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Summary

Tumor necrosis factor (TNF) family cytokines are important

mediators of inflammation. Elevated levels of serum TNF-a are

associated with human sensorineural hearing loss via poorly

understood mechanisms. We demonstrate, for the first time,

expression of TNF-related apoptosis-inducing ligand (TRAIL) and

its signaling death receptor 5 (DR5) in the murine inner ear and

show that exogenous TRAIL can trigger hair cell and neuronal

degeneration, which can be partly prevented with DR5-blocking

antibodies.
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Introduction

The inner ear was previously thought to be deficient in cellular and

humoral immunity due to the presence of the blood–labyrinthine barrier

established by tight junctions (McCabe, 1989). However, studies over

the last decade have shown that inflammatory and immune response in

the cochlea play a role in noise-induced hearing loss and that a variety of

inflammatory cytokines are expressed in the cochlea in response to

noxious stimuli such as acoustic trauma (Fujioka et al., 2014). Among

the pro-inflammatory cytokines, tumor necrosis factor-alpha (TNF-a) has
been shown to play a role in the loss of cochlear sensory hair cells in

animal models (Demirhan et al., 2013) and to contribute to sensorineu-

ral hearing loss in humans (Svrakic et al., 2012). Specifically, exogenous

TNF-a induced loss of hair cells in rat Organ of Corti explants and this

TNF-a-induced ototoxicity involved the upregulation of a series of

apoptosis-related genes (Dinh et al., 2008). Elevated levels of TNF-a have

been detected in inner ears after exposure to noise (Fujioka et al., 2006)

and ototoxic medications (Park et al., 2012). In humans, elevated TNF-a
serum levels have been detected in people with idiopathic sudden

sensorineural hearing loss (Demirhan et al., 2013) and immune-

medicated sensorineural hearing loss (Svrakic et al., 2012).

Our previous work has shown that osteoprotegerin (OPG) – a

member of the TNF receptor superfamily – is involved in the

regulation of neuronal survival in the inner ear (Kao et al., 2013).

Loss of OPG expression causes death of spiral ganglion cells and

sensorineural hearing loss, in addition to the previously described

conductive hearing loss (Zehnder et al., 2006). OPG was first

discovered as a soluble, neutralizing antagonist that competes with

the receptor activator of NF-jB (RANK) on pre-osteoclasts and

osteoclasts for RANK ligand (RANKL) produced by osteoblasts to

inhibit osteoclast formation and function (Khosla, 2001). In addition,

OPG was found to interact with another member of the TNF family of

cytokines: TNF-related apoptosis-inducing ligand (TRAIL). By binding

TRAIL, OPG prevents TRAIL from interacting with its receptor and

thereby exerts its anti-apoptosis function (Emery et al., 1998). These

studies have prompted us to explore physiological and pathological

roles of TRAIL in the inner ear.

TRAIL induces apoptosis in a wide variety of cells by binding to a

death receptor. In mice, only one death domain-containing TRAIL

receptor, DR5 (mouse KILLER), has been identified (Wu et al., 1997).

This receptor is a homologue of human DR5 and DR4 (79 and 76%

amino acid homology, respectively), and it binds TRAIL with an affinity

similar to that of human DR4 and DR5 (Wu et al., 1997). TRAIL and

TNF-a have important structural and functional similarities. Specifically,

they both contain a TNF domain and form trimeric structures when

binding to receptors (Chan, 2007). Both TRAIL and TNF-a have

antitumor activity (Aggarwal et al., 1985; Wiley et al., 1995) and

induce apoptosis (Obeid et al., 1993; Degli-Esposti et al., 1997) albeit

by different mechanisms (Jin & El-Deiry, 2006). Both TRAIL and TNF-a
regulate inflammation (Bradley, 2008), at least partly by regulating a

pro-inflammatory transcription factor NF-kB (Secchiero et al., 2003),

and both are involved in auto-immune diseases (Kollias et al., 1999;

Aktas et al., 2005). Due to these similarities between TRAIL and TNF-a,
the importance of TNF-a for cochlear pathobiology, and our finding of

OPG’s importance for survival and function of spiral ganglion neurons

(Kao et al., 2013), we studied the expression and function of TRAIL and

DR5 in the inner ear. Using a combination of techniques – including

real-time quantitative RT–PCR, Western blot, in situ hybridization,

organotypic cell culture, and an auditory cell line – we demonstrate a

possible role for TRAIL and DR5 in sensorineural degeneration in the

inner ear. Our results suggest a strategy to prevent or treat certain kinds

of sensorineural hearing loss.

