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Identification of a Kitaev quantum spin liquid by
magnetic field angle dependence
Kyusung Hwang 1,6, Ara Go 2,3,6, Ji Heon Seong4, Takasada Shibauchi 5 & Eun-Gook Moon 4✉

Quantum spin liquids realize massive entanglement and fractional quasiparticles from loca-

lized spins, proposed as an avenue for quantum science and technology. In particular,

topological quantum computations are suggested in the non-abelian phase of Kitaev quantum

spin liquid with Majorana fermions, and detection of Majorana fermions is one of the most

outstanding problems in modern condensed matter physics. Here, we propose a concrete

way to identify the non-abelian Kitaev quantum spin liquid by magnetic field angle depen-

dence. Topologically protected critical lines exist on a plane of magnetic field angles, and their

shapes are determined by microscopic spin interactions. A chirality operator plays a key role

in demonstrating microscopic dependences of the critical lines. We also show that the

chirality operator can be used to evaluate topological properties of the non-abelian Kitaev

quantum spin liquid without relying on Majorana fermion descriptions. Experimental criteria

for the non-abelian spin liquid state are provided for future experiments.
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A quantum spin liquid (QSL) is an exotic state of matter
characterized by many-body quantum entanglement1–3.
In contrast to weakly entangled magnetic states, QSLs

host emergent fractionalized quasiparticles described by bosonic/
fermionic spinons and gauge fields4,5. The exactly solvable hon-
eycomb model by Kitaev reveals the exact ground and excited
states featured with Majorana fermions and Z2 gauge fluxes, so-
called Kitaev quantum spin liquid (KQSL)6. Strong spin-orbit
coupled systems with 4d and 5d atoms such as α-RuCl3 are
proposed to realize KQSL7–16, and related spin models have been
studied intensively17–48.

Recent advances in experiments have unveiled characteristics
of QSLs. For α-RuCl3, signatures of Majorana fermion excitations
have been observed in various different experiments of neutron
scattering, nuclear magnetic resonance, specific heat, magnetic
torque, and thermal conductivity49–65. Among them, the half
quantization of thermal Hall conductivity κxy=T ¼ ðπ=12Þðk2B=_Þ
may be interpreted as the hallmark of the presence of Majorana
fermions and the non-abelian KQSL60,63. At higher magnetic
fields, a significant reduction of κxy/T also suggests a topological
phase transition60,66. Thermal Hall measurements are known to
be not only highly sensitive to sample qualities64 but also very
challenging due to the required precision control of heat and
magnetic torque from strong magnetic fields. This strongly
motivates an independent way to detect the Majorana fermions
and non-abelian KQSL.

In this work, we propose that the non-abelian KQSL may be
identified by the angle dependent response of the system under
applied magnetic fields. As a smoking gun signature of the KQSL,
quantum critical lines are demonstrated to occur on a plane of
magnetic field directions whose existence is protected by topo-
logical properties of the KQSL. The critical lines vary depending
on the microscopic spin Hamiltonian, which we show by inves-
tigating a chirality operator via exact diagonalization. We further
propose that the critical lines can be detected by heat capacity
measurements and provide experimental criteria for the non-
abelian KQSL applicable to the candidate material α-RuCl3.

Results
Model and symmetries. We consider a generic spin-1/2 model
on the honeycomb lattice with edge-sharing octahedron crystal
structure,

HKJΓΓ0 ¼ ∑
hjkiγ

KSγj S
γ
k þ JSj � Sk þ Γ Sαj S

β
k þ Sβj S

α
k

� �h

þ Γ0 Sαj S
γ
k þ Sγj S

α
k þ Sβj S

γ
k þ Sγj S

β
k

� �i
;

so-called K-J-Γ-Γ0 model10,11,13,16. Nearest neighbor bonds of the
model are grouped into x, y, z-bonds depending on the bond
direction (Fig. 1a). Spins (Sj,k) at each bond are coupled via the
Kitaev (K), Heisenberg (J), and off-diagonal-symmetric (Γ; Γ0)
interactions. The index γ∈ {x, y, z} denotes the type of bond, and
the other two α, β are the remaining components in {x, y, z} other
than γ. Under an applied magnetic field (h), the Hamiltonian
becomes

