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Abstract: Imaging spectroscopy has emerged as a reliable analytical method for effectively character-
izing and quantifying quality attributes of agricultural products. By providing spectral information
relevant to food quality properties, imaging spectroscopy has been demonstrated to be a potential
method for rapid and non-destructive classification, authentication, and prediction of quality param-
eters of various categories of tubers, including potato and sweet potato. The imaging technique has
demonstrated great capacities for gaining rapid information about tuber physical properties (such as
texture, water binding capacity, and specific gravity), chemical components (such as protein, starch,
and total anthocyanin), varietal authentication, and defect aspects. This paper emphasizes how
recent developments in spectral imaging with machine learning have enhanced overall capabilities
to evaluate tubers. The machine learning algorithms coupled with feature variable identification
approaches have obtained acceptable results. This review briefly introduces imaging spectroscopy
and machine learning, then provides examples and discussions of these techniques in tuber quality
determinations, and presents the challenges and future prospects of the technology. This review will
be of great significance to the study of tubers using spectral imaging technology.

Keywords: imaging spectroscopy; machine learning; food quality; potato; intelligent detection

1. Introduction

As plant foods grown worldwide, both potato and sweet potato tubers belong to the
family of solanales. Such tubers play an important role in human diets and have made
significant contributions to sustainable agricultural development and food supply [1,2].
Unlike meat, soybean, and dairy products [3–5], potatoes and sweet potatoes are important
sources of carbohydrates and are rich in protein, calcium, and vitamin C. They can be
used as staple foods, animal feeds, and for other purposes [6–8]. Sweet potato is a good
source of natural health compounds such as anthocyanins and beta-carotene [9]. Potato is
a high-yielding starch crop, which can produce more calories per unit area and unit time
than other food crops such as wheat, maize, and rice [10]. The starch of fresh potatoes is
not easy to be directly digested, thus most potatoes are processed into French fries, potato
chips, and mashed and dehydrated foods [11].

The end use and the price of tubers are greatly affected by their variety and quality
characteristics including physical characteristics (such as color and texture) and chem-
ical compositions (such as protein and vitamins) [12]. High-throughput characteriza-
tion of their quality parameters will facilitate the development of new tuber varieties.
The rapid differentiation of tuber varieties allows them to be effectively integrated into
the variety protection and genetic resource management. Growers may prefer to choose
resistant varieties that grow well in adversity environments (such as drought and flood).
Manufacturers need to quickly determine whether the nutritional quality of tubers meets
their expectations.
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Traditional sampling detection methods based on liquid chromatography (LC),
enzyme-linked immunosorbent assay (ELISA), and gas chromatography-mass spectrom-
etry (GC-MS) are inefficient and unsuitable for detections of large sample sets [13–17].
Especially for the food industry, smart technology is urgently needed to automatically eval-
uate the quality characteristics of a huge number of agricultural products. Non-destructive
techniques based on biosensors, computer vision, fluorescence imaging, and vibration
spectroscopy have received increasing attention and have been used to quickly assess
the quality attributes of tuber products [18–29]. Imaging spectroscopy can obtain the
continuous spectral response of each point of an image in the visible (Vis) and near/mid
infrared (NIR/MIR) ranges [24,30,31]. This technology can provide detailed characteristic
parameters for non-destructive quality evaluation of foods [32–34].

In recent years, the combination of imaging spectroscopy and machine learning
has achieved rapid monitoring of the quality attributes of different foods (including
meats, grains, and fruits) [35–42]. As far as we know, the application of imaging spec-
troscopy in quality detections of potato and sweet potato tubers has not yet been reviewed.
Therefore, this article will analyze the application of the technology in intelligent determi-
nation of potato and sweet potato tubers.

