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Sufficient uterine remodeling is essential for fetal survival and development. Pathologies

related to poor remodeling have a negative impact on maternal and fetal health even

years after birth. Research of the last decades yielded excellent studies demonstrating

the key role of immune cells in the remodeling processes. This review summarizes the

current knowledge about the relevance of immune cells for uterine remodeling during

pregnancy and further discusses immunomodulatory effects of man-made endocrine

disrupting chemicals on immune cells.

Keywords: uterine remodeling, immune cells, pregnancy, pregnancy pathologies, endocrine disrupting chemicals,

fetal development, maternal health

INTRODUCTION

In the last years it has become clear that a healthy intrauterine environment builds the fundament
of adult health (1). The efficient remodeling of tissue and vasculature within the uterus during the
menstrual cycle and pregnancy is a basic requirement for a healthy intrauterine environment (2, 3).
Several studies of the last decades have revealed the relevance of maternal immune cells, specifically
uterine natural killer cells (uNKs), macrophages, and T cells but also fetal trophoblast cells for the
remodeling process during pregnancy (4). Research within the field has experienced significant
progress in recent years and provide new insights. Specifically, there is an increased knowledge
about the importance of uterine mast cells (uMCs) for the vascular remodeling process during
pregnancy. Equally important, a negative influence of man-made endocrine disrupting chemicals
(EDCs) on reproductive health emerge within the literature in recent years, leading to further
relevant health questions that need answers, opening new challenging research fields.

CYCLIC ENDOMETRIAL REMODELING

The endometrium of women in reproductive age undergoes cyclic tissue remodeling each month.
The menstrual cycle aims to prepare the endometrium for implantation. The activity of the ovarian
steroid hormones estrogen and progesterone but also various matrix metalloproteinases (MMPs)
and their inhibitors, named tissue inhibitors of MMP (TIMP), regulate the endometrial changes
and tissue breakdown during menstruation (5).

The endometrium consists of two layers, the functional layer that is shed with each
menstruation, and the basalis layer containing progenitor cells, able to regenerate the functional
layer. The proliferative phase of the menstrual cycle is maintained by the hormonal influence of
estrogen. Epithelial and stromal cells undergomitosis and growth, glands increase in length and the
extracellular matrix (ECM) expands. Endometrium thickness increases from around 4.5 to 10mm.
The secretory phase of themenstrual cycle is mainlymaintained by the effects of progesterone. High
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levels of progesterone, secreted by the corpus luteum, are
responsible for endometrial receptivity after ovulation.
Progesterone inhibits the endometrial epithelial mitosis
and proliferation, induces the appearance of vacuoles, stromal
fibroblast changes, and alterations in ECM that are necessary for
the receptivity of the endometrium and subsequently, for the
blastocyst attachment (6).

If the fertilization of the oocyte does not take place, the corpus
luteum degrades, and the declining progesterone levels cause
a local inflammatory response in the endometrium, involving
edema and infiltration of specialized maternal immune cells
into the stroma (3), predominantly uNKs, macrophages, uMCs,
neutrophils, dendritic cells (DCs), and T cells (7). The presence of
chemokines in this milieu is important for leukocyte recruitment
(8). Macrophages and neutrophils that are recruited to the
site represent the microbial protection mechanism while the
epithelial barrier is disrupted. MC proteases transform MMP
precursors into their active form (9). MMPs in turn degrade
the ECM and destruct the tissue. The final result is shedding
of the endometrial functional layer, and thereby two-third of
the endometrium, during the menstrual phase of each cycle
(6). As antigen-presenting cells, DCs and macrophages clear
the cellular debris from the uterine cavity. Regulatory T cells
(Tregs) control all these processes and maintain the immune
balance to avoid an exacerbated inflammatory response (9).
Disturbances in endometrial immune cell number or function
have been found to contribute to heavy menstrual bleeding or
endometriosis (7). Menstruation occurs in human, primates,
elephants, and fruit bats. Non-menstruating species show a
considerable remodeling and reabsorption of the endometrium
(5). A subsequently regeneration, including tissue and vascular
repair, growth, and angiogenesis facilitates the receptivity of the
endometrium for implantation in the next cycle (10). Also here
immune cells play a key role by releasing regulatory molecules
stimulating the endometrial repair mechanisms (7).