Results

TRAIL and DR5 are expressed in the cochlea

To determine whether Trail and Dr5 are expressed in cochlear soft

tissues, we used real-time quantitative PCR (qRT–PCR; Fig. 1A),

followed by Western blot (Fig. 1B) and fluorescence in situ hybridiza-

tion to assess cochlear cross sections (Fig. 1C). Expression of Trail

mRNA was stable in postnatal day (P) 5-12 cochleae and then

increased significantly at 7 weeks. A similar trend was present at

the protein level. Expression of Dr5 mRNA decreased during postna-

tal development and maturity (Fig. 1A). In contrast, DR5 protein

expression increased from P5 to 7 weeks (Fig. 1B), suggesting

post-transcriptional modifications (Fig. 1B). Trail and Dr5 expression
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localized to specific cochlear cells (Fig. 1C(a) and (e)) in 6-week-old

mice – primarily hair cells and supporting cells of the organ of Corti

(Fig. 1C(b) and (f)) and spiral ganglion neurons (SGNs) (Fig. 1C(c) and

(g)). Hair cells and SGNs were identified by concurrent immunohisto-

chemistry for myosin VIIa or neurofilament, respectively. Antisense

probes for Trail (Fig. 1C(d)) and Dr5 (Fig. 1C(h)) revealed no non-

specific staining.

TRAIL treatment causes cellular degeneration in cochlear

explants

To gain functional insight, cultured cochlear explants were treated with

recombinant TRAIL. Representative images are shown in Fig. 2A.

Quantification of the results is presented in Fig. 2B–F where ‘n’ refers

to the number of different animals. TRAIL treatment reduced the
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Fig. 1 Cochlear expression of Trail and

Dr5. (A) mRNA expression with age, relative

to TrailmRNA expression at P5. w = weeks.

n = 5 mice. replicates per age. *P < 0.05.

Data are plotted as mean � SD. (B) TRAIL

and DR5 protein expression at 5 days

(n = 4 mice) and 7 weeks (n = 3 mice) of

age. (C) In situ hybridization for Trail (a, b,

c), Dr5 (e, f, g), and antisense controls for

Trail (d) and Dr5 (h) in cochlear cross

sections. Images of the organ of Corti (b, f)

and SGNs (c, g). Scale bar: 100 lm (C(a),

(d), (e), (h)) or 20 lm (C(b-c), (f-g)). The

experiment was repeated in cochlear

samples from 3 mice.
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number of inner hair cells (IHCs) per 100 lm of cochlear length to

2.4 � 1.25 (n = 5, P < 0.05) re the control no-treatment (NT) group

(13.5 � 0.45, n = 8). Damage was partially prevented by pretreatment

with an anti-DR5 neutralizing antibody, aDR5 Ab (7.6 � 1.7, n = 5,

P = 0.041) (Fig. 2A,B). TRAIL treatment also reduced the number of

outer hair cells (OHC) per 100 lm to 21.4 � 5.63 (n = 5, P = 0.0001) re
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Fig. 2 TRAIL treatment damages hair cells

and SGNs in cultured murine cochlear

explants. (A) Representative images of P4

explants from the same cochlear region

that received either 0.1 M PBS

(‘nontreated’, NT), 1 lg mL�1 TRAIL, or

1 lg/mL TRAIL and 4 lg mL aDR5 Ab.

MyoVIIa (green) marks hair cells. Tuj1 (red)

marks spiral ganglion neuron (SGN)

neurites and somata. Scale bar: 100 lm
(top two rows) or 50 lm (bottom row). (B)

The number of inner hair cells (IHC) per

100 lm of cochlear length. (C) The number

of outer hair cells (OHC) per 100 lm of

cochlear length. (D) The number of SGN

neurites per 100 lm of cochlear length. (E)

The number of SGNs per 104 lm2. (F) The

distribution of the area of the SGN somata.