2. Imaging Spectroscopy and Machine Learning

Imaging spectroscopy integrates the main features of imaging and spectroscopic
technologies, which can simultaneously acquire spatial and spectral information of an
object [23,39,43–45]. This technology has been widely used in the quantitative determi-
nation and visualization of food physical and chemical values. In a hyperspectral image,
each pixel contains a continuous spectrum composed of hundreds of wavebands [15,46,47].
The 3-dimension (3-D) spectral image with two spatial dimensions and one spectral dimen-
sion can be generated by area scan (tunable filter), line scan (pushbroom), or point scan
(whiskbroom) [48]. As the successor of hyperspectral technology, multispectral technology
can obtain several discrete spectral data from the test sample to characterize a certain char-
acteristic parameter of the object of interest [49,50]. The Vis region (380–780 nm) contains
spectral information related to color characteristics. The NIR spectrum is mainly in the
range of 780–2500 nm, while the MIR spectrum is in the range of 2500–25,000 nm. The far
infrared (FIR) spectrum is in the farther spectral range (25,000–300,000 nm). NIR and MIR
spectra have higher energy than FIR spectra. These two spectra are more suitable for
analyzing fingerprint information related to chemical components [51,52]. NIR spectrum is
used to analyze the stretching and bending of chemical bonds, including O–H, S–H, N–H,
and C–H [53]. MIR spectrum is mainly related to basic vibration and rotational vibration
structure [54], which contains characteristic information related to chemical functional
groups [55,56].

The spectral parameters of the detected object and its physical or chemical properties
can be correlated by machine learning. Machine learning uses mathematical algorithms
to explore the rules that exist in big data to assist decision-making, involving unsuper-
vised learning and supervised learning. More information about machine learning can
be found elsewhere [57]. Based on the establishment of the calibration model, the pa-
rameter values of unknown samples can be predicted. Machine learning methods, such
as principal component regression (PCR), hierarchical cluster analysis (HCA), support
vector machine (SVM), partial least squares regression (PLSR), multiple linear regression
(MLR), locally weighted partial least squares regression (LWPLSR), artificial neural network
(ANN), and least square support vector machine (LS-SVM), have been widely used in food
analysis [58–62]. Feature variable selection based on genetic algorithm (GA) [63], compet-
itive adaptive reweighted sampling (CARS) [64,65], first-derivative and mean centering
iteration algorithm (FMCIA) [66], regression coefficient (RC), successive projection algo-
rithm (SPA) [67], and principal components analysis (PCA) [58] help to eliminate the feature
overlap of continuous spectral information, which is conducive to the development of more
robust and simplified machine learning models [68]. A high-performance model requires
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higher determination coefficients for cross-validation (R2
CV) and prediction (R2

P), correla-
tion coefficients for prediction (RP), and lower root mean square errors for cross-validation
(RMSECV) and prediction (RMSEP). Figure 1 shows the schematic of a general framework
for tuber quality determination based on imaging spectroscopy. Detailed applications of
the technology are given in the following section.

Figure 1. A typical schematic of imaging spectroscopy for tuber quality determinations.

3. Applications for Tuber Quality Assessment

The concept of agricultural intelligent sensing has attracted widespread attention.
In the past few years, many scientists have studied the feasibility of imaging spectroscopy
in rapid quality assessments of potato and sweet potato tubers. This section provides an
overview of developments and applications of this technology as listed in Table 1.

Table 1. Imaging spectroscopy for tuber quality assessment.

Quality
Parameter Sample Type Spectral

Region
Optimal
Model Accuracy Reference

Freshness,
Cultivar Potato Vis-NIR PLSR

0.98 for
freshness, 93%

for cultivar
discrimination

[69]

Sprout Potato Vis-NIR SMTSM 89.28% [70]
Sprouting

activity Potato Vis-NIR KNN,
PLSDA 90% [71]

Root-knot
nematodes Potato Vis-NIR PLS-SVM 100% [72]
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Table 1. Cont.

Quality
Parameter Sample Type Spectral

Region
Optimal
Model Accuracy Reference

Zebra chip
disease Potato Vis-NIR PLSDA 92% [73]

Starch Potato Vis-NIR SVR RP = 0.93 [74]
Starch Potato Vis-NIR PLSR RP = 0.94 [75]

Escherichia
coli Potato Vis-NIR BPNN 97.60% [76]

Color,
moisture
content

Potato Vis-NIR LSSVM

R2
P = 0.84 for

color, R2
P = 0.77

for moisture
content

[77]

TA, moisture
content

Sweet
potato Vis-NIR PLSR

R2
P = 0.87 for TA,

R2
P = 0.86 for

moisture content
[78]

Moisture
content

Sweet
potato NIR PLSR R2

P = 0.95 [79]

SSC Sweet potato Vis-NIR SVR R2
P = 0.86 [80]

Sulfite
dioxide
residue

Potato NIR SVM 95% [81]

Glucose,
sucrose Potato Vis-NIR PLSR

RP = 0.90
glucose, RP =

0.82 for sucrose
[82]