UTERINE REMODELING DURING
HEALTHY PREGNANCY

In non-menstruating mammals, decidualization begins with
the implantation process. In contrast, in menstruating species,
decidualization occurs prior to implantation and is postulated
to be a mechanism to protect the mother from the invasiveness
of embryonic trophoblasts. A successful implantation process
is followed by several tissue and vascular adaptions. The most
important tissue adaption in this regard is the formation and
growth of a new transient organ, the placenta. Maternal blood
is delivered to the intervillous space of the placenta via the
aorta, the uterine artery, the arcuate artery, radial arteries,
and spiral arteries (SA), listing from large to small vessels. In
response to the altered hemodynamic demands resulting from
an increased uterine blood flow during pregnancy, there is the
need of a physiological remodeling of the uterine vasculature. The
remodeling process starts in the smaller vessels, the SAs, proximal
to the sites of placentation and proceeds to the larger, upstream
vessels (11).

Many studies focused and still focus on the remodeling of
SAs. The helically wounded arteries build the last branch of the
uterine artery. SAs transport maternal blood to the intervillous
space of the placenta, where the blood enters in direct contact
with fetal tissue, for an effective exchange of nutrients and gases
(12). During pregnancy, the thick-walled, high resistance vessels
transform into thin-walled low resistance vessels by losing several
vascular smooth muscle cell (VSMC) layers of the arterial wall
(13, 14).

VSMCs are aligned in a circumference in the medial
layer of the arterial wall. For maintaining the vascular tone,
VSMCs usually acquire a quiescent, contractile phenotype.
The contractile phenotype is characterized by high expression
of contractility markers and low proliferative or migratory
activity. An enormous plasticity enables VSMCs to change
their morphology during pregnancy and consequently their
functionality changes as well. Expression patterns change leading
to increased proliferation, migration, and synthetic capacity (15).
These parameters, together with a low expression of contractility
markers, are characteristic for the synthetic phenotype of VSMCs.
VSMCs can change their expression pattern due to vascular
injury or changing hemodynamic demands (16) in response to
various stimuli, ligand-receptors interactions, and environmental
signals (17). The ECM compounds collagen, elastin, and
proteoglycans facilitate a contractile VSMC phenotype. In
contrast, high presence of fibronectin favors the shift into a
synthetic VSMC phenotype (18). A phenotype switch from the
contractile to synthetic VSMCs is associated with a changed
protein and receptor expression that modify the binding
specificity to the ECM, and an increased VSMC migration (18,
19), that in turn is important for an efficient SA remodeling
process (20, 21).

A propervascular remodeling is important for fetal survival,
development, and growth for the following reasons. Firstly, an
enlarged arterial diameter reduces the velocity of the blood
stream (14) and prevents disturbance of the sensitive fetal villi
containing fetal blood capillaries. Secondly, due to the loss of
muscular VSMC layers, SAs completely lose their contractile
ability, preventing an interruption or reduction of the blood
stream to the placenta that would be incompatible with fetal
survival (22, 23).

Both, maternal and fetal cells contribute to the uterine
remodeling process. In preparation for the remodeling
process, maternal immune cells release factors that induce
the degradation the ECM and directly or indirectly induce
apoptosis or a phenotypic switch of VSMCs leading to higher
migration (19, 21). Subsequently, fetal trophoblast can invade
into the SAs and replace VSMCs.