*P < 0.05, **P < 0.05. n = number of

different explants. A total of 12 mice were

used in these experiments for Figure 2 and

Figure S1. Data are plotted as mean � SD

(B–F).
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41.6 � 1.34 in the control group (n = 8), which was not prevented with

aDR5 Ab (20.4 � 6.48; n = 5) (Fig. 2A,C). Nonetheless, the morphology

of OHCs was greatly improved with DR5 neutralization (Fig. 2A) re TRAIL

treatment alone.

Although the absolute neurite count per 100 lm did not differ

significantly between the groups (Fig. 2A,D), TRAIL caused degener-

ative neurite beading, which was partly prevented with DR5 neutral-

ization (Fig. 2A). While TRAIL treatment did not result in significant

SGN loss, it did cause significant shrinkage of neuronal somata, which

could be prevented with aDR5 neutralization. Specifically, the number

of neurons per 104 lm2 area was 37.4 � 12.7 in the NT control group

(n = 9), 31.4 � 3.5 in the TRAIL-treated group (n = 5), and 28 � 3.8

in the group treated with anti-DR5 antibodies and TRAIL (n = 5)

(Fig. 2E). When quantifying the area of the somata, TRAIL treatment

resulted in a smaller area (113.9 � 35.8 lm2) re the NT control group

(159.7 � 43.1 lm2, P = 0.000006), which could be prevented

by cotreatment with anti-DR5 antibodies (151.8 � 52.7 lm2,

P = 0.0000007) (Figs 2F and S1).

TRAIL-induced cell death in cochlear neuroblasts can be

prevented by DR5 neutralizing antibodies and OPG

As SGN degeneration is typically slow in vivo (Kujawa & Liberman, 2009),

we studied it in an accelerated model in vitro, using a mouse auditory

neuroblast cell line, VOT-33 (Lawoko-Kerali et al., 2004). TRAIL did not

induce apoptosis in VOT-33 cells, as assessed using the TUNEL assays

(Fig. 3A(b) compared to no treatment in Fig. 3A(a)). However, treatment

with the proteasome inhibitor MG132 – which is known to sensitize

tumor cells to TRAIL-induced apoptosis (Cheong et al., 2011; Kahana

et al., 2011) – caused apoptosis of VOT-33 cells (Fig. 3A(c)). The

cotreatment with TRAIL and MG132 was more effective in inducing

apoptosis than MG132 alone (Fig. 3A(d)).

To test whether the TRAIL-induced death of VOT-33 cells occurred via

activation of the TRAIL-DR5 pathway, we pretreated VOT-33 cells with

OPG that binds TRAIL and prevents TRAIL from binding DR5 (Emery

et al., 1998). TRAIL-MG132 treatment activated caspase 8, a crucial

downstream molecule for TRAIL signal transduction (Crowder and

El-Deiry, 2012), as shown by the presence of cleaved caspase 8 in

Western blot (Fig. 3B). TRAIL-MG132 treatment also induced apoptosis,

as evidenced by the presence of cleaved caspase 3 (Fig. 3B). Pretreat-

ment with OPG suppressed TRAIL-MG132-induced apoptosis in VOT-33

cells (Fig. 3A(e)) and decreased cleaved caspase 8 and cleaved caspase 3

expression (Fig. 3B), as assessed by Western blot.

When using the MTT cell viability assay, TRAIL treatment reduced

VOT-33 cell viability to 77.65 � 1.02% re the vehicle control (distilled

water) (Fig. 3C). This suggests that in addition to promoting cell death,

TRAIL may also suppress cell proliferation. Cotreatment with either OPG

or aDR5 Ab partially prevented TRAIL-induced damage and increased cell

viability to 96.66 � 7.65% and 85.92 � 3.58%, respectively (Fig. 3C).

Discussion

Our discovery of TRAIL and the death receptor DR5 in the cochlea is

novel and may have therapeutic implications. We show that the TRAIL-

DR5 pathway induces degeneration of cochlear sensorineural structures

in vitro. These results motivate future studies to determine whether

inhibition of the TRAIL-DR5 signaling in the cochlea in vivo can prevent

sensorineural death and the associated hearing loss. Blocking TRAIL-DR5
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signaling has been shown to be therapeutic in reducing the delayed

neuronal damage after transient global cerebral ischemia (Cui et al.,

2010) and preventing beta-amyloid neurotoxicity seen in Alzheimer’s

disease (Uberti et al., 2007).