Defects Potato Vis-NIR LSSVM 90.70% [83]
Bruise Potato Vis-NIR SVM 100% [84]

Hardness,
resilience,

springiness,
cohesiveness,
gumminess,
chewiness

Potato, sweet
potato MIR LWPLSR

RP = 0.80, 0.88,
0.58, 0.57, 0.73

and 0.69 for
hardness,
resilience,

springiness,
cohesiveness,

gumminess and
chewiness

[55]

Moisture
content Potato Vis-NIR PLSR R2

P = 0.98 for
moisture content

[85]

Dry matter,
starch

Potato, sweet
potato NIR MLR, PLSR

R2
P = 0.96 for

dry matter, RP
2 =

0.96 for starch
[86]

Anthocyanin Sweet
potato Vis-NIR MLR R2

P = 0.87 [87]

Bruise Potato Vis-NIR GLCM 93.75% [88]

Moisture
content, FWC

Sweet
potato Vis-NIR MLR

R2
P = 0.98 for

moisture content,
R2

P = 0.93 for
FWC

[89]

Cultivar Sweet
potato NIR PLSDA 100% [90]

Moisture
content, color Potato Vis-NIR PLSR

R2
P = 0.99 for

moisture content,
R2

P = 0.99 for
colour

[91]

VTC, TCD Potato,
sweet potato NIR TBPANN

R2
P = 0.97 for

VTC, R2
P = 0.98

for TCD
[92]
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Table 1. Cont.

Quality
Parameter Sample Type Spectral

Region
Optimal
Model Accuracy Reference

Variety Potato,
sweet potato NIR PLSDA ≥91.60% [23]

WBC, SG Potato,
sweet potato NIR LWPCR

R2
P = 0.97 for

WBC, R2
P = 0.98

for SG
[93]

Moisture
content

Potato, sweet
potato NIR PLSR R2

P = 0.94 [94]

Blackspot Potato Vis-NIR PLSDA 98.56% [95]

Starch,
glucose,

asparagine
Potato Vis-NIR PLSR

R2
P = 0.70 for

starch, R2
P = 0.51

for
glucose, R2

P =
0.70 for

asparagine

[96]

Leaf counts,
glucose,
sucrose,
soluble
solids,

specific
gravity

Potato Vis-NIR PLSR

RP = 0.95 for leaf
counts, RP = 0.95
for glucose, RP =
0.55 for soluble
solids, RP = 0.95
for sucrose, RP =
0.61 for specific

gravity

[97]

Sugar-end Potato NIR PLSDA 91.70% [98]
Cooking time Potato Vis-NIR PLSDA R2

P = 0.96 [99]
Scab Potato NIR SVM 97.10% [100]

Hollow heart Potato NIR SVM 89.10% [101]
Moisture, fat
content, color

properties,
maximum

force

Taro chip NIR PLSR R2
P = 0.85–0.97 [102]

LWPLSR—locally weighted partial least squares regression; PLSR—partial least square regression; KNN—k-
Nearest Neighbors; LSSVM—least squares support vector machine; PLS-SVM—partial least squares support
vector machine; GLCM—gray level co-occurrence matrix; SSC—soluble solid content; SVR—support vector
regression; PLSDA—partial least square discriminant analysis; VTC—volatility of tuber compositions; TCD—
tuber cooking degree; SMTSM—supervised multiple threshold segmentation model; SVM—support vector ma-
chines; MLR—multiple linear regression; BPNN—back-propagation neural network; TBPANN—three-layer back
propagation artificial neural network; TA—Total anthocyanin; FWC—freezable water content; RP—correlation
coefficient for prediction; R2

P—coefficient of determination for prediction.

3.1. Physical Properties

Color is a combination of visible light reflected or emitted from an object [103]. It is the
primary factor that consumers consider in determining food quality [104,105]. Foods can
be quickly graded based on their color to achieve rapid food quality control. Hyperspectral
technology is an effective method for tuber color analysis. Vis/NIR hyperspectral imaging
was used to monitor the color of potato slices during air drying. PLSR combined with
feature wavelength selection methods such as selected interval partial least squares regres-
sion (iPLSR) yielded the R2

P as high as 0.91 [85,91]. Then, the hyperspectral imaging was
employed to measure the color index (L*, a*, b*, browning index (BI), L*/b*) of fresh-cut
potato tuber slices [77]. Compared to PLSR, higher accuracies were obtained by using
least squares support vector machine (LSSVM) and feature wavelength selection methods
including SPA and CARS. These studies showed that Vis/IR hyperspectral technology can
be used to accurately and rapidly determine the color of potatoes during processing.