IMMUNE CELL FUNCTION IN UTERINE
REMODELING DURING PREGNANCY

Interaction of Stromal Cells, Immune Cells,
and Trophoblasts
The feto-maternal interface consist of decidual stromal cells,
immune cells, and trophoblasts. Differentiation of stromal cells
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within the decidualization process is a pre-requirement for a
successful implantation (24).

Stromal cells express integrins, important for the interaction
of the blastocyst with the decidua during the implantation
process (25). Additionally stromal cells produce chemokines
that attract immune cells to the uterus. Interesting examples
are Mcp-1, RANTES, or CXCL8 that attract monocytes and
macrophages (26, 27), CXCL10 and CXCL11 that attract uNKs
(28), and IL-15 and CXCL12 that act as chemoattractants for
pNKs (29, 30). Carlino et al. showed that the migratory ability
of NKs from pregnant women was higher compared to those
of non-pregnant women. The process could be enhanced by
progesterone, that upregulated chemokine production by stromal
cells (30). Decidual stromal cells are localized near SAs and
support their remodeling by the secretion of MMP 2, 7, and 9.
These factors are able to promote the disruption of VSMS layers
(31) prior to the invasion of extravillous trophoblasts (EVTs).
Several studies let assume an association between stromal cell
dysfunction and reproductive disorders like endometriosis (32),
implantation failure (33) or recurrent pregnancy loss (34).

EVTs are important key players in the vascular remodeling
during pregnancy. EVTs arise from the cytotrophoblast in the
anchoring villi of the placenta and invade into the maternal SA,
thereby replacing VSMCs and the endothelium. By using a three-
dimensional bioprinted placenta model, Kuo et al. performed
impressive trophoblast-endothelium interaction studies. They
reported that the co-culture of trophoblasts with endothelial
cells significantly reduced the outgrowth and network formation
of endothelial cells and induced endothelial cell apoptosis,
shown by a significant upregulation of apoptosis marker (35).
Trophoblast invasion is temporally and spatially regulated by
autocrine (trophoblastic) and paracrine (uterine) factors as well
as cell-to-cell and cell-to-matrix interactions (36). Trophoblast
viability, migration and proliferation capacity as well as the
expression of pro-apoptotic molecules like Fas-Ligand and tumor
necrosis factor (TNF)-related apoptosis-inducing ligand have
been shown to support SA remodeling (37–39). Also, the
proteinase activity of EVTs influences their invasion capacity.
Many studies demonstrate the importance of trophoblast cells
for vascular remodeling by showing an association between
insufficient trophoblast invasion leading to inadequate vascular
remodeling and pregnancy complications, such as preeclampsia
(PE) and intrauterine growth restriction (IUGR) (40, 41).

Interestingly, van der Heijden et al. postulated that the
conceptus does not contribute to the initiation of uterine
artery remodeling. They observed that the cellular processes
of the remodeling, including artery lumen and cross-sectional
area enlargement, reduced smoothelin expression, and increased
VSMC proliferation is comparable in pseudopregnant and
pregnant C57BL/6 mice (42). A limitation of this study is
that the invasion of the trophoblasts is not as aggressive in
mice as it is in humans and as consequence; SA remodeling
is not fully comparable. In contrast to this particular study,
other studies show that trophoblasts interact with maternal
immune cells and this co-operation contributes to vascular
changes. For example, the interaction of trophoblast HLA-G
with uNKs impacts the maturation, proliferation, and mediator

secretion of uNKs (43, 44) that in turn promote uterine vascular
remodeling. Mediators of uNKs include chemokines, cytokines,
proangiogenic factors, but also growth promoting factors like
pleiotropin and osteoglycin. Hauk et al. reported with mouse
models that the trophoblast-derived neuropeptide vasoactive
intestinal peptide (VIP) is critical for MMP9 expression,
migration and invasion capacities and that VIP-deficiency is
associated with reduced Treg cell numbers at the feto-maternal
interface (45). Further, the syncytiotrophoblast is reportedly
able to communicate with maternal immune cells by secreting
extracellular vesicles into the maternal circulation. These vesicles
interact with monocytes, granulocytes, T cells and uNKs,
influence their function, activation, andmaturation. Extracellular
vesicles from pre-eclamptic women influence immune cells
differently when compared to extracellular vesicles from normal
pregnant woman. For example, they fail to activate Tregs (46)
and this might negatively influence the vascular remodeling
during pregnancy.

