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Background: Decision making for the ‘‘best’’ treatment is particularly challenging in situations in which individual
patient response to drugs can largely differ from average treatment effects. By estimating individual treatment effects
(ITEs), we aimed to demonstrate how strokes, major bleeding events, and a composite of both could be reduced by
model-assisted recommendations for a particular direct oral anticoagulant (DOAC). Methods: In German claims
data for the calendar years 2014–2018, we selected 29 901 new users of the DOACs rivaroxaban and apixaban. Ran-
dom forests considered binary events within 1 y to estimate ITEs under each DOAC according to the X-learner algo-
rithm with 29 potential effect modifiers; treatment recommendations were based on these estimated ITEs. Model
performance was evaluated by the c-for-benefit statistics, absolute risk reduction (ARR), and absolute risk difference
(ARD) by trial emulation. Results: A significant proportion of patients would be recommended a different treatment
option than they actually received. The stroke model significantly discriminated patients for higher benefit and thus
indicated improved decisions by reduced outcomes (c-for-benefit: 0.56; 95% confidence interval [0.52; 0.60]). In the
group with apixaban recommendation, the model also improved the composite endpoint (ARR: 1.69 % [0.39; 2.97]).
In trial emulations, model-assisted recommendations significantly reduced the composite event rate (ARD: 20.78 %
[21.40; 20.03]). Conclusions: If prescribers are undecided about the potential benefits of different treatment options,
ITEs can support decision making, especially if evidence is inconclusive, risk-benefit profiles of therapeutic alterna-
tives differ significantly, and the patients’ complexity deviates from ‘‘typical’’ study populations. In the exemplary
case for DOACs and potentially in other situations, the significant impact could also become practically relevant if
recommendations were available in an automated way as part of decision making.

Highlights

� It was possible to calculate individual treatment effects (ITEs) from routine claims data for rivaroxaban and
apixaban, and the characteristics between the groups with recommendation for one or the other option
differed significantly.

� ITEs resulted in recommendations that were significantly superior to usual (observed) treatment allocations
in terms of absolute risk reduction, both separately for stroke and in the composite endpoint of stroke and
major bleeding.

� When similar patients from routine data were selected (precision cohorts) for patients with a strong
recommendation for one option or the other, those similar patients under the respective recommendation
showed a significantly better prognosis compared with the alternative option.

� Many steps may still be needed on the way to clinical practice, but the principle of decision support
developed from routine data may point the way toward future decision-making processes.

Corresponding Author

Andreas D. Meid, Department of Clinical Pharmacology and Pharma-

coepidemiology, Heidelberg University Hospital, Im Neuenheimer Feld

410, Heidelberg, 69120, Germany; (andreas.meid@med.uni-

heidelberg.de).

us.sagepub.com/en-us/journals-permissions
https://doi.dox.org/10.1177/0272989X211064604
journals.sagepub.com/home/mdm


Keywords

claims data, clinical decision support system, direct oral anticoagulants, heterogeneous treatment effects, machine-
learning, personalized medicine

Date received: June 15, 2021; accepted: November 12, 2021

Background

When choosing between several drug treatments for their
patients, physicians and health care professionals are
often unsure which option is ‘‘best.’’1,2 Generalization of
guidelines or evidence from randomized controlled trials
(RCTs) cannot overcome this uncertainty because they
validly estimate average treatment effects between groups
in a study population but cannot explain potentially het-
erogeneous treatment effects of single individuals.3,4

Thus, patient characteristics can modulate average effects
and lead to different individual treatment effects (ITEs)
at the patient level.5 Good assessment of ITEs is critical
when physicians seek to provide individualized care to
their patients,2,6 especially in situations in which signifi-
cant benefits must be weighed against serious harms of
treatment options, such as the prevention of thromboem-
bolic events in patients with nonvalvular atrial fibrilla-
tion (AF) with direct oral anticoagulants (DOACs) and
the associated bleeding risk.7,8 Here, treatment decisions
could become more precise if real-world evidence was
processed using machine learning to provide personalized
recommendations for decision making with DOACs. If
the incidence of stroke and (major) bleeding events could
be reduced through model-assisted decision making, both
the individual patients who are offered the potentially
most favorable option and also the health care systems as
a whole would benefit significantly.