Hðθ; ϕÞ ¼ HKJΓΓ0 � hðθ; ϕÞ �∑
j
Sj: ð1Þ

We specify the magnetic field direction with the polar and azi-
muthal angles (θ, ϕ) as defined in Fig. 1b. HKJΓΓ0 possesses the
symmetries of time reversal, spatial inversion, C3 rotation about
the normal axis to each hexagon plaquette, and C2 rotation about
each bond axis (Fig. 1a). The C3 and C2 rotations form a dihedral
group D3. Under each of these symmetries, H(θ, ϕ) is transformed
to Hðθ0; ϕ0Þ with a rotated magnetic field hðθ0; ϕ0Þ; see Supple-
mentary Notes 1 and 2.

In the pure Kitaev model, parton approach provides the exact
wave function of KQSL together with gapped Z2 flux and gapless
Majorana fermion excitations. Application of magnetic fields
drives the KQSL into the non-abelian phase by opening an energy
gap in Majorana fermion excitations. The gap size is proportional
to the mass function, M(h)= hxhyhz/K2, and the topological
invariant (Chern number) of the KQSL is given by the sign of the
mass function, sgnðhxhyhzÞ6.

Topologically protected critical lines. Topological invariant of
non-abelian phases with Majorana fermions can be defined from
the quantized thermal Hall conductivity, κxy=T ¼ νðπ=12Þðk2B=_Þ,
where ν is the topological invariant representing the total number
of chiral Majorana edge modes (T: temperature)6. While the
topological invariant in the pure Kitaev model is exactly calcu-
lated by the Chern number of Majorana fermions, it is a non-
trivial task to analyze the topological invariant for the generic
model H(θ, ϕ).

Our strategy to overcome the difficulty is to exploit symmetry
properties of the topological invariant and find characteristic
features of the non-abelian KQSL. Concretely, we focus on the
landscape of νðhÞ on the plane of the magnetic field angles (θ, ϕ).
Our major finding is that critical lines of νðhÞ must arise as an
intrinsic topological property of the non-abelian KQSL.

We first consider time reversal symmetry and note the
following three facts:

● Time reversal operation reverses the topological invariant
as νðhÞ ! − νðhÞ.

● Time reversal operation also reverses the magnetic field
direction: h(θ, ϕ)→−h(θ, ϕ)= h(π− θ, ϕ+ π).

● Topologically distinct regions with {þνðhÞ, +h} and
{− νðhÞ, −h} exist on the (θ, ϕ) plane.

These properties enforce the two regions to meet by hosting
critical lines where Majorana fermion excitations become gapless.
In other words, topological phase transitions must occur as the
field direction changes. We propose that the very existence of
critical lines can be used in experiments as an identifier for
the KQSL.

We further utilize the D3 symmetry of the system. The
topological invariant ν and thermal Hall conductivity κxy are A2

representations of the D3 group, i.e., even under C3 rotations but
odd under C2 rotations, which reveals the generic form,

νðhÞ ¼ sgn½Λ1ðhx þ hy þ hzÞ þ Λ3hxhyhz�; ð2Þ

where Λ1,3 are field-independent coefficients. The h-linear term
(hx+ hy+ hz) and h-cubic term (hxhyhz) are the leading order A2

representations of magnetic fields. Conducting third order
perturbation theory, we find the coefficients

Λ1 ¼ � 4Γ0

Δflux
þ 6JΓ0

Δ2
flux

� 4ΓΓ0

Δ2
flux

þ 5Γ02

2Δ2
flux

&Λ3 ¼
18

Δ2
flux

; ð3Þ

where Δflux= 0.065∣K∣ means the flux gap in the Kitaev limit. See
Supplementary Notes 3–5 and ref. 67 for more details of the
perturbation theory.

