variables still have

different sign when involved in the descriptive modeling of

dominance as opposed to other vegetation variables.

Predictive models of successional vegetation attributes
Most (27 out of 28 models) one- or two-texture variable best-fit

models predicting vegetation response variables were identical to

the respective descriptive models regarding the identity of the

explanatory variables (see Table S2). Moreover, Spearman

correlations between all possible R2 and cross-validation R2

(R2
CV) pairs of values for each vegetation variable and group of

texture variables were very high. These correlations, which were

higher for the one-texture variable models, were inversely related

to the number of texture variables involved (Table 5). In general,

R2
CV values were lower than R2 values in descriptive models, as

low as 25%, but more often around 10% lower (Fig. 2, Table 4).

Despite such reduction, BAU and BAT had R2
CV.0.90 in three-

texture variable models. As was the case with descriptive models,

there were no significant differences between the R2 values of

predictive models developed from the upper canopy and total sets

(paired t = 0.634, P = 0.534).

Departure of predictive models from descriptive ones occurred

mostly within the set of three-texture variable models (Fig. 3,

Table S2). For the new set of predictive models, textural variables

derived from the RED band (i.e. REDVAR or REDMEAN) became

prominent again among models with high R2
CV.

Discussion

Predictive potential of satellite image texture
In this study we demonstrate the large potential of image

texture for predicting vegetation attributes during tropical forest

succession. Texture is an emergent property of satellite images

that is related to the neighborhood relationships among pixels

[59], and thus it is capable of reflecting the internal organization

(i.e. heterogeneity, directionality, entropy) of a region of interest,

rather than on its mean properties. This seems to be the reason

why the performance of texture-based analyses tends to exceed

those based on spectral information in discriminating different

successional stages [33,46,56–58,62,85–87]. High R2 values

comparable to those obtained by us have been reported by some

studies, but only after complex image processing and modeling

protocols based on mean canopy reflectance [30,45,73,88–90].

Figure 2. Fraction of the variation in vegetation attributes
(median and range) explained by the descriptive (—¤—),
predictive (- -#- -) and null (—m—) models using a different
number of textural attributes as explanatory variables. For the
descriptive and null models conventional R2 values are reported, while
for the predictive models R2

CV is reported, so the values are not strictly
comparable (see Methods for explanation).
doi:10.1371/journal.pone.0030506.g002

Table 5. Spearman’s r between descriptive R2 and predictive R2
CV values calculated for all linear models resulting from modeling

each vegetation attribute as a function of one, two and three textural variables (TV).

TV Age Hgt ST SU DnT DnU BAT BAU CCT CCU H’T H’U D’T D’U

1 0.734 0.687 0.928 0.946 0.820 0.481 0.904 0.902 0.862 0.864 0.769 0.952 0.904 0.933

2 0.617 0.610 0.768 0.874 0.624 0.460 0.774 0.753 0.804 0.791 0.612 0.863 0.703 0.854

3 0.592 0.611 0.722 0.815 0.568 0.469 0.751 0.731 0.773 0.779 0.581 0.812 0.658 0.796

See Table 1 for vegetational attributes abbreviations and Methods for explanation of R2
CV calculation.

doi:10.1371/journal.pone.0030506.t005
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Apparently this complexity has limited the broad application of

these procedures, hence motivating the ongoing search for simpler

solutions that are useful in a variety of circumstances. The method

proposed in this study contrasts by its simplicity: the analysis was

performed with a single image, and the models were linear and

included few variables. Moreover, textural information can

presently be extracted with ease. This simplicity, which becomes

an asset in studying secondary vegetation and its attributes,

depends on the basic principle that image texture actually reflects

the internal heterogeneity of successional vegetation at the proper

scale [62].

The ability to predict characteristics of secondary vegetation

accurately depends on a combination of three relevant method-

ological aspects, all of which synergically contribute to the high

predictive value of the models.