The current literature shows promising examples from
RCT reanalyses to infer ITEs by machine learning9 or
from observational studies to elucidate effect modifiers that
modulated the (individual) effectiveness of different classes
of antidiabetics.10 ITEs within a pharmacological class such
as DOACs have not been investigated yet. Until recently, it
was generally assumed in clinical practice that DOACs were
largely equivalent. This represents a favorable situation in
which the potential advantages of a model-assisted recom-
mendation are due to the fact that the decision algorithm is
free of existing guidelines and reasonably uninfluenced by
firm beliefs of prescribing physicians. Nevertheless, at least
the averaged means of the options rivaroxaban and apixa-
ban appeared to be superior to each other under different
circumstances: slight advantages were partly apparent for
stroke prevention under apixaban11–14 or rivaroxa-
ban7,8,15–18 supposedly at the expense of a higher bleeding
risk with rivaroxaban.7,8,11–13,17,18 This emphasizes how
important a benefit–risk assessment is for each individual
patient. Thus, it appears obvious to explore ITEs in terms
of effectiveness and harm, which was generally very rarely
found in a systematic review evaluating the personalization
of benefit and harm results from RCTs, in which only 1
analysis included a clinical prediction guide.19

The situation in which a treatment effect is modulated
by a single or a few patient characteristics can be well
approached using conventional regression methods. In
more complex situations with often high-dimensional
individual characteristics, this is no longer readily possi-
ble, for example, when many modulators are present that
also influence each other (possibly even in a nonlinear
manner).20 With the availability of Big Data from large
claims databases and electronic health records, machine
learning is able to efficiently train predictive models
based on input features (predictors) and observed out-
comes to predict whether a certain outcome would
occur for a patient.21,22 However, ITEs are the difference
between the outcomes of 2 (or more) treatments. In real-
world health care data, these outcomes typically cannot be
observed across different treatment options for the same
patient and are therefore not available as a direct intraindi-
vidual comparison suitable for training prediction models.
Using a causal inference framework, one can nevertheless
predict outcomes in patients as if they had received one
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option or the other option and then calculate their differ-
ence.2,21 Following this split-model approach, random
forest-based methods can be used, and their predictive
accuracy must be evaluated out of sample, taking into
account their potential for overfitting.

In this proof-of-concept study, we used data from a
large health insurance company and explored the poten-
tial for machine-learning techniques to infer the individ-
ual risk of stroke and major bleeding with rivaroxaban
or apixaban and thus also to facilitate individualized
recommendations for DOAC therapy. Therefore, we
developed and internally validated prediction models for
ITEs in an observational cohort of new users of rivarox-
aban and apixaban by exploiting clinical characteristics
and health system parameters from a processed claims
data set. We aimed to answer 3 key questions: 1)
Can routinely available information act as meaningful
effect modifiers to modulate responses to DOACs? 2)
How much could the resulting recommendations have
improved outcomes compared with the actual treatment
options chosen in the retrospective database? 3) How
would such individualized recommendations translate
into avoided clinical events in a future implementation
of a model-assisted decision-support tool?

Methods

Data Source and Study Population

This study was a predictive modeling study in a previ-
ously defined cohort of DOAC patients (referred to hen-
ceforth as the ‘‘prestudy’’) that followed the guidelines
for ‘‘Transparent reporting of a multivariable prediction
model for individual prognosis or diagnosis’’ (TRIPOD;
see Supplementary Table S1 in the Supplementary
Appendix).23 The data source completely corresponded
to the prestudy, a preparatory analysis of the ARMIN
(‘‘Arzneimittelinitiative Sachsen-Thüringen’’) program
aiming to improve medication quality and safety. In par-
ticular, this was an observational study investigating
adherence to the DOACs rivaroxaban and apixaban in
claims from a large German statutory health insurance
company (AOK PLUS) in the calendar years 2014–2018.
Our analysis thus built on already processed data
(described in detail elsewhere).24 In brief, DOAC-naive
patients with AF who newly initiated either rivaroxaban
or apixaban treatment were followed up from their first
DOAC prescription if they met the inclusion criterion of
at least 3 follow-up prescriptions and had no exclusion
criterion in their medical history. Supplementary Figure
S1 depicts the flow of participants and how the study

cohort was defined by inclusion and exclusion criteria.
The follow-up was in accordance with the intention-to-
treat principle, while patients were censored for premature
death or DOAC discontinuation with subsequent switch
to vitamin K antagonists. All data were fully anonymized
for the analysts; in Germany, claims data analyses do not
require ethics committee approval by law.