Notice that the h-linear term is completely absent in the pure
Kitaev model (Λ1= 0). Figure 1c visualizes the topological
invariant, νðhÞ ¼ sgnðhxhyhzÞ. The dashed lines highlight the
critical lines representing the topological phase transitions
between the phases with νðhÞ= ±1, where the energy gap of
Majorana fermion excitations is closed: Δ(h)= 0.

Exploiting the symmetry analysis, we stress two universal
properties of the KQSL with the D3 symmetry.
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1. Symmetric zeroes: for bond direction fields, topological
transition/gap closing is guaranteed to occur by the
symmetry, i.e., Δ(h)= 0 for (θ= 90∘, ϕ= 30∘+ n⋅60∘).

2. Cubic dependence: for in-plane fields, the h-cubic term
governs low field behaviors of the KQSL, e.g., νðhÞ �
sgnðhxhyhzÞ & Δ(h) ~ ∣hxhyhz∣ for θ= 90∘.

The universal properties and critical lines of the KQSL are
numerically investigated for the generic Hamiltonian H(θ, ϕ) in
the rest of the paper.

Chirality operator. We introduce the chirality operator

χ̂p ¼ Sx2S
z
1S

y
6 þ Sx5S

z
4S

y
3 þ C3 rotated terms ð4Þ

at each hexagon plaquette p and investigate the expectation value
of the chirality operator, shortly the chirality,

χðhÞ � 1
N
∑
p

ΨKQSLðhÞ
� ��χ̂p ΨKQSLðhÞ

�� �
; ð5Þ

and its sign,

�νðhÞ � sgn½χðhÞ�; ð6Þ
where ΨKQSLðhÞ

�� �
is the ground state of the full Hamiltonian

H(θ, ϕ) in the KQSL phase (N is the number of unit cells). The
chirality operator χ̂p produces the mass term of Majorana fermions
and determines the topological invariant in the pure Kitaev limit6.
More precisely, how magnetic fields couple to the chirality operator
determines the topological invariant and the Majorana energy gap.
The chirality χ and its sign �ν are in the A2 representation of the D3

group as of the topological invariant ν. We note that the relation
between the chirality and the Majorana energy gap, χ ~Δ, holds
near the symmetric zeroes in a generic KQSL beyond the pure
Kitaev model due to the symmetry properties (Supplementary
Note 6).

Exact diagonalization. The Hamiltonian H(θ, ϕ) is solved via
exact diagonalization (ED) on a 24-site cluster with sixfold
rotation symmetry and a periodic boundary condition (Fig. 1a).
Resulting phase diagrams are provided in the section of Methods.

Figures 2 and 3 display our major results, the ED calculations of
the chirality χED(h) for the KQSL. The used parameter sets are
listed in Table 1. The zero lines [χED(h)= 0; dashed lines in the
figures] exist in all the cases.

The two universal features of the KQSL are well captured by
the chirality (Figs. 2 and 3). Firstly, the zero lines of the chirality
χED(h) always pass through the bond directions (marked by black
dots), i.e., the symmetric zeroes. Secondly, the chirality shows the
cubic dependence for in-plane fields (θ= 90∘). The linear term,
hx+ hy+ hz, vanishes for in-plane fields, and the cubic term,
hxhyhz, determines the chirality at low fields, which is confirmed
in our ED calculations (lower panels of Fig. 2). Below, we show
how non-Kitaev interactions affect topological properties of the
non-abelian KQSL.

Most of all, we find that �ν becomes identical to ν for the pure
Kitaev model in Fig. 2a. It is remarkable that the two different
methods, ED calculations of the chirality sign and the parton
analysis, show the complete agreement: �νðhÞ ¼ νðhÞ. The
agreement indicates that the topological phase transitions can
be identified by using the chirality operator, which becomes a
sanity check of our strategy to employ the chirality operator.