The first aspect is high image resolution. Typically, scholars

interested in predicting vegetation attributes from space have used

images with pixel size $30 m [28,73,88,89,91]. Agricultural fields

derived from non-mechanized practices in tropical dry regions

often have relatively small sizes (in our study area, the sizes of most

successional stands range from 900 to 2,500 m2); thus a single such

large pixel covers just one secondary vegetation stand. Therefore,

high spatial resolution is required to detect and analyze the

internal spatial variation typical of each secondary stand. Proisy

et al. [33] came to a similar conclusion while mapping biomass

in successional mangrove communities.

The second aspect was the inclusion of stand-level heterogene-

ity, an essential feature of successional vegetation. This inclusion

was achieved by using a range of image textural attributes, some of

which proved to have a very high predictive potential, even though

our study also shows that many textural attributes do not have

such potential (Table 4 shows nine variables that were included in

only one model, in addition to 17 variables that were not included

in any of them), in agreement with other studies [60,62].

The third aspect was the decision to assess and contrast two

large sets of models derived from alternative modeling procedures:

one set included a limited number of descriptive models that

included all sampling sites, whereas the other consisted of

numerous predictive models constructed through leave-two-out

cross-validation. The high degree of consistency between the

models selected from either procedure confers increased reliability

to the results, and implies that constructing descriptive models may

suffice for assessing the secondary vegetation in a region. This is a

valuable result as the construction of predictive models may

require a large computational capacity as well as ample

programming and statistical skills.

It is not uncommon for this kind of studies to face a limitation

derived from the high cost of obtaining field information for every

vegetation stand; thus having a large sample size, which would

increase the accuracy in the predictions of the models, may not be

feasible. This limitation was a strong motivation for this

investigation. One would expect the prediction of vegetation

attributes for new plots using our models to be flawed in two cases,

neither of which occurred in our study. The first case would be if

the models were used to estimate the attributes of plots with ages

beyond those used in model fitting (extrapolation). We did not

need to extrapolate because our plots represented the broadest

possible successional gradient. The second case would be if the

model’s estimated coefficients were inaccurate due to a small

sample size. We avoided this problem by using the leave-two-out

cross-validation procedure [82]. Our high predictive R2
CV values

confirm that even a model based on a rarified sample was capable

of providing reliable estimates for the vegetation attributes of new

sites and warrants that our conclusions are not the artificial result

of a small sample size.

An unanticipated conclusion from our study is that two-texture

variable models should be preferred over three variable ones for

describing and predicting vegetational attributes from image

texture. This conclusion derives from two different results. On

the one hand, AICc indicated that three-texture variable models

were better than those with two variables only for half of the

vegetational attributes, whereas for the other half both types of

models were equally good. On the other, as the number of

variables included in the models increased, the departure between

observed and null R2 distributions decreased, rendering three-

variable models less reliable than two-variable ones. This

conclusion is also relevant from a practical perspective, as the

construction and validation of three-texture variable models

requires much larger computing time and costs.

Despite previous suggestions that forest structure and diversity

characteristics are preferably predicted from canopy-reflectance

information [20,73], in our case restricting the analysis to the

upper canopy did not necessarily result in a better predictive

capacity. In fact, our models predicting BAT had higher R2 values

than BAU. In the case of an analysis based on texture of VHR

imagery, predicting total community or upper canopy attributes

can be done with comparable accuracy.

Even though we were able to demonstrate a high potential of

GLCM textural indices to predict successional vegetation

attributes, some caution must be exerted in using them. Like

other indices, GLCM face potential important limitations that

must be acknowledged. A particularly worrisome one is the fact

that texture may be sensitive to image sun-view acquisition

conditions [56]. Recently, Barbier et al. [92] proposed a mitigation

method for FOTO (Fourier Transform Textural Ordination)

indices that seems promising, albeit expensive and not totally

straightforward. Further research is required aimed to develop a

similar procedure to GLCM indices.