Outcomes

To evaluate the effectiveness of the DOACs, we consid-
ered a previously validated and established code set
(International Classification of Diseases, 10th revision
[ICD-10]) to define the outcome stroke in inpatient codes
for hospital admission and main diagnoses as the day of
the respective hospital admission (i.e., we aimed for
higher coding validity than observed for outpatient diag-
noses at the expense of potentially missing fatal cases
that were not hospitalized; see also Supplementary Table
S2 for outcome code sets). Likewise, established ICD-10
codes were applied to detect major bleeding in hospital
admission codes as the safety outcome (Supplementary
Table S2). A composite endpoint of both stroke or major
bleeding was also considered when at least 1 of the sepa-
rate endpoints occurred within the observation period
for model development (binary outcome definition); for
the prognosis of treatment recommendations, the first
type of event from the separate endpoint was considered
(time-to-event outcome definition).

Predictors

At study baseline, when the treatment decision is to be
made, a list of 29 variables was available from the pre-
study as potential confounders with possible impact on
DOAC treatment decisions (Supplementary Table S3).
To address the question of whether and which potential
confounders modulate DOAC responses in a meaningful
way, we considered basic demographics (age, sex), health
care services (enrolment into the ARMIN program, prior
AF diagnosis in the hospital), comorbidities (Charlson25

and Elixhauser scores26 with distinct comorbidity groups
indicating diabetes, hypertension, heart failure, depres-
sion, tumors, anemia, or dementia), medical history
(occurrence of billing codes in the previous year) of
stroke, ischemic heart disease, dyslipidemia, thromboem-
bolism or major bleeding, a CHA2DS2-VASc operatio-
nalization to indicate risk of thromboembolic events,27

and medication use in the previous year (number of
drugs, antihypertensives, antiplatelets, vitamin K antago-
nists, and lipid-lowering drugs).
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Sample Size

Selection of new initiators resulted in 29,901 patients, of
whom 16,073 patients were treated with apixaban and
13,828 patients with rivaroxaban. Patients were followed
up until their first event or censoring due to death,
switching to vitamin K antagonists, or the end of the
observation period. All patients were randomly allocated
(3:2) to a training set and test to yield samples of 17,722
observations for model development and 12,179 patients
for model validation. No missing values existed, because
only complete claims were available.

Statistical Analysis

Model development: Estimation of ITEs for treatment
recommendations. Using the causal inference frame-
work,2 we estimated the potential outcomes of each
patient under the potential treatment with apixaban and
rivaroxaban. The ITE is thus the difference between the
individual outcome probabilities under apixaban and riv-
aroxaban. We referred to this difference as the benefit
score in accordance with a recently introduced frame-
work6,28 so that positive benefit scores above the decision
threshold of 0 indicated recommendations for apixaban.
To actually estimate benefit scores, we used the machine-
learning algorithm called X-learner.29 Therefore, we con-
sidered outcomes within 365 d of follow-up as binary
events. Accounting for the fact that patients could have
been censored before having the chance to experience
an event, we weighted observations according to their
inverse probability of being censored30 within the
machine-learning techniques of random forests. We used
standard random forests to estimate benefit scores for
the outcome of major bleeding, while estimation for
stroke relied on a tuned random forest31 with automated
hyperparameter tuning in randomly down-sampled data
to increase the proportion of events to nonevents to a
3:7 ratio.32 While this procedure was considered most
suitable, sensitivity analyses included also standard (i.e.,
nontuned) random forests with raw and randomly
down-sampled data. To account for potential imbalances
in actually received treatments, propensity score weight-
ing was applied to outcome probabilities under each
treatment option when calculating the benefits scores
from their difference. Supplementary Figure S2 visually
summarizes the distinct steps of benefit score estimation
for the separate outcomes stroke and major bleeding.

For the composite endpoint, we built a generalized
linear model predicting the probabilities for the compo-
site endpoint by using the distinct benefit scores for
stroke and major bleeding as 2 independent variables.33

A decision threshold for these probabilities is needed to
decide whether a recommendation for either apixaban or
rivaroxaban is to be made. We determined this decision
threshold in the training data by dividing probabilities
into deciles and chose the threshold maximizing the emu-
lated benefit as if the model were implemented into regu-
lar care (see the ‘‘Model Evaluation’’ section).