Figure 2b illustrates effects of the Heisenberg interaction (J) on
the chirality. The shape of the critical lines is unaffected by the
Heisenberg interaction, remaining the same as in the pure Kitaev

Fig. 1 Field angle dependence of the pure Kitaev model. a Honeycomb lattice enclosed by edge-sharing octahedra. Red, green, blue lines denote the x,y,z-
bonds, and the six numbers indicate the numbering convention for sites in each hexagon plaquette (p). Black arrows depict C3 and C2 rotation axes.
b Convention for the angular representation of an applied magnetic field h (yellow). The polar and azimuthal angles (θ, ϕ) are measured from the out-of-
plane [111] axis and the bond-perpendicular ½11�2� axis, respectively. c Color map of the mass function M(h)= hxhyhz/K2 on the (θ, ϕ) plane. The dashed
lines highlight the topological phase transitions between the ν= ±1 states, i.e., the quantum critical lines of the energy gap Δ(h)∝ ∣M(h)∣= 0. The black
dots mark the bond directions (θ= 90∘, ϕ= 30∘+ n⋅60∘), where n= 0, 1, ..., 5. d A schematic of the field angle dependence of the heat capacity cv at a fixed
temperature, where peak positions determine the critical lines of the non-abelian KQSL.

Table 1 Parameter sets for exact diagonalization and spin
wave calculations.

Case K J Γ Γ0 Phase Figures

#1 −1 0 0 0 KQSL 2a, 3a
#2 −1 0.05 0 0 KQSL 2b, 3b
#3 −1 0.05 0 0.05 KQSL 2c, 3c
#4 −1 0.08 0.01 0.05 KQSL 2d, 3d
#5 −1 −0.2 −0.2 0.05 FM 4b
#6 −1 0.2 0.05 0.05 Stripy 4c
#7 −1 0.2 −0.2 0.05 Vortex 4d
#8 1 0.2 −0.2 −0.05 Neel 4e
#9 −1 −0.3 1 −0.1 Zigzag 4f
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model. This result is completely consistent with the perturbative
parton analysis [Eq. (3) and Supplementary Fig. 2b], indicating
the validity of our strategy.

Figure 2c, d presents consequences of the other non-Kitaev
interactions, Γ0 and Γ. The zero lines tend to be flatten
around the equator θ= 90∘, which can be attributed to the h-
linear term induced by the non-Kitaev interactions:
hx þ hy þ hz ¼ h

ffiffiffi
3

p
cos θ. In other words, the zero lines

substantially deviate from those of the pure Kitaev model by
the non-Kitaev couplings, Γ0 and Γ. We point out that the signs of

the chirality are opposite to the Chern numbers of the third order
perturbation parton analysis (Supplementary Fig. 2c, d). The
opposite signs indicate that the two methods have their own valid
conditions, calling for improved analysis (Supplementary Note 8).

Impacts of the non-Kitaev interactions also manifest in the
field evolution of the zero lines (Fig. 3). Without the non-Kitaev
couplings, Γ0 and Γ, the shape of the critical lines is governed by
the cubic term hxhyhz, as shown in Fig. 3a, b. In presence of the Γ0

or Γ coupling, the h-cubic term competes with the h-linear term
as illustrated in Fig. 3c, d. Namely, the linear term dominates over

Fig. 2 Chirality of the non-abelian KQSL. Upper: color maps of the chirality χED(h) on the plane of the field angles (θ, ϕ), where the magnetic field strength
is fixed by h= 0.01 (horizontal axis: ϕ[°], vertical axis: θ[°]). The dashed lines highlight the zero lines χED(h)= 0, and the black dots mark the bond
directions. Lower: χED(h) as a function of h3 for the in-plane fields (θ= 90∘, ϕ= 0∘, 10∘, 20∘, 30∘), illustrating the universality of the h3 behavior in the KQSL.
In the case #3, the bending at h3 > 0.5 × 10−6 is an effect of higher order contributions (h5, h7, ...). The parameter sets used in the four cases (#1~4) are
listed in Table 1.