However, full understanding of TRAIL signaling in the cochlea will

require future studies of expression of all TRAIL receptors, including

those that do not signal apoptosis, because TRAIL function is regulated

at the level of receptor expression (Degli-Esposti et al., 1997). In the

brain, TRAIL-DR5 signaling controls not only cell death (Uberti et al.,

2007; Cui et al., 2010), but also inflammation (Hoffmann et al., 2009)

and neuroproliferation and differentiation (Niu et al., 2012).

Several lines of evidence indicate that inflammation plays an

important role in sensorineural hearing loss. For example, microbial

infections of the middle ear, such as with Streptococcus pneumoniae

(Dodge et al., 1984), Haemophilus influenzae type B (Feldman et al.,

1982), or cytomegalovirus (Bradford et al. 2015), can spread to the inner

ear and induce inflammation resulting in sensorineural hearing loss.

Importantly, such hearing loss can be prevented with anti-inflammatory

medications (Brouwer et al., 2013). In addition, tissue damage in inner

ear cells, such as due to acoustic trauma, can initiate inflammation and

stimulate expression of proinflammatory cytokines, resulting in noise-

induced hearing loss (Fujioka et al., 2006). Our study suggests that TRAIL

signaling may be involved in sensorineural hearing loss. TRAIL signaling is

known to mediate brain injury after inflammation and hypoxia–ischemia

(Kichev et al., 2014).

In addition to inflammation, autoimmunity is known to play a role in

sensorineural hearing loss. Many systemic autoimmune diseases are

associated with hearing loss (Bovo et al., 2006) while patients with

seemingly isolated sensorineural hearing loss can have autoantibodies

against inner ear antigens (Greco et al., 2011). A comprehensive

bioinformatic analysis has revealed that inner ear proteins share

sequence similarity with many known immunogenic proteins, which

may lead to cross-reactivity and detrimental immune activation in the

inner ear (Platt et al., 2014). TRAIL-DR5 signaling has been implicated in

the control of autoimmune diseases in the brain. For example, in

experimental autoimmune encephalitis (EAE), TRAIL expression is

increased, especially in the activated T cells (Wendling et al., 2000). In

a similar EAE model, removal of endogenous TRAIL by intracerebral

injection of a soluble TRAIL receptor reduced neuronal apoptosis and

myelin loss, and prevented neurological disability (Aktas et al., 2005). It

is likely that, similar to in the brain, TRAIL-DR5 signaling in the cochlea

may mediate autoimmunity, while depending on context and down-

stream signaling molecules.

Besides DR4 (TRAIL-R1) and DR5 (TRAIL-R2), other receptors also bind

TRAIL and appear to act as ‘decoys’: DcR1 (TRAIL-R3), DcR2 (TRAIL-R4),

and OPG (LeBlanc & Ashkenazi, 2003). DcR2 has a truncated nonfunc-

tional death domain, and DcR1 does not contain transmembrane and

death domains. Although both receptors are incapable of directly

transmitting an apoptotic signal, they may be able to antagonize TRAIL

signaling as DcR1 and DcR2 expression is reduced in the postischemic

brain, and increased in the protected preconditioned brain. We found

that neutralization of DR5 by an anti-DR5 antibody could only partially

rescue TRAIL-induced apoptosis, and preferentially in IHCs but not

OHCs. This partial and cell-specific effect may be due to putative

gradients in cochlear expression of DcR1, DcR2, or an unknown TRAIL

receptor. Indeed, IHCs and OHCs are known to express different proteins

– for example, prestin is expressed in OHCs only (Zheng et al., 2000)

while SERPINB6 is expressed in IHCs only (Sirmaci et al., 2010).

Alternatively, it is possible that the anti-DR5 antibody could not

completely block the function of DR5 due to the complex structure of

the multilayered cochlear explants that limited the antibody’s access to

specific cells. To delineate these possibilities, TRAIL or DR5 deficient mice

will be invaluable in future studies in vivo.