Model evaluation: Validation of personalized recommenda-
tions. According to the split-sample approach, we calcu-
lated 3 metrics for out-of-sample performance in the test
data. In general, it is to evaluate whether our model-
assisted recommendations are better than treatment
assignment by simple chance while also accounting for
the observed treatment allocation in the retrospective
data source. First, the c-for-benefit metric considers these
triplets of actually received treatment, recommended
treatment, and clinical outcome by comparing outcomes
in pairs of patients matched on benefit scores but discor-
dant for observed treatment allocation.34 A value greater
than 0.5 thus indicates a higher probability than chance
that a pair with greater observed benefit in outcomes also
has the higher predicted benefit if 2 matched pairs with
unequal benefit scores are randomly chosen. Second,
absolute risk reductions (ARRs) for the treatment com-
parison between apixaban and rivaroxaban can be
derived from logistic regression models fitted to buckets
of test patients with recommendation for apixaban or riv-
aroxaban.9 Thus, a positive ARR is expected to result for
apixaban versus rivaroxaban in the bucket of apixaban
recommendation, whereas a negative ARR is expected to
result for apixaban versus rivaroxaban in the bucket of
rivaroxaban recommendation. Third, it is of interest how
a model-assisted decision rule could affect outcomes
upon implementation into clinical practice and how
much outcome frequencies could be reduced in compari-
son with the observed treatment allocation. While an
actual trial would be required to assess the impact (clini-
cal utility), observational data can be used to project the
clinical utility by trial emulation.35 This yields absolute
risk differences (ARDs; to be compared with 0 as the null
value). For all 3 metrics, statistical inference was based
on 95% confidence intervals derived by nonparametric
bootstrap (250 samples9), and significance was defined
by noninclusion of the null values in the confidence
intervals.

Personalized prognosis: Projected benefit in precision
cohorts. One way to visualize and communicate model-
assisted treatment recommendations is to present a per-
sonalized prognosis of recommended and alternative

590 Medical Decision Making 42(5)



treatment options in patients with similar characteristics
(i.e., precision cohorts36). Thus, we chose 2 exemplary
patients from the whole data source, defined a set of
variables to select a precision cohort of similar patients
(age, Elixhauser score, Charlson score, diabetes and
hypertension with complications, prior stroke, prior
major bleeding, CHA2DS2-VASc score, ischemic heart
disease, dyslipidemia, prior in-hospital AF diagnosis),
and calculated the Gower distance metric to select the
25% most similar patients as the precision cohort of each
patient.36 Time-to-first-event analysis of the composite
endpoint was visualized in Kaplan–Meier plots with sta-
tistical inference based on the log-rank test.

Software. Statistical analyses were conducted with the R
software environment in version 4.0.2 (R Foundation
for Statistical Computing, Vienna, Austria) using the
key packages personalized,28 ranger,37 tuneranger,31 and
SimBaCo.36

Role of the Funding Sources

The funding bodies did not play any role in the design of
the study and data collection, analysis and interpretation
of data, or writing of the manuscript.

Results

The groups treated with apixaban and rivaroxaban
were largely similar in their patient characteristics (see
Table 1). Most importantly, the propensity scores
for treatment allocation obtained from these variables
showed substantial overlap, which is required for weight-
ing ITEs to calculate benefit scores (Supplementary Fig-
ure S3). Generally, all variables were equally distributed
by random allocation to training and test data, which
also applied to study outcomes occurring at an incidence
of 2.0% for stroke and 9.7% for major bleeding (Supple-
mentary Table S4). In the training data used for model
development, apixaban users experienced fewer bleeding
events (8.9% v. 10.7% in rivaroxaban users) but conver-
sely more strokes (2.2% v. 1.7% in rivaroxaban users).

The developed machine-learning models yielded
benefit scores for each patient that were used to make
treatment recommendations for each DOAC. These
model-assisted recommendations resulted in a substan-
tial proportion of patients being recommended a differ-
ent option than they actually received. According to the
efficacy (stroke) model, 47.6% of rivaroxaban users
were recommended to use apixaban, and 63.9% of
apixaban users were recommended to use rivaroxaban.