Fig. 3 Field evolutions of the zero lines. Color maps of the chirality χED(h) on the plane of the field angles (θ, ϕ) with increasing magnetic field h= 0.004,
0.008 (horizontal axis: ϕ[°], vertical axis: θ[°]). The dashed lines highlight the zero lines χED(h)= 0, and the black dots mark the bond directions. The
parameter sets used in the four cases (#1~4) are listed in Table 1.
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the cubic term at low fields while the dominance gets reversed at
high fields (see Supplementary Note 11 and Supplementary
Table 4 for more results). The competing nature may be used to
quantitatively characterize the non-Kitaev interactions.

Similarities and differences between the topological invariant,
νðhÞ, and the sign of the chirality, �νðhÞ, are emphasized. First, the

two quantities are identical in the Kitaev limit while they can be
generally different by non-Kitaev interactions. Second, the two
quantities are in the same representation of the D3 group, so �νðhÞ
and νðhÞ have in common the symmetric zeroes. Third,
differences between the two quantities may be understood by
considering other possible A2 representation spin operators that

Fig. 4 Comparison of the KQSL with magnetically ordered phases. a KQSL: Majorana energy gap Δparton as a function of h3 for the in-plane fields,
(θ= 90∘, ϕ= 0∘, 10∘, 20∘, 30∘), obtained by a parton theory. b–f Ferromagnetic (FM), stripy, vortex, Neel, and zigzag phases: Magnon gap ΔSW as a
function of h for the in-plane fields, (θ= 90∘, ϕ= 0∘, 30∘), obtained with a spin wave theory for the parameter sets #5~9 in Table 1.

Fig. 5 Magnetic field angle dependence of specific heat in the KQSL and zigzag states. a KQSL state: Majorana gap Δparton and specific heat cv as
functions of in-plane field angle ϕ, obtained by a parton theory. b Zigzag state: magnon gap ΔSW and specific heat cv as functions of in-plane field angle ϕ,
obtained by a spin wave theory with ðK; Γ; Γ0; hÞ ¼ ð�1;0:8;�0:05;0:03Þ& kBT ¼ 0:01. Magnon gaps for other values of Γ are shown together to highlight
the generality of the field angle dependence.
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may contribute to the topological invariant. For example, linear
and higher-order spin operators exist in addition to the chiral
operator. Since the topological invariant ν is related with the
thermal Hall conductivity κxy, the associated energy current
operator directly informs us of relevant spin operators to the
topological invariant. We find that linear spin operator is
irrelevant to κxy and ν (Supplementary Note 7). We also evaluate
the expectation values of higher-order spin operators for the
KQSL and confirm that their sizes are substantially small
compared to the chirality (Supplementary Note 8). Therefore,
we argue that the critical lines of the non-abelian KQSL are
mainly determined by the zero lines of the chirality.

Discussion
Intrinsic topological properties of the non-abelian KQSL
including the critical lines, the symmetric zeroes, and the cubic
dependence are highlighted in this work by exploiting the sym-
metries of time reversal and D3 point group. The chirality
operator is used to evaluate the topological properties of the
KQSL via the ED calculations. Now we discuss how the properties
are affected by lattice symmetry breaking such as stacking faults
in real materials. First, the existence of the critical lines relies on
time reversal, thus it is not destroyed by lattice symmetry
breaking. The symmetric zeroes appearing at the bond directions,

however, are a consequence of the D3 symmetry. The locations of
the zeroes get shifted upon breaking the symmetry, which is
confirmed in ED calculations of the chirality.