Experimental procedures

Reagents and cells

The anti-TRAIL antibody (sc-7877) was obtained from Santa Cruz

Biotechnology (Dallas, TX, USA), and the anti-DR5 antibody (PX064A)

was obtained from Cell Sciences (Canton, MA, USA). The anti-b-actin
(#4970), anticleaved caspase 8 (#8592), and anticleaved caspase 3

(#9662) antibodies were purchased from Cell Signaling (Danvers, MA,

USA). Recombinant murine TRAIL/TNFSF10 (1121-TL-010) and OPG

(459-MO-100) were from R & D systems (Minneapolis, MN, USA), and

MG132 was from Sigma-Aldrich (C2211, St. Louis, MO, USA).

Riboprobe combination system-T3/T7 was from Promega (Madison,

WI, USA). In situ hybridization solutions were from Roche (Basel,

Switzerland), and 1-step NBT/BCIP Plus suppressor solution was from

Thermo Scientific (Cambridge, MA, USA).

The VOT-33 cell line, a conditionally immortal cell line derived from an

embryonic mouse cochlear neuroblast, was a gift provided by Dr.

Matthew Holley.

Mouse strain

Wild-type C57BL/6J mice were obtained from Jackson Laboratory (Bar

Harbor, ME, USA). All animal procedures were approved by the Animal

Care and Use Committee of the Massachusetts Eye and Ear Infirmary.

Fluorescent in situ hybridization (FISH) combined with

immunohistochemistry

Six-week-old C57BL/6J mice were decapitated, and heads were fixed in

buffered 4% paraformaldehyde (PFA) after opening the round and oval

windows. Cochleae were decalcified in 0.12 M EDTA for 3 days at room

temperature, serially dehydrated, embedded in paraffin, and cut in

10 lm sections. After rehydration, cochlear sections were treated with

3% H2O2 for 20 min to reduce endogenous peroxidase activity, fixed in

4% PFA for 20 min, washed with PBS, digested with proteinase K

(10 lg mL�1) in PBS for 7 min, and fixed in 4% PFA for 20 min.

Sections were immersed in triethanolamine and acetic anhydride

solution for 10 min before hybridization. The hybridization mixture,

containing the DIG-labeled antisense or sense probe, was applied to

each section and incubated at 42 °C for 16 h. The probes were made

from the following nucleotides of the corresponding cDNA sequences:

nucleotides 523 to 758 for Trail (NM_009425) and nucleotides 275 to

1124 for Dr5 (NM_020275). All probes were cloned into the pBluescript

II SK-vector. The digoxigenin (DIG)-labeled single-stranded antisense

and sense RNA probes were prepared using T7 RNA polymerase and T3

RNA polymerase, respectively, with the presence of DIG-dUTP (digox-

igenin DNA labeling mixture (Roche)) according to the manufacture’s

protocol. Sections were washed at room temperature with 67% 0.29

SSC and 33% TBS (0.1 M TRIS-HCL, 0.15 M NaCl (pH = 7.5)) for

10 min, 33% 0.29 SSC and 67% TBS for 10 min, and 100% TBS for

10 min, then incubated in a blocking solution (Roche) for 1 h. Sections

were incubated with anti-DIG-POD antibodies (Roche, 11650300) for

1–2 h, and developed with a TSA PLUS Fluorescence Kit (PerkinElmer,

Waltham, MA, USA; NEL744001KT) according to the manufacturer’s

instructions. After FISH, sections were blocked in 10% normal horse
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serum for 1 h and incubated with rabbit anti-Myosin VIIa antibodies

(Proteus, Ramona, CA, USA; 25–6790) and chicken antineurofilament

antibodies (Millipore, Billerica, MA, USA; AB5539) overnight. Sections

were incubated with anti-rabbit Alexa Fluor 488 antibodies (Jackson

Immunoresearch, West Grove, PA, USA; catalog 771-485-152) and

anti-chicken Cy5 (Invitrogen, Carlsbad, CA, USA; A21449) for 1 h,

followed by nuclear staining with Hoechst. Sections were then mounted

with Vectashield (Vector Laboratories, Burlingame, CA, USA) and

imaged using an epifluorescent microscope (Axioskop 2 Mot Axiocam;

Zeiss, Oberkochen, Germany.).