According to the safety (bleeding) model, significantly
fewer apixaban users were recommended rivaroxaban
(25.0%). Supplementary Figures S4 and S5 visualize
treatment recommendations of the efficacy and safety
models as a function of study variables, observed out-
comes, and treatments received. Groups stratified by
their recommendation also differed significantly in
most variables when considering the composite end-
point (Supplementary Table S7). Supplementary
Table S8 uses the characteristics of 4 patients as exam-
ples to show how model-assisted recommendations can
result.

When model performance was evaluated in the
independent test data set, the stroke model resulted
in significantly better decisions with reduced strokes
(c-for-benefit: 0.56; 95% confidence interval [0.52; 0.60],
see Figure 1A). The safety model for major bleeding less
clearly recognized individual differences in bleeding risk
(c-for-benefit: 0.52 [0.49; 0.54]). Combining both out-
comes to the composite endpoint yielded favorable
(raw) ARRs in the bucket of apixaban (ARR: 1.69%
[0.39; 2.97]) and rivaroxaban recommendations (ARR:
20.88% [22.93; 1.21]; Figure 1B). When accounting
for outcome frequencies, prescription prevalence, and
covariates in an emulated trial, the model-assisted rec-
ommendations could significantly have reduced the fre-
quency of (the composite) clinical outcomes (ARD:
20.78 % [21.40; 20.03]; Figure 1C), so that about 1 of
100 events could be additionally avoided by model-
assisted treatment recommendations. To visualize the
impact for individual patients, we generated precision
cohorts with the 25% most similar patients to 2 exemp-
lary patients, 1 of whom received a recommendation for
apixaban and 1 a recommendation for rivaroxaban.
Time-to-first-event analysis regarding the composite
endpoint revealed significant improvements for each rec-
ommended treatment over the alternative in the respec-
tive precision cohort (Figure 2).

Discussion

Our findings reinforced the assumption that real-world
data contain valuable information that can be used to
support medical decision making for new patients. Our
study is also noteworthy because we compared very
closely related pharmacologic alternatives within a class
of compounds that are generally considered to be largely
equivalent (only the bleeding risk was seen in a more
differentiated way38). Following our particular case,
personalized recommendations based on ITEs could
be obviously suitable to improve current practice by
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reducing the separate events of stroke, major bleeding,
or their composite. Our patient variables acting as poten-
tial effect modifiers had the strongest impact on the dis-
criminatory ability for stroke benefit, and all are readily
available from routine data sources, underlining the
practicability of this approach. Model-assisted recom-
mendations were estimated to be superior to actually
received treatments, and individualized recommenda-
tions could additionally reduce the absolute risk by
about 1%, which is substantial within a class of highly
effective treatment options,38,39 a high prevalence of AF
in the population of older people,40,41 and a large burden
of disease with high annual costs in the year after a
stroke.42,43

The specific results of this proof-of-concept study need
to be viewed in a broader context. Projects beyond our
prototype can use the wealth of longitudinally collected
data from statutory health insurers to generate real-
world evidence for complex cases without clear guideline
recommendations (e.g., multimorbidity, polypharmacy,
elderly patients). At all levels of complexity and with
treatments affecting endpoints in a differentiated way,
adequate support is needed to enable informed decision
making for each particular situation and different points
of care. Moreover, many decisions do not require a
population-based but rather an individualized weighing
of benefits and risks. This presents a multidimensional
problem for which RCTs do not provide sufficient

Table 1. Patient Characteristics in Training Data for Model Development Stratified for DOAC Treatment
with Apixaban and Rivaroxaban

Apixaban (n = 9 547) Rivaroxaban (n = 8 175) Total (n = 17 722)

Demographics
Sex (female), n (%) 5,625 (58.9) 4,529 (55.4) 16,979 (56.8)
Age (mean 6 SD) 79.8 6 8.8 77.8 6 9.2 78.9 6 9.1

Comorbidities and clinical characteristics
Elixhauser score (mean 6 SD) 7.68 6 3.02 7.00 6 2.89 7.36 6 2.97
Elixhauser groups, n (%)