The foods that consumers are willing to buy need to have acceptable sensory texture.
Food texture is generally determined by the sensory performance of the structural charac-
teristics of the product [106,107]. Traditional methods (such as texture profile analysis) of
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detecting the structural characteristics of foods have low efficiency [108]. Imaging spec-
troscopy has received greater attention in the evaluation of the texture of potato products.
The textural properties of potato and sweet potato based on MIR spectra (4000–600 cm−1)
were measured during microwave baking [55]. The authors reported that LWPLSR using
feature wavelengths in the fingerprint region (1500–900 cm−1) presented better perfor-
mances than PLSR in determination of related textural parameters including chewiness,
resilience, hardness, gumminess, cohesiveness, and springiness, with the highest RP value
of 0.881. Their research concluded that the textural property of potatoes and sweet potatoes
can be reliably evaluated using FT-MIR imaging spectroscopy.

The quality of tubers is indirectly affected by specific gravity (SG) and water binding
capacity (WBC). The SG is usually significantly affected by climate, irrigation, and soil
conditions. Potatoes with a higher specific gravity can produce more products (such as
potato chips and French fries) [109,110]. WBC refers to the ability of food tissue to retain
water under external pressure (such as gravity, heating), which can affect the sensory
quality of foods [111,112]. Foods with poor WBC are normally more easily damaged.
Vis/NIR hyperspectral imaging and machine learning methods such as PLSR were used
to measure the SG of sliced potato samples (Figure 2) [97]. Compared with the Vis/NIR
spectra (400–1000 nm), higher accuracy was obtained by hyperspectral imaging using
the NIR spectra (900–1700 nm). The locally weighted principal component regression
(LWPCR) using generalized logarithm spectra (GLS) and power spectra (PS) achieved
better performance than that of PLSR in determinations of SG (R2

P = 0.98) and WBC
(R2

P = 0.97), respectively [93]. The models developed using feature wavelength selection
methods including FMCIA-RC and GA-RC showed equivalent results to those using full-
wavelength spectra.

The effectiveness of both GA-RC and FMCIA-RC was preliminarily demonstrated.
The robustness of such methods should be further validated. The experimental design
considerations should be more carefully considered and justified in future research. The rel-
evance of variable selection methods should be evaluated over a longer period of time.
Although good combinations of variables were selected, future work is still required.
To choose the best set of feature wavelengths, the FMCIA should be properly benchmarked
against the state of the art variable selection approaches such as GA [113]. The robustness of
the selected wavebands could be further evaluated by other approaches such as performing
the selection on perturbed datasets. This can be achieved based on performing the selection
for different calibration and validation splits and evaluating if the same combination is
always chosen. During real-time applications, the combination of several most important
wavelengths can be separated using spectral filter arrays that are sensitive to these specific
wavelengths [114]. In addition, the convergence of GA-PLS is acceptable as the convergence
error of the model using several feature variables selected by GA-PLS is similar to that
of full wavelength models using hundreds of wavelengths. As the majority of irrelevant
variables were eliminated, the model storage capacity based on GA-PLS was reduced and
the model computing speed was improved.
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Figure 2. Visualization process of potato SG based on hyperspectral imaging. (a) The corrected
hyperspectral image, (b) band image at 1024 nm, (c) band image at 1460 nm, (d) mask image, (e) color
mask, (f) spectral reflectance index, (g) average spectrum, (h) feature variable selection, (i) feature
variable reduction, and (j) distribution map of SG [93].

3.2. Chemical Components

Potatoes and sweet potato tubers are valuable substitutes with acceptable protein
yields per hectare. Protein content is an important indicator in the selection of superior
tuber genotype. The potential of spectroscopy and machine learning was investigated to
determine the tuber protein. The PLSR model using NIR spectra obtained good result in
the protein determination of potato and sweet potato with the highest R2

P of 0.98 [115,116].
The developed PLSR model showed great potential in selection of tuber cultivar with high
protein content. Dry matter contains soluble and insoluble carbohydrates, which is an
equivalent predictor of food flavor and consumer preference [117–121]. Hyperspectral
imaging combined with LWPLSR, PLSR, and MLR were used for measuring the dry matter
of potato and sweet potato [122]. The highly satisfactory results (R2

P = 0.962) were obtained
using the MLR model [86]. The results showed that the models using exponent spectra
(ES) achieved higher performance than those using other spectra including reflectance
spectra (RS) and absorbance spectra (AS). Further investigation about theoretical logic of
ES transformation will be a direction of future research.