Uterine Natural Killer Cells
In humans, CD56bright CD16− uNKs can be found in the uterus
at the beginning of each menstrual cycle as small agranular
cells. Within the cycle, they grow and build numerous mediator-
filled granules. Two days before menstruation, apoptosis of
uNKs starts. In mice there is no change in the number of
CD3− CD122+ PAS+ uNKs during the murine estrous cycle, as
they appear firstly after fertilization. During pregnancy in both,
humans and mice, uNKs reach 70 % of all lymphocytes at the
feto-maternal interface. This fact let to the assumption that they
may play an important role in pregnancy. Cell numbers peak
at midgestation, decline afterwards and are absent at term. In
contrast to peripheral NKs (pNKs), uNKs show no cytotoxic
activity and produce high amounts of cytokines, chemokines, and
growth factors, for example transforming growth factor (TGF)-
β, vascular endothelial growth factor (VEGF) and interferon
(IFN)-γ (47, 48).

The differentiation, proliferation, activation, and survival of
uNKs is regulated by sex hormones (49, 50) and the cytokine
IL-15 (51–53). In addition, inhibitory or activating receptors
regulate the function of uNKs. Many recent excellent works
revealed the participation and importance of uNKs for the
regulation of trophoblast invasion and SA remodeling (54–56). It
is assumed that uNKs initiate SA remodeling before colonization
by EVTs. In addition, uNKs communicate with trophoblast cells.
This is possibly an explanation for the massive enrichment
of uNKs near trophoblast cells. Trophoblasts express the non-
classical HLA-E/G/C instead of the classical HLA-A/B as ligands
for the inhibitory receptors of uNKs (57). As a result of the
binding, uNKsmay tolerate trophoblasts and support growth and
migration of the fetal cells. uNKs may belong to the recently
described innate lymphoid cell (ILC) family (58, 59) and more
studies are needed to dissect which exact phenotype within
this big family is pregnancy-protective. Furthermore, functional
studies are needed to fully understand their participation in
pregnancy-associated processes.

Mice that lack uNKs show impaired SA remodeling,
characterized by thick walls and small vessel lumens, in contrast
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to control mice (60–63). Interestingly, many studies show that
uNKs absence and associated abnormal SA remodeling does not
affect progeny growth (61, 64, 65). In contrast, Fu et al. showed
that the CD49a+Eomes+ subset of NK cells supports fetal growth
in mice by the secretion of growth-promoting factors including
pleiotrophin, osteoglycin and osteopontin. Absence of these
cells resulted in fetal IUGR. Interestingly, significantly decreased
percentages of CD49a+Eomes+ NKs as well as reduced levels
of pleiotrophin, osteoglycin and osteopontin were found in first
trimester decidua samples of patients suffering from recurrent
spontaneous abortion compared to healthy donors (44).

Placental development is negatively affected in rodents that
lack uNKs. An increase (61) or decrease (62, 63) in placental
weight as well as markedly structural changes (65) were
observed in recently published studies. Reasons for the different
observations can derive from the fact that different mousemodels
were employed and different read outs were used as result. Ashkar
et al. suggested that uNK-derived IFN-γ mainly contribute to
uterine vascular modification at the feto-maternal interface in
mice. The authors observed that females deficient for uNKs could
initiate SA remodeling after receiving bone marrow from IFN-
γ sufficient mice. Mice reconstituted with bone morrow from
IFN-γ−/− mice restored uNKs, but were not sufficient to initiate
vascular remodeling (66). Human uNKs are able to secrete IFN-γ
as well (67). IFN-γ derived by uNKs but alsomacrophage-derived
TNF-α or IL-1β enhance IP-10 (CXCL10) and I-TAC (CXCL11)
expression of decidual cells. In turn, these chemokines recruit
CXCR3-expressing uNKs. The described regulation process is of
clinical relevance, as its dysregulation is used for the prediction
of preeclampsia, a disease that is characterized by an incomplete
SA remodeling and reduced utero-placental blood flow that is
associated with maternal hypertension (68). uNK-derived IFN-
γ hinders an aberrant decidual cell MMP1, 3, and 9 expression
and prevents thereby the occurrence of pre-eclampsia (69).