Diabetes (uncomplicated) 4,781 (50.1) 3,959 (48.4) 14,698 (49.2)
Diabetes (complicated) 3,281 (34.4) 2,490 (30.5) 9,714 (32.5)
Heart failure 6,346 (66.5) 4,889 (59.8) 18,829 (63.0)
Depression 2,163 (22.7) 1,664 (20.4) 6,535 (21.9)
Hypertension (uncomplicated) 8,920 (93.4) 7,623 (93.2) 28,006 (93.7)
Hypertension (complicated) 4,439 (46.5) 3,296 (40.3) 12,961 (43.3)
Solid tumor 1,326 (13.9) 1,125 (13.8) 4,226 (14.1)
Tumor metastases 204 (2.1) 221 (2.7) 717 (2.4)
Anemia (deficiency) 988 (10.3) 633 (7.7) 2,728 (9.1)
Anemia (blood loss) 158 (1.7) 106 (1.3) 440 (1.5)
Renal disease 4,745 (49.7) 3,221 (39.4) 13,395 (44.8)
Dementia 1,935 (20.3) 1,404 (17.2) 5,613 (18.8)

Charlson score (mean 6 SD) 3.84 6 2.12 3.37 6 2.07 3.61 6 2.11
Ischemic heart disease, n (%) 5,089 (53.3) 4,172 (51.0) 15,631 (52.3)
Dyslipidemia, n (%) 5,690 (59.6) 4,435 (54.3) 17,002 (56.9)
CHA2DS2-VASc score, median (IQR)

a 5 (4; 5) 4 (3; 5) 4 (4; 5)
Medical history (past 12 mo), n (%)

Prior stroke 1,710 (17.9) 994 (12.2) 4,559 (15.2)
Prior thromboembolism 239 (2.5) 191 (2.3) 740 (2.5)
Prior bleeding event 2,939 (30.8) 2,306 (28.2) 8,907 (29.8)
Prior hospitalization for atrial fibrillation 7,196 (75.4) 5,821 (71.2) 21,885 (73.2)

Medication (in past 12 mo)

Antihypertensives, n (%) 8,922 (93.5) 7,555 (92.4) 27,848 (93.1)
Lipid-lowering drugs, n (%) 4,027 (42.2) 3,228 (39.5) 12,166 (40.7)
Antiplatelets, n (%) 2,101 (22.0) 1,619 (19.8) 6,219 (20.8)
Number of different drugs, median (IQR) 10 (7; 14) 9 (6; 13) 10 (6; 14)
Prior vitamin K antagonist treatment, n (%) 3,438 (36.0) 2,896 (35.4) 10,766 (36.0)

Health care utilization, n (%)
ARMIN program enrolment 215 (2.3) 158 (1.9) 607 (2.0)

IQR, interquartile range.
aCHA2DS2-VASc risk score according to Lip et al.27
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information.3 A necessarily personalized decision, on the
other hand, requires a multilayered information base that
contain all constellations of patient characteristics as they
occur in everyday medical practice.9 Ultimately, decision
making can be based on models developed in such infor-
mative data sources and thus enable personalized medi-
cine. Through model-assisted recommendations, the
prescribing physician (and patient in a shared decision-
making process) would not have to rely solely on symptoms,
generalizing guidelines, or personal experience. Instead, he
or she could draw from the wealth of such everyday experi-
ences from routine data while accounting for interindividual
variability in individual patient characteristics.

Possible explanations can go in many directions. Con-
sidering the time frame of the database from 2014–2018,
many direct comparisons in real-world data were not yet
available,7,8,12,13 so that little guiding evidence beyond
pivotal trials39 was available in the broad field of out-
patient care. Thus, the 2 drugs were considered to be prac-
tically equivalent, with no pronounced prescription
preferences in general (apart from the individual prescri-
ber). This was evident, for example, because there were no

striking differences between observed patient allocation to
apixaban or rivaroxaban (Table 1). Such a situation was
certainly advantageous for predicting ITEs to derive perso-
nalized recommendations. Indeed, the differences in group
means of variables were more pronounced when groups
were derived from model-assisted recommendations (see
Supplementary Table S7). These differences reflected the
risk-benefit tradeoff for the question who can have an
option recommended with acceptable risk of bleeding and
good chance of response. We would like to emphasize that
the single-variable differences should be regarded as descrip-
tive at best, because the ultimate probability of treatment
success (benefit score) depends on the interaction of all vari-
ables. In this regard, the stroke models performed better
than the bleeding models (see Figure 1A), possibly because
many co-medications (including temporary or over-the-
counter drugs) were not available in the present variables.44

Nevertheless, the combined consideration of the composite
endpoint (stroke and major bleeding) was impressively suc-
cessful after weighting both aspects (and the sheer number
of far more bleeding events than strokes may certainly have
contributed to the significant result).