The significance of image textural information
Understanding why some textural attributes are more useful

than others in predicting vegetation properties, and therefore why

they were repeatedly incorporated into the models, is important

for a number of reasons. From a practical perspective this

knowledge will orient future efforts to assess secondary vegetation

by guiding researchers as to which variables they should focus on.

Also, this information will provide a firmer ground for theoretical

inquiry, as it represents an efficient way to identify relevant

biological properties of the vegetation system and its spatially

explicit spectral expression.

In this study it became clear that the three textural attributes that

excelled in their predictive capabilities were IRMEAN, REDVAR and

REDMEAN (Table 4), which indicates that in the context of texture,

the predictive potential of the raw information contained in these

bands exceeds that of NDVI and EVI, both based on RED and IR

[47]. This implies that in calculating these indices the relevant

spatial information that reflects the internal heterogeneity is lost.

Under an approach centered on the examination of the internal

Figure 3. Observed (x-axes) vs. estimated (y-axes) values for the best descriptive (m) and predictive (red +) linear models for
vegetation attributes. See Table 1 for vegetational attributes abbreviations. Digits 1, 2, and 3 refer to the number of textural variables included in
the model as explanatory variables.
doi:10.1371/journal.pone.0030506.g003
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heterogeneity of successional stands such loss of information is

crucial at this scale of analysis, as objects that are not well

differentiated spectrally can be finely discerned [20].

One finding that deserves particular attention is the inverse

relationship between satellite-sensed heterogeneity, in particular

the mean and the variance of textural variables, and ground-level

vegetation development (i.e. stand age and other vegetation

attributes). Large mean values obtained from a GLCM denote

high levels of between-pixel spectral heterogeneity. Likewise, large

GLCM variances indicate that such changes are highly variable

regardless of the mean change. Therefore, although the inverse

texture/vegetation relationship may seem counterintuitive and

even contradictory to some recent findings reported in the

literature [93–96], the explanation might lie in comprehending

what the satellite actually perceives. One conceivable explanation

is that the pixels corresponding to an early successional stand not

only contain the reflectance properties of the plants, but also the

spectral properties of the substrate on which they grow. If this

interpretation is correct, it follows that textural attributes should

show decreasing trends as vegetation structure becomes more

complex and covers the soil. Thus the internal heterogeneity of a

mature successional stand would be mostly related to the

differences between less contrasting reflectance properties of the

plants.

Our research is in agreement with other studies that have shown

texture of satellite imagery to be closely related to the

heterogeneity of the vegetation stand [57,58]. For example, Frazer

et al. [97] reported that LiDAR-derived indices such as lacunarity

(the degree to which an object departs from a geometric pattern)

are sensitive to canopy structure attributes. Despite the obvious

ability of GLCM indices to reflect community-level attributes (e.g.

total basal area, stand age), it is not yet clear how they relate to

individual-level or other finer-scale traits (e.g. crown size). Thus, a

promising line of future research will consist in finding out how

these textural metrics relate to fine-scale vegetation and overall

stand properties.

Potential applications of image-texture-based modeling
The application of the method described here may produce

important information related to two of the most relevant threats

to biosphere integrity: climate change and biodiversity loss [98–

101]. Basal area, the vegetation variable that was best predicted

from image textural attributes, is strongly correlated with the

standing biomass of a forest community [102], and thus to carbon

storage [103]. Carbon sequestration rates may also be obtained by

considering stand age [36], another variable accurately predicted

from image texture. Therefore, by applying this procedure, it

should be possible to assess and map with high confidence the

spatial distribution of the potential carbon storage and sequestra-

tion in regions dominated by secondary vegetation in different

stages of development.

Biodiversity conservation is one of the major goals of tropical

ecologists nowadays [104–106]. Several efforts have been made

recently to assess the possibility that local floras and faunas may

persist in regions where native vegetation has undergone major

transformations [14,107–109]. Therefore, the possibility to predict

species richness is of utmost importance. Our results show that

species richness can be predicted with a precision close to 80%.