Starch is a glucose polymer composed of hundreds of glucose units, which can be
used to assess the growth potential of crops [123]. The NIR hyperspectral technology was
studied to predict the starch of sweet potato and potato [124]. The PLSR model showed
acceptable accuracy (R2

P = 0.70) [96]. Compared with PLSR, MLR showed better perfor-
mance in predicting potato and sweet potato starch, with the R2

P as high as 0.97 [125,126].
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The FMCIA-MLR and FMCIA-PLSR developed using six feature variables obtained similar
results with R2

P of 0.962 and 0.963 for tuber DMC and SC, respectively. Then, hyperspectral
data collected from three sites of potatoes (the top, umbilicus, and middle regions) were
preprocessed using standard normal variate (SNV) and three wavelength selection methods
including CARS, iterative variable subset optimization (IVSO), and the variable iterative
space shrinkage approach (VISSA). Then, the starch content (SC) of different potato vari-
eties was determined based on linear PLSR and nonlinear support vector regression (SVR)
models. Based on selected feature wavelengths, the CARS-SVR model achieved the highest
accuracy with the RP of 0.93 [74]. Besides the whole potato, the SC of fresh-cut potato
slices was also measured. After multivariate scattering correction (MSC) preprocessing,
the CARS-PLSR model exhibits the best performance with the RP of 0.95 [75].

Soluble carbohydrates mainly involve sugars, including disaccharides (such as su-
crose) and monosaccharides (such as fructose and glucose) [127,128]. Hyperspectral imag-
ing technique was tested to determine potato glucose and sucrose. Based on the iPLSR for
feature variable selection, machine learning methods including k-nearest neighbor (KNN)
and PLSR models achieved better results in glucose prediction (R2

P = 0.88) compared
with that in sucrose prediction (R2

P = 0.36) [129]. This imaging technique combined with
SPA–SVR and CARS–MLR was capable of visualizing the spatial distribution of soluble
solid content (SSC) in sliced sweet potatoes [80]. Moreover, total anthocyanin (TA) and
moisture content in processed potato and sweet potatoes were detected during convective
hot-air drying and microwave drying [51,94]. Results showed that hyperspectral imaging
and PLSR using spectral and GLCM features was effective to monitor different levels of
sweet potato moisture content and TA [78]. Based on five NIR feature wavelengths (961,
1066, 1084, 1173, and 1234 nm), PLSR obtained the highest accuracy (R2 = 0.98) for moisture
content prediction in steamed and dried purple sweet potatoes [79].

The contamination of foodborne Escherichia coli on the surface of fresh-cut potatoes
was detected using Vis-NIR hyperspectral imaging (400–1000 nm). The non-linear back-
propagation neural network (BPNN) model coupled with GA showed higher accuracy
(R2 = 0.98), in comparison with that of the linear regression models [76]. Su and Sun [92]
reported that hyperspectral imaging (900–1700 nm) combined with the three-layer back
propagation artificial neural network (TBPANN) model obtained higher accuracy than
PLSR in detection of the volatility of tuber compositions (VTC) and prediction of the tu-
ber cooking degree (TCD). Based on eight feature variables, the FMCIA-TBPANN model
achieved good results with R2

P of 0.97 for VTC and 0.98 for TCD. In addition, NIR hy-
perspectral imaging and FT-MIR microspectroscopy were combined to determine sweet
potato varieties and to measure tuber cooking loss (CL) [54]. Based on PLSDA, PLSR, and
SVMR models, it was confirmed that both spectroscopic techniques provided characteristic
information about tuber variety and CL.