Figure 1 Performance metrics to evaluate the model-assisted treatment recommendations in the test data. (A) The c-for-benefit
statistic quantifies the discrimination for benefit considering actually received treatment, recommended treatment, and clinical
outcome. (B) Absolute risk reductions (ARRs) refer to the group comparison ‘‘apixaban v. rivaroxaban’’ in buckets of patients
with a recommendation for apixaban (5) or rivaroxaban (5). (C) Emulated utility is expressed as the absolute risk difference
over standard of care upon a potential implementation of the model-assisted recommendation into a decision-support system in
clinical practice.
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Although our innovative approach overlaps only in
small parts with previous work, consensus criteria for
treatment-guiding risk modeling can be discussed.45

Although DOACs are generally considered to be highly
efficacious (with subtle perceived differences), they still
have a nonnegligible risk of side effects. Such a situation
warrants exploration of individual probabilities beyond
generalized population-level probabilities of treatment
benefit.2 This appears especially promising with regard
to the heterogeneous group of AF patients who are gen-
erally older and present with a large case-mix variabil-
ity.41 Although there are many examples of prognostic
models for stroke27 or bleeding44 in AF patients, it is not
clear how these models can be used for (within-class)
DOAC treatment decision making (let alone combined
consideration of both aspects). For this, our approach
provides a straightforward path using well-established
variables that have previously been shown to be prog-
nostic or determine treatment decisions46 and are largely
available in routine clinical care.

Limitations relate primarily to the data source with
available sample sizes. The limitations of routine data
are well known, as they are primarily created for billing
purposes and cannot be directly used for research pur-
poses. Therefore, established and validated code sets
were used throughout the study to define potential effect
modifiers and outcomes, and these definitions were also
made transparent (see Supplementary Appendix) to
allow replications of the work. Linked to the basis of the
data are also the sample size and the number of events.
It is known that machine-learning methods require large
samples for development47; however, for validation data
sets, it is equally important to have a sufficient numbers
of events (of note, our data set clearly met the prerequi-
site of at least 100 events).48 For this proof-of-concept
study, the easy-to-understand split-sample approach
worked satisfactorily, as evidenced by the good perfor-
mance of the down-sampled data set. Nevertheless, alter-
native methods (e.g., cross-validation or bootstrapping)
could be used for other applications of our principle,

Figure 2 Kaplan-Meier plots in precision cohorts in a sample with similar characteristics to a patient being recommended
apixaban (A, left) or a sample with similar characteristics to a patient being recommended rivaroxaban (B, right). The patient on
apixaban recommendation is 79 years old, is assigned an Elixhauser comorbidity score of 7 and a Charlson score of 3, has not
being diagnosed with complications for diabetes or hypertension, has already experienced both a stroke and a major bleeding
event, has a CHA2DS2-VASc score of 4 with an in-hospital diagnosis for atrial fibrillation, and has a diagnosis for ischemic heart
disease but no dyslipidemia or renal disease. The patient on rivaroxaban is 84 years old with an Elixhauser comorbidity score of
16 and Charlson score of 8, has experienced complications for diabetes and hypertension, had no prior stroke but a major
bleeding event in his medical history, has a CHA2DS2-VASc score of 5 with an in-hospital diagnosis for atrial fibrillation, and is
diagnosed for ischemic heart disease, dyslipidemia, and renal disease. The 25% most similar patients in each case are followed up
according to the treatments received (black lines: apixaban; gray lines: rivaroxaban), with solid lines indicating the respective
recommendation for the patient from which the precision cohort was formed.
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especially with small samples.48 Furthermore, the modi-
fied intention-to-treat approach of the given data basis
should be noted, where a certain persistence of at least 3
prescriptions was also assumed. This is a special feature
from the prestudy, in which treatment switches were also
considered as censoring. Restricting the analysis to 2
exclusive substances administered to continuously
insured patients may also have introduced selection bias.
This necessary feature of the study design does not repre-
sent the full complexity of health care reality, from
which less standardized cases could not be used. Conver-
sely, it minimizes the potential impact of differences in
insurance plans and thus focuses on medical heterogene-
ity. Furthermore, we assumed that patients were treated
with the appropriate dosage, which is a hard but conser-
vative assumption, because underdosing may dilute our
derived effects. In fact, underdosing is common in clini-
cal practice and much more common than overdosing;
both should be addressed as a separate problem, regard-
less of which DOAC is chosen.49 Limitations also relate
to caveats and challenges before moving to clinical prac-
tice, where the magnitude of effects is of central impor-
tance.45 Our effect sizes were pronounced, considering
that 2 highly effective drugs within a substance class were
compared. Comparisons between different pharmacolo-
gic classes could supposedly have achieved larger (rela-
tive) effects. Although significance was comprehensibly
expressed on an absolute risk scale, this significance
should not be confused with clinical relevance: for clini-
cal impact, it is certainly decisive whether model-assisted
decision support can be provided with little effort (auto-
mated). If these conditions with a favorable cost-benefit
relationship could be met, the projected ARRs could
translate into quite substantial benefit in clinical practice.
However, this estimate of about 1% must be interpreted
against the background of no anticoagulant treatment.
For an exemplary female patient aged 65 to 74 y with
hypertension, diabetes, and a history of myocardial
infarction, one can assume an absolute annual risk
reduction of 6.2% (rivaroxaban) and 6.8% (apixaban)
compared with no anticoagulant treatment (https://
www.sparctool.com). This is also associated with an
absolute annual risk increase for major bleeding of 3.7%
(rivaroxaban) and 2.4% (apixaban).