This figure implies the existence of a relationship between the

occurrence of different species in the terrain and the information

sensed by a satellite. At present this topic is receiving much

attention from researchers [55,65,110,111], and our analysis opens

new avenues to pursue it.

Canopy cover and vegetation height were also well predicted by

our models. Again, there are several potential applications of this

result. For example, information on canopy cover in a region

dominated by secondary vegetation may help in assessing the

potential soil erosion due to the kinetic energy of rainfall [112–

114]. Similarly, it will provide information that can be used to

assess habitat quality for a regional fauna, particularly for those

animals whose survival depends on a closed canopy [115–117].

Concluding remarks
Analyzing the extent and complexity of secondary vegetation by

recognizing the spatial variation of its spectral information opens

new and attractive research avenues; these differ substantially from

previous efforts to study secondary vegetation that have been

primarily based on the examination of spectral reflectance

properties. Overall, the procedure is potentially usable in any

successional plant community whose development involves large

changes in heterogeneity through time. The current availability of

VHR imagery, together with increasing computing capabilities,

make it possible to develop faster and more efficient ways to assess

the amount and condition of secondary vegetation in increasingly

human-impacted regions world-wide based on this approach.

Supporting Information

Table S1 Within-site variability for vegetational vari-
ables. See Table 1 for vegetational attributes abbreviations and

units of measurement. SE: Standard error. M: mature forest.

(XLS)

Table S2 Best descriptive and predictive linear models
for vegetation attributes as a function of one, two and
three textural variables (TV). See Table 1 for vegetational

attributes abbreviations. IR: near infra-red band, RED: red band,

NDVI: Normalized Difference Vegetation Index, EVI: Enhanced

Vegetation Index. See Table 3 for the description of textural

variables denoted by subindexed terms MEAN, VAR, ASM,

CORR, DR, SKEW, DISS, CONT, ENT, and HOM. Only

those best predictive models that differed from the best descriptive

ones are presented.

(XLS)
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72. Lebrija-Trejos E, Pérez-Garcı́a EA, Meave JA, Poorter L, Bongers F (In Press)

Environmental changes during secondary succession in a tropical dry forest in
southern Mexico. J Trop Ecol;doi:10.1017/S0266467411000253.

73. Kalacska M, Sanchez-Azoifefa G, Rivard B, Caelli T, White H, et al. (2007)
Ecological fingerprinting of ecosystem succession: estimating secondary tropical

dry forest structure and diversity using imaging spectroscopy 108: 82–96.
Remote Sens Environ 108: 82–96.

74. Magurran A (2004) Measuring biological diversity. London: Blackwell-Science.

256 p.
75. Krause K (2005) Radiometric use of Quickbird imagery. Technical Note

(DigitalGlobe Inc).
76. Gao X, Huete AR, Ni WG, Miura T (2000) Optical–biophysical relationships

of vegetation spectra without background contamination. Remote Sens

Environ 74: 609–620.
77. Petrou M, Garcı́a-Sevilla P (2006) Image processing: dealing with texture.

Sussex: John Wiley & Sons. 618 p.
78. Marquez J (2008) Texture Characterization and Analysis Tutorial I - version

3.0. Mexico City: CCADET-UNAM. 90 p.
79. ITT (2008) ENVI 4.5/IDL Version 7.0 User’s Guide. Boulder: ITT Visual

Information Solutions.

80. Burnham KP, Anderson DR (2002) Model selection and multimodel inference:
a practical information-theoretic approach. New York: Springer. 515 p.

81. Baumann K (2003) Cross-validation as the objective function for variable-
selection techniques. Trac-Trend Anal Chem 22: 395–406.

82. Browne M (2000) Cross-validation methods. J Math Psychol 44: 108–132.

83. Shao J (1993) Linear model selection by cross-validation. J Am Stat Assoc 88:
486–494.

84. R Development Core Team (2010) R: A language and environment for
statistical computing (v.2.11.1). Vienna: R Foundation for Statistical Comput-

ing.