3.3. Varietal Authentication

Variety identification plays a key role in breeding and production of tubers. Kasam-
palis, Tsouvaltzis, Ntouros, Gertsis, Moshou, and Siomos [69] explored the possibility of
hyperspectral imaging coupled with PLS-based methods to classify three genotypes of
potatoes into respective cultivars. The PLSR and PLSDA models combined with feature
selection algorithms including variance inflation factor, variable importance scores, and
GA showed similar performance to that using full-wavelength spectra, indicating the
effectiveness of the feature selection techniques. To differentiate pure and adulterated
sweet potato, Ding, Ni, and Kokot [21] utilized machine learning algorithms to group the
NIR reflectance spectra from many different types of tuber samples. Their results showed
that the purple and white sweet potato varieties could be accurately discriminated from
each other as well as from different adulterated purple sweet potato samples. Further-
more, NIR hyperspectral imaging and PLSDA have been effectively utilized for potato
variety classification [23,51]. The PLSDA model coupled with PCA achieved the 100%
identification accuracy of sweet potato cultivars [90]. Nevertheless, the robustness of the
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classifiers against within class variability (such as different batches, harvesting seasons,
origins, etc.) was not investigated. The classification investigated is limited to distinguish-
ing samples from one batch for class 1 from samples from one batch from class 2. In future
study, methods should be described more carefully with clear motivations for choices made.
Much deeper research is recommended to confirm the robustness of classifiers. For instance,
further steps including using samples from several batches and samples from different
harvesting seasons would improve the robustness of the models developed.

3.4. Defect Aspects

The rapid detection of tuber surface defects based on high-throughput methods is
helpful for the selection and breeding of disease-resistant varieties. Tuber defects are
closely related to their prices and consumers’ purchasing intentions. Scab is a common
skin disease that reduces the quality of potatoes. Based on the hyperspectral imaging
system, the SVM classifier was used to identify common scabs on potatoes with an accu-
racy rate of 97.10% [100]. The hyperspectral imaging in the Vis/NIR region (400–1700 nm)
achieved the rapid detection of potato defects such as scabs, surface bruises, holes, and
sprouts [130,131]. Specifically, the potato sprouts were detected by supervised multiple
threshold segmentation model (SMTSM) [70]. The results showed that the SMTSM cou-
pled with Canny edge detector was effective in detection of potato germination with a
high accuracy (89.85%), which demonstrated that the precision of the proposed methods.
Furthermore, the Vis-NIR hyperspectral imaging showed a higher performance than other
optical techniques including Vis-NIR interactance spectroscopy and NIR transmittance
spectroscopy in determinations of potato sprouting activity [71]. Moreover, seven types
of potato defects were classified by LS-SVM using spectral and textural features of multi-
spectral images at 690, 757, and 927 nm, yielding the classification accuracy of 90.70% [83].
Three severity levels of bruised potatoes were successfully identified from healthy ones.
Methods including Savitzky-Golay smoothing, second derivative, and optimized simu-
lated annealing algorithm were used for data pre-processing and dimensionality reduction.
Based on 12 feature wavelengths (657, 667, 678, 693, 709, 714, 750, 760, 776, 787, 808, 839
nm) selected, the SVM obtained a correct recognition rate of 100% for potatoes with minor
bruise [84]. Hyperspectral imaging coupled with variable importance in projection analysis
successfully detected potato tubers infested with root-knot nematodes with 100% accu-
racy [72]. The internal Zebra chip disease of potatoes was detected based on hyperspectral
imaging (550 nm–1700 nm) [73]. The developed PLSDA model using 34 variables selected
basing on the variable importance in projection (VIP) achieved an accuracy of 92% for
identifications of Zebra chip infected whole potatoes. Further increase of the accuracy may
be achieved using deep learning methods. In addition, potato hollow heart disease is a
physiological disorder, occurring inside the tuber products. Based on the hyperspectral
imaging in the reflectance mode, the SVM model was used to identify the hollow heart in
potato tubers, yielding the correct classification of 89.10% [101]. The accuracy increased to
100% by hyperspectral imaging in the semi-transmission mode [132].

4. Challenges and Future Prospects

In general, the feasibility of imaging spectroscopy and machine learning in intelli-
gent determination of potato and sweet potato quality has been confirmed by empirical
studies. Portable spectroscopy systems allow users to get real-time evaluations of food
quality parameters while reducing operational uncertainty and response time. The draw-
back of traditional spectroscopic methods is that spectral data are collected from a single
point or from a small portion of tested samples which may not guarantee data accuracy
and representativeness. The NIR point spectroscopy would provide a mean spectrum
of several single points (average measurement) of a sample, irrespective of the area of
the sample scanned. As the spectra collected are averaged to provide a single spectrum,
the information on spatial distribution of constituents within the sample is thus lost.
Hyperspectral imaging is an advanced spectroscopic technique with the advantage of
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acquiring spatially distributed spectral information at each pixel of an object, which is
helpful to evaluate the heterogeneity of spectral signature captured from center and ends
of the sample. Although values of predicted concentrations were verified and comparable
to the measured values based on reference methods, to further verify these results, sam-
ples of variability including different batches, harvesting seasons, and origins should be
investigated in future research.