Thus, before such models can be used as bedside tools
facilitating decision making, further steps are necessary
that are also related to the aforementioned potential lim-
itations: next steps should 1) corroborate the general
conclusion by applying the principle to other indications
(and situations comparing treatment v. no treatment or
different drug classes) with different study designs
(robustness), 2) provide a more far-reaching proof-of-

concept in independent data (external validation), and 3)
explore the options for presenting risk-based recommen-
dations50 in an automated decision-support system (pre-
paratory implementation after clinical utility has been
proved in a prospective study). In particular, patients
being treated according to such a model’s recommenda-
tion should be followed up for clinical events in compari-
son with usual care. Thus, it must be acknowledged that
this pioneering work is on the theoretical side and would
require further thorough clinical studies before such
applications can be confidently used in practice. Even
then, the model-assisted recommendations identified
here must not overrule clinically binding recommenda-
tions (e.g., from the summaries of product characteristics
or guidelines).51 Instead, we have to ensure that such
models are used as support systems alongside clinicians,
rather than instead of clinicians. Above, one must assess
such approaches in general and consider that many med-
ical uncertainties are simply not reducible by informa-
tion.52 One will never ultimately know the truly right
treatment for a patient, and decisions will always have to
be made by incorporating many probabilities and prefer-
ences.53 For this, risk communication is essential53: Sup-
plementary Table S8 shows possible use cases for 4
example patients for whom model-assisted recommenda-
tions were derived. The table lists patient characteristics
as they enter our models as input characteristics. This
results in the respective recommendation for a treatment
option, depending on the threshold and weighting of the
respective outcome. While the recommendation is pre-
sented categorically, it originally stems from a continu-
ous risk scale, so many other visual aids or numerical
formats to communicate recommendations could concei-
vably be used,50 including standard formats such as icon
arrays or relative formats such as risk ladders.54 More-
over, the personalized approach via precision cohorts
used here seems promising (in line with the ‘‘patients-
like-me’’ framework55) and could also be presented to
decision makers. Nevertheless, it is important that the
patient is closely followed up even after the treatment
decision has been made. After a substance has been
selected in an adequate dosage, time-varying covariates
(e.g., renal function), signs and occurrence of adverse
events (e.g., bleeding), interactions with other drugs (e.g.,
nonsteroidal anti-inflammatory drugs), and adherence in
the course of treatment are all expected to modulate
responses and should therefore be monitored.

Conclusion

If prescribers are undecided about the potential benefits
of alternative therapy options, calculated individual
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probabilities for treatment success can support decision
making, especially in the case of inconclusive evidence, a
differentiated risk-benefit profile, and patients whose
complexity deviates from ‘‘typical’’ study populations.
Our presented case on the example of DOACs suggested
significant ARRs when model-assisted recommendations
weighing the risks for stroke and bleeding were consid-
ered. There may still be many steps to take on the road
to clinical practice, but the principle of decision support
developed from routine data can pave the way to future
decision-making processes.
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