Real-time quantitative RT–PCR

After euthanasia, decapitation and cochlear extraction, cochlear soft

tissue was collected by removing the otic capsule through microdissec-

tion in RNAlater (Ambion, Austin, TX, USA). Tissue was pooled from both

cochleae of a single animal to generate one specimen. Total RNA was

purified using RNeasy spin-columns (Qiagen, Hilden, Germany) accord-

ing to the manufacturer’s protocol and a modification for hypocellular,

dense connective tissues. Total RNA was reversely transcribed with

Taqman Reverse Transcription Reagents kit (Applied Biosystems, Foster

City, CA, USA). Real-time quantitative RT–PCR was performed using 6-

FAM-linked fluorescent probes and primers for Trail (ID

Mm00437174_m1) and Dr5 (ID Mm00457866_m1) designed and

optimized by Applied Biosystems. The measurements were carried out

on the Mx3005P machine (Stratagene, San Diego, CA, USA) using 96-

well plates. For each well, the 25 lL reaction contained: 1.25 lL of the

209 probe/primer mix, 1 lL of cDNA template, 12.5 lL of Universal

Master Mix (Applied Biosystems, Foster City, CA, USA), and 10.25 lL of
distilled water. For each gene, there were 3 technical and 5 biological

replicates. Fluorescence data were collected starting with a denaturation

step at 95 °C for 10 min, followed by 45 cycles of 95 °C for 15 s and

60 °C for 1 min. Gene expression levels were quantified relative to the

18S rRNA gene and analyzed using the comparative threshold cycle

method (Livak & Schmittgen, 2001).

Western blot

Cochlear soft tissues from two cochleae per mouse were dissected and

lysed in RIPA-DOC buffer (50 mM Tris buffer (pH 7.2), 150 mM NaCl,

1% Triton-X100, 1% deoxycholate, and 0.1% SDS) with protease

inhibitors (Complete, Roche, Basel, Switzerland). Equal amounts of

protein extract were loaded per lane, resolved by 4–20% SDS–PAGE,

and electro-transferred onto a PVDF membrane (Immobilon-P, Millipore,

Billerica, MA, USA). Protein detection was performed using the primary

antibodies against TRAIL, DR5, cleaved caspase 8, cleaved caspase 3, or

b-actin at 4 °C overnight. After incubation with secondary antibodies for

1 h at room temperature, protein bands were developed using an ECL

chemiluminescence detection kit (Pierce, Rockford, IL, USA). Images

were quantified using ImageJ (NIH, Bethesda, MD, USA).

Cochlear explant culture

Four-day-old (P4) mice were cryoanesthetized (5 min at 0 °C), decap-

itated, and disinfected with 70% ethanol (w/v). The skin was removed,

and the skull was dissected along the sagittal plane. After removal of

brain tissue, each half of the skull was placed in a sterile 60 9 15 mm

culture dish (Greiner Bio-One, Monroe, NC, USA) containing Hanks

balanced solution (HBSS) (GIBCO) at 4 °C. Cochleae were isolated from

the rest of the temporal bone using a dissecting microscope (Carl Zeiss

Microscope, Munich, ALE). The bony labyrinth was removed followed

by the spiral ligament and stria vascularis. Cochlear explants containing

the organ of Corti and SGNs were cultured in 4-well 35 9 10 mm

culture dishes (Greiner Bio-One) with a glass coverslip pretreated with

BD CellTakTM (BD Biosciences, Franklin Lakes, NJ, USA) to facilitate

tissue attachment on the surface of coverslips. We focused on

culturing the middle part of the cochlea, consisting of the upper basal

and lower apical turn of the cochlea, because its integrity was most

robust after dissection and culture. The culture medium was DMEM

(Invitrogen) containing 1% ampicillin solution (GIBCO) and 1%

GlutaMAXTM (Invitrogen). To inhibit the effect of CellTakTM, the culture

medium was not supplemented with 10% FBS 19 (Sigma-Aldrich) in

the first 24 h. The culture plate was incubated at 37 °C in 5% CO2 for

24 h until the beginning of the experiment. The explants were treated

with (1) 1 lg mL�1 TRAIL, or (2) 4 lg mL�1 anti-DR5 antibody

pretreatment for 3 h followed by cotreatment with 4 lg mL�1 anti-

DR5 antibody and 1 lg mL�1 TRAIL, or (3) 20 lL of 0.1 M PBS as a

negative control.