The cubic dependence for in-plane fields also originates from
the D3 symmetry and topology in the KQSL. The characteristic
nonlinear response is not expected in magnetically ordered
phases, which we check by performing spin wave calculations.
Figure 4 contrasts the KQSL with magnetically ordered phases in
terms of excitation energy gap (Majorana gap vs. magnon gap).
The magnetic phases show completely different behaviors from
the h-cubic dependence. Hence, the characteristic cubic depen-
dence under in-plane magnetic fields may serve as an experi-
mentally measurable signature of the KQSL.

The universal properties of the KQSL can be observed by heat
capacity experiments. Figure 5a illustrates the calculated specific
heat cv(ϕ) for the KQSL as a function of in-plane field angle ϕ
(where magnetic field is rotated within the honeycomb plane).
The specific heat is maximized by gapless continuum of excita-
tions when the magnetic field is aligned to the bond directions.
For comparison, the zigzag state, observed in α-RuCl3 at zero
field, is investigated by using a spin wave theory. The magnon
spectrum is gapped due to completely broken spin rotation
symmetry, so there is no critical line on the (θ, ϕ) plane (Fig. 5b).
Compared to the KQSL, the zigzag state exhibits reverted patterns

Fig. 6 Ferromagnetic KQSL and nearby magnetic states. a Phase diagram of HKJΓΓ0 at K=− 1 and Γ0 ¼ 0:05. The color encodes the flux operator
expectation value hŴpi, and the dashed lines denote phase boundaries determined by the ground state energy second derivatives− ∂2Egs/∂ξ2(ξ= J, Γ).
b–e Color maps of the spin structure factor S(q) for the KQSL, QSL, ferromagnetic (FM), and stripy states. The inner and outer hexagons denote the first
and second Brillouin zones of the honeycomb lattice.

Fig. 7 Antiferromagnetic KQSL and adjacent magnetic states. a Phase diagram of HKJΓΓ0 at K= 1 and Γ0 ¼ �0:05. The color encodes the flux operator
expectation value hŴpi, and the dashed lines denote phase boundaries determined by the ground state energy second derivatives−∂2Egs/∂ξ2(ξ= J, Γ).
b–e Color maps of the spin structure factor S(q) for the KQSL, vortex, zigzag, and Neel states. The inner and outer hexagons denote the first and second
Brillouin zones of the honeycomb lattice.
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of ϕ dependence in the excitation energy gap and specific heat.
The energy gap is maximized and the specific heat is minimized
at the bond directions. This behavior is closely related with the
structure of spin configuration: all spin moments are aligned
perpendicular to a certain bond direction selected by magnetic
field direction (Supplementary Note 9). The distinct patterns of ϕ
dependence in Fig. 5 characterize differences between the non-
abelian KQSL and zigzag states. Remarkably, such behaviors were
observed in the recent heat capacity experiments with in-plane
magnetic fields65. Covering the polar angle (θ) in the heat capa-
city measurements will provide more detailed information on the
critical lines and spin interactions in α-RuCl3 (see Fig. 1d).

Lastly, we have examined the chirality and critical behaviors of
excitation energy gap for magnetically ordered phases of H(θ, ϕ).
It is found that the associated magnon gap does not have any
critical lines, and there is no resemblance/correlation between the
magnon gap and the chirality (Supplementary Note 9).

To summarize, we have uncovered characteristics of the non-
abelian Kitaev quantum spin liquid, including the topologically
protected critical lines, the symmetric zeroes, and the h-cubic
dependence for in-plane fields, by using ED calculations with the
chirality operator. Furthermore, we characterize the topological
fingerprints of the KQSL in heat capacity. We expect our findings
to be useful guides for identifying the KQSL in candidate mate-
rials such as α-RuCl3. Investigation of the universal properties in
field angle dependence of thermodynamic quantities such as spin
susceptibility is highly desired, and it would be also useful to
apply our results to the recently studied field angle dependence of
thermodynamic quantities61,65,68–71.