Choudhury et al. demonstrated that EVT-conditioned
medium activates endothelial cells to secrete CCL14 and CXCL6
that in turn induce the chemotaxis of uNKs and macrophages.
Both cell types express receptors for the mentioned chemokines
(70). Based on these facts it is tempting to speculate that the
crosstalk between fetal EVTs and maternal endothelial and
immune cells including uNKs, supports the SA remodeling
process that in turn ensures optimal fetal development.

Macrophages
Macrophages reside within the decidua throughout pregnancy.
M2 (alternatively activated)-like macrophages are more
abundant than M1 (classically activated)-like macrophages in
decidual tissue (71). Compared to M1, the M2 phenotype has
a stronger pro-angiogenic potential due to higher expression
of angiogenic factors (72, 73). In addition, human first
trimester decidual macrophages express genes that are relevant
for immunomodulation (74), like high levels of the anti-
inflammatory IL-10 (75, 76). Additionally, it has been shown in
an in vitro model of SA remodeling that human macrophages,
isolated from early decidua, express genes for tissue remodeling
and induce ECM breakdown of the ECM proteins laminin
and fibronectin (77). Other experiments using first trimester

placentation sites or 3D co-culture models proved an enrichment
of macrophages in close proximity of invasive EVTs (78).
Nevertheless, Lash et al. used invasion assays to show that early
pregnancy macrophages do not to influence EVT invasion.
Additionally, other authors utilized the chorionic plate artery
(CPA) model and show that early decidual macrophages do not
alter VSMC organization (77).

Apoptosis is an important process during uterine tissue
remodeling and the invasion of the developing embryo during
pregnancy. Clearance of the resulting apoptotic cells and cell
debris presents a crucial event during uterine remodeling, as it
is important to maintain tissue homeostasis and to protect the
fetus (79). It has been shown that macrophages are important
for the effective clearance of cell debris and apoptotic cells
(77, 80) likewise trophoblasts, VSMCs, and endothelial cells.
Uterine epithelial cells, that surround the blastocyst, undergo
apoptosis during embryo implantation and need to be cleared by
macrophages. Abrahams et al. postulated that this may explain
the proximity of macrophages to EVTs at implantation sites (79).

Compared to those present at term pregnancies, decidual
M2-like macrophages are reduced in preterm pregnancies
and undergo an M1-like polarization during spontaneous
term and preterm labor (71). Moreover, peripheral blood
and placental/decidual tissue of preeclampic woman showed
imbalanced IL-10 levels (81–85), that could be responsible for a
defective M2 polarization of macrophages.

Regulatory T Cells
It is has been proposed by us and many other authors, Tregs
are important to induce and maintain immune tolerance
toward the semi-allogeneic fetus (86–89). Additionally,
several studies provided an association between diminished
Treg frequency or disturbed activity and pregnancy
complications (90–93).