Immunohistochemistry and confocal microscopy

After 48 h of treatment, the specimens were washed twice in 0.1 M PBS

solution, fixed with 4% paraformaldehyde for 20 min, permeabilized for

30 min in 0.1 M PBS containing 1% Triton X-100 (1%) and 5% normal

horse serum (NHS), and incubated with primary antibodies overnight –

rabbit polyclonal antimyosin VIIa (Proteus Biosciences Inc., Ramona, CA,

USA) and mouse monoclonal anti-Neuronal Class III b-Tubulin antibody

(Covance Research, Dedham, MA, USA). Specimens were washed three

times in 0.1 M PBS and stained with the secondary antibodies – anti-

mouse Cy3-red (Jackson Immuno Research) and anti-rabbit Cy 2-green

(Jackson Immuno Research, West Grove, PA, USA) for 80 min. Speci-

mens were washed twice with 0.1 M PBS, mounted in Vectashield�

solution, and inspected using confocal microscopy (Leica SP5 Confocal,

Wetzlar, Germany) with cuts of 0.5 micrometers per slide. The samples

were evaluated using 209, 639, and 1269 magnification. For repre-

sentative documentation of the morphology of each specimen, the

photographs were taken from the central region while stepping in Z in

0.5 lm-steps through the entire thickness of the specimen. All slices

were merged to reconstruct the full thickness of the specimen in a single

image using Leica software. The counting of inner and outer hair cells

and nerve fibers was performed over 100 lm distance. The number of

neurons and the area of their somata were quantified in an area of

104 lm2 using ImageJ.

MTT assay

Cultured VOT-33 cells were treated with 1 lg mL�1 recombinant TRAIL

overnight. This concentration of TRAIL was chosen after treating VOT-33

with different concentrations of TRAIL ranging from 10 ng ml�1 to

1 lg mL�1, according to published reports (e.g., MacFarlane et al.,

2000). As VOT-33 cells were relative resistant to TRAIL, the concentra-

tion of 1 lg mL�1 was selected. Ten microlitres of 12 mM MTT

(Invitrogen) was added in each well to detect cell viability. The optical

density (O.D.) at 540 nm of each well was measured using the

SmartSpectTM Plus spectrophotometer (Bio-Rad, Hercules, CA, USA).

The average O.D. value of the VOT-33 cells treated with PBS (NT) was set

as 100% and used to normalize O.D. values of each treatment. To

prevent TRAIL-induced cell death, the cells were pretreated with either

1 lg mL�1 recombinant OPG or 4 lg mL�1 a-DR5 neutralizing anti-

bodies.
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TUNEL assay

VOT-33 cells grown on coverslips were first pretreated or not treated

with 1 lg mL�1 recombinant OPG for 1 h and then were treated

overnight with 1 lg mL�1 recombinant TRAIL, 10 lM MG132, both

TRAIL and MG132, or DMSO (NT) in the presence or absence of OPG.

Cells were fixed with 4% paraformaldehyde, and the TUNEL assay was

performed using the DeadEndTM fluorometric TUNEL system (Promega)

according to the manufacturer’s instructions. Cell nuclei were marked

using Hoechst stain. The results were observed through epifluorescent

microscopy (Axioskop 2 Mot Axiocam; Zeiss). The percentage of TUNEL

positive cells (green fluorescence) was counted relative to the total

number of cells.

Statistical analysis

Windows Excel 2013 was used for statistical analysis. The t-test was used

to analyze quantitative variables. A P value <0.05 was considered

significant. Data are expressed as mean � standard deviation (SD).
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Fig. S1. Distribution of the area of somata of SGNs. NT: SGNs treated with

dH2O; TRAIL: SGN treated with 1 lg mL�1 TRAIL; aDR5 + TRAIL: SGNs

pretreated with 4 lg mL�1 aDR5 Ab followed by 1 lg mL�1 TRAIL

treatment.
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