Methods
Exact diagonalization. The KQSL and other magnetic phases of H(θ, ϕ) are
mapped out by using the flux operator Ŵp ¼ 26Sz1S

y
2S

x
3S

z
4S

y
5S

x
6, the second derivative

of the ground state energy ∂2Egs=∂ξ
2 ðξ ¼ J; Γ; Γ0Þ, and the spin structure factor

SðqÞ ¼ 1
N ∑i;jhSi � Sjieiq�ðri�rjÞ . We find that the KQSL differently responds to non-

Kitaev interactions depending on the sign of the Kitaev interaction. Furthermore,
the non-abelian phase of the KQSL is ensured by checking topological degeneracy
and modular S matrix6,38,72.

Figures 6 and 7 display the phase diagrams of HKJΓΓ0 . A different structure of
phase diagram is found depending on the sign of the Kitaev interaction. With the
ferromagnetic Kitaev coupling (K < 0 as in Fig. 6), the KQSL takes an elongated
region along the J axis but substantially narrowed along the Γ axis, showing the
sensitivity to the Γ coupling of the ferromagnetic KQSL. Crossover-type continuous
transitions are mostly observed among the KQSL and nearby magnetically ordered
states such as ferromagnetic, stripy and vortex states10,20,43. Nature of the phase Y
is unclarified within the finite size calculation. Unlike the aforementioned
magnetically ordered states (Fig. 6d, e), the phase Y does not exhibit sharp peaks
and periodicity in the spin structure factor, from which the phase is speculated to
have an incommensurate spiral order or no magnetic order. It is remarkable that
another quantum spin liquid phase, characterized by negative hŴpi, exists in a
broad region of the phase diagram (blue region of Fig. 6a)39. The QSL and KQSL
show similarity in the spin structure factor (Fig. 6b, c). Nonetheless, the QSL as well
as the phase Y get suppressed when the sign of Γ0 is changed to negative. A zigzag
antiferromagnetic order instead sets in under negative sign of Γ0 (Supplementary
Fig. 6).

In case of the antiferromagnetic Kitaev coupling (K > 0 as in Fig. 7), the KQSL is
found to be more sensitive to the Heisenberg coupling rather than the Γ coupling,
and surrounded by magnetically ordered states such as the vortex, zigzag, and Neel
states10,20,43. In contrast to the ferromagnetic KQSL case, phase transitions between
the antiferromagnetic KQSL and adjacent ordered states are all discontinuous as
shown by hŴpi in Fig. 7a. We also find that the antiferromagnetic KQSL and
ferromagnetic KQSL are distinguished by different patterns of spin structure factor
(Figs. 6b and 7b). Further phase diagrams for other values of Γ0 are provided in
Supplementary Fig. 6.

We also examine the phase diagrams at weak magnetic fields, and confirm that
the overall structures remain the same as the zero-field results. We find that the
chirality is useful for the identification of distinct phase boundaries. In some cases,
the chirality performs better than the conventionally used flux (Supplementary
Note 12).

We ensure the non-abelian KQSL phase by checking the Ising anyon
topological order via threefold topological degeneracy6,73 and modular S

matrix38,72,74. As an example, the S matrix

SED ¼ ΨMES�IjΨMES�II
� �

¼
0:45e�i0:08 0:53e�i0:03 0:70ei0:04

0:53e�i0:03 0:50 �0:71e�i0:01

0:70ei0:04 �0:71e�i0:01 0:02e�i2:09

2
64

3
75

�
1=2 1=2 1=

ffiffiffi
2

p

1=2 1=2 �1=
ffiffiffi
2

p

1=
ffiffiffi
2

p �1=
ffiffiffi
2

p
0

2
64

3
75

ð7Þ

is obtained for the parameter set #4 in Table 1 with the magnetic field fixed along
the [111] direction (θ= 0∘). See Supplementary Note 10 for the topological
degeneracy and modular matrix computation.

Data availability
The data that support the findings of this study are available from the corresponding
author on reasonable request.

Code availability
The code used to generate the data in this study is available from the corresponding
author upon reasonable request.
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