85. Kuplich TM, Curran PJ, Atkinson PM (2005) Relating SAR image texture to
the biomass of regenerating tropical forests. Int J Remote Sens 26: 4829–4854.

86. Murray H, Lucieer A, Williams R (2010) Texture-based classification of sub-
Antarctic vegetation communities on Heard Island. Int J Appl Earth Obs 12:

138–149.
87. Wijaya A, Liesenberg V, Gloaguen R (2010) Retrieval of forest attributes in

complex successional forests of Central Indonesia: Modeling and estimation of

bitemporal data. For Ecol Manage 259: 2315–2326.
88. Helmer E, Lefsky M, Roberts D (2009) Biomass accumulation rates of

Amazonian secondary forest and biomass of old-growth forests from Landsat
time series and the Geoscience Laser Altimeter System. J Appl Remote Sens 3:

033505.

89. Liu W, Song C, Schroeder T, Cohen W (2008) Predicting forest successional
stages using multitemporal Landsat imagery with forest inventory and analysis

data. Int J Remote Sens 29: 3855–3872.

90. Song C, Schroeder TA, Cohen WB (2007) Predicting temperate conifer forest

successional stage distributions with multitemporal Landsat Thematic Mapper

imagery. Remote Sens Environ 106: 228–237.

91. Gillespie T, Zutta B, Early M, Saatchi S (2005) Predicting and quantifying the

structure of tropical dry forests in South Florida and the Neotropics using

spaceborne imagery. Global Ecol Biogeogr 15: 225–236.

92. Barbier N, Proisy C, Vega C, Sabatier D, Couteron P (2011) Bidirectional

texture function of high resolution optical images of tropical forest: an

approach using LiDAR hillshade simulations. Remote Sens Environ 115:

167–179.

93. Gould W (2006) Remote sensing of vegetation, plant species richness, and

regional biodiversity hot spots. Ecol Appl 10: 1861–1870.

94. Foody GM, Cutler MEJ (2006) Mapping the species richness and composition

of tropical forests from remotely sensed data with neural networks. Ecol Model

195: 37–42.

95. Levin N, Shmida A, Levanoni O, Tamari H, Kark S (2007) Predicting

mountain plant richness and rarity from space using satellite-derived vegetation

indices. Divers Distrib 13: 692–703.

96. Palmer MW, Earls P, Hoagland BW, White PS, Wohlgemuth T (2002)

Quantitative tools for perfecting species lists. Environmetrics 13: 121–137.

97. Frazer GW, Wulder MA, Niemann KO (2005) Simulation and quantification

of the fine-scale spatial pattern and heterogeneity of forest canopy structure: A

lacunarity-based method designed for analysis of continuous canopy heights.

For Ecol Manage 214: 65–90.

98. Dı́az S, Fargione J, Chapin III FS, Tilman D (2006) Biodiversity loss threatens

human well-being. PLoS Biol 4: E277.

99. Dirzo R, Raven PH (2003) Global state of biodiversity and loss. Annu Rev Env

Resour 28: 137–167.

100. Thomas CD, Cameron A, Green RE, Bakkenes M, Beaumont LJ, et al. (2004)

Extinction risk from climate change. Nature 427: 145–148.

101. Walther G-R, Post E, Convey P, Menzel A, Parmesan C, et al. (2002)

Ecological responses to recent climate change. Nature 416: 389–395.

102. Slik JWF, Aiba SI, Brearley FQ, Cannon CH, Forshed O, et al. (2010)

Environmental correlates of tree biomass, basal area, wood specific gravity and

stem density gradients in Borneo’s tropical forests. Global Ecol Biogeogr 19:

50–60.

103. Brown S (1997) Estimating biomass and biomass change of tropical forests: a

primer. Rome: Food and Agriculture Organization of the United Nations. 57 p.
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