The developed machine learning methods with effective wavelength selection showed
greater ability for food quality assessment. There is no unique method to select wavelengths
for a particular study. FMCIA demonstrated good performance, but further research to
improve and demonstrate the robustness of the algorithm and the logic behind should be
carried out in future. Additionally, future work is required to further investigate other
chemometrics methods. Nonlinear modelling algorithms, such as LWPLSR and LWPCR
based models, showed higher performances than linear methods. Although PLSR-based
algorithms are recognized data-mining approaches, further studies are needed to improve
the prediction precision and comprehensively apply them to practical uses. More studies
are needed to further validate the performance of these approaches, and to develop novel
simplified models in visualizing tuber quality parameters. Further study should also be
conducted to monitor the change of other chemical compositions (such as ascorbic acid) in
potato and sweet potato tubers. In recent years, deep learning algorithms have become
increasingly popular [133]. One of the main reasons is the scalability of the data sets and
the performance growth of deep learning in training phase. The availability of parallel
processing and large-scale data sets simplifies the deep learning research. Deep neural
networks may perform well in image classification of various foods, but they rely on a
large number of labeled samples for model training [134]. Additionally, the algorithm is
not sufficient enough to identify objects with high occlusion. The training data set is better
to be large enough to prevent overfitting. The acquisition of large data sets often requires a
large number of images to be annotated, which is a high labor cost [135].

Based on these chemical-free evaluation approaches, the sample preparation time is
significantly decreased, and the errors emerged during subjective judgement are greatly
reduced. On behalf of the regulatory inspection and the goal to guarantee superior prod-
uct quality in food industry, imaging spectroscopy has replenished the new knowledge
of determinations of food quality parameters. Given the flourishing innovation and
progress in data analysis and modeling recently, it is anticipated that such imaging spec-
troscopy will gradually become the prevailing measurement method for quality evalua-
tions of food products in both laboratorial and industrial scales. Thus, the applications of
imaging spectroscopy have been epitomized as potential tools for quality evaluations of
food products.

The depth of the analyses can be improved in future with respect to the
following aspects:

(a) the robustness of the models against group variability. This can be done by leaving
an entire batch or cultivar out and testing if the models still provide good predictions.
Other influencing factors with different variabilities, including samples from various
batches, harvesting seasons, origins, and milling processes, should be considered;

(b) the robustness of the selected set of wavebands. This can be done by performing
the selection for different calibration and validation splits and evaluating if the same
combination is always chosen. Additionally, different sources of samples can be used
to validate the selected feature variables;

(c) carefully benchmarking the new methods against state-of-the-art ones and evaluating
whether the differences in prediction performance are significant.

It has been implied that the existing spectral imaging systems are still in the develop-
mental stage, and new strategies should be proposed to develop real-time and low-cost
detection systems for food industry. With the further joint development of artificial intelli-
gence and spectral imaging techniques, it could be anticipated that more advanced optical
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and imaging instruments will be established to simultaneously acquire spectral and spatial
information of test specimens at laboratory and industrial scales.

5. Conclusions

In this review, the latest application of imaging spectroscopy in potato and sweet
potato quality assessment has been confirmed. Based on the chemical-free evaluation
approaches, the sample preparation time has been greatly reduced and the errors emerging
during subjective judgement decreased. This imaging technology has great potential in
determining the physical properties, chemical compositions, variety identification, and
defects of potatoes and sweet potatoes. This technology has been added to the knowledge
base for the determination of potato and sweet potato quality parameters. Given the recent
boom in innovation and the advancement in data analysis and machine learning, it is
expected that imaging spectroscopy will gradually become the mainstream measurement
method for food quality assessments at laboratories and industrial scales. However, more
work is required to successfully implement this technology in the food industry for real-
time applications. Since spectral information can be explored based on machine learning
to link the measured reference values, optimal prediction models could be generated to
quantify the quality parameters of these foods.
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