An interesting recent study from Care et al. revealed that
Tregs may also influencematernal vascular function. The authors
observed dysregulated hemodynamics of the uterine artery
after specific Treg depletion, shown by increased resistance
and pulsatility indices as well as enhanced amount of active
vasoconstrictors that derived in increased mean arterial pressure
(94). In another study it has been shown that an conserved non-
coding sequence 1 (CNS1)-dependent mechanism of extrathymic
Treg cell differentiation is important for an effective SA
remodeling (95). Besides, it was shown that the adoptive transfer
of Tregs could reduce uterine perfusion pressure in a rat model of
PE by decreasing levels of inflammatory mediators and reactive
oxygen species (96). Other studies support the positive role of
Tregs for vascular remodeling, and suggest that the mechanism
rely on the ability of Tregs to modulate other decidual leucocytes
like mast cells (MCs). Concretely, it was found that the transfer
of Tregs into abortion-prone mice normalized early pregnancy
angiogenesis that was associated with promoting the expansion
of uterine mast cells (uMCs) (97). Altogether, it is tempting
to speculate that the participation of Tregs and probably of
other adaptive cells rely on their interaction with other cell
types. An interesting study from 2017 points out that CD8+

T cell reconstitution in recombinase 1-deficient mice (Rag−/−,
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without T and B cells) before mating abrogates the resistance
differences in vasculature that normally persist postpartum (98).
Thus, adaptive immune cells overtake unsuspected roles during
pregnancy that go beyond their classical function. The next
challenge is to understand their participation using experimental
models that have translational value.

Uterine Mast Cells (uMCs)
uMCs are abundant in the reproductive tract of rodents
and humans (99–101). They are subjected to the hormonal
influence of progesterone and estrogen as they express hormone
receptors (102). Numbers of uMCs oscillate within the cycle,
being the highest at the receptive phase, and increasing during
pregnancy (103).

It is well-established that MCs induce myometrium
contractions that are important for the induction of birth
(100, 104, 105). With the help of different MC-deficient
mouse models (Kit mutation-dependent KitW−sh/W−sh and
Kit-independent Cpa3-Cre as well as Mcpt5-Cre+ R-DTA mice)
it has been shown in the last years that MCs are also crucial
for SA remodeling and fetal well-being (60, 63, 94, 100,103,
193). Interestingly, MC-deficient and NK-deficient mice show
a comparable pregnancy phenotype, namely impaired SA
remodeling. In our hands, the main difference between mouse
models for NK- and MC-deficiency relies on the fetal weight
outcome with the progeny of NK-deficient mice having normal
weight and the progeny of MC- or MC/NK-deficient mice being
growth restricted (64).

Poor fetal supply, often induced by insufficient vascular
remodeling, can be recognized via ultrasound by an absent
or reversed end diastolic flow and high resistance index of
the umbilical artery. Those signs for neonatal IUGR could be
found in MC/NK-deficient mice, that were growth restricted
from midgestation onwards (106, 107). Interestingly, it was
demonstrated that the absence of NKs was accompanied by an
increased presence of MCs and vice versa (61) leading to the
hypothesis that both cell populations work together to ensure a
correct vascular modification. MCs are also able to communicate
and influence the behavior of other immune cells like neutrophils,
DCs, monocytes, macrophages, B and T cells (108–111).Whether
the interplay of MCs with the mentioned cell types is relevant for
pregnancy needs to be addressed in future studies.

The impressive consequence of MC absence in mouse models
raises the question about the putative mediators involved in
the remodeling processes at the feto-maternal interface. MC
mediators are stored in cytoplasmic granules that can be
released immediately upon stimulation. It has been shown that
histamine supports ovulation and blastocyst implantation (112).
Also chymases seems to play an important role for processes
at the feto-maternal interface. The mouse chymase mast cell
protease (Mcpt) 5 is expressed by both, uMCs and uNKs (64).
In vitro, Mcpt5 mediated the apoptosis of VSMCs (64), an
important feature of SA remodeling. Absence of Mcpt5+ cells
in Mcpt5-Cre+ R-DTA mice derived in un-remodeled SAs and
growth restricted progeny. Similarly, uMCs can be found at the
human feto-maternal interface (113). MC-derived α-chymase
CMA1 (the human Mcpt5 homolog) stimulated ex vivo the

migration of human trophoblasts, a pre-requisite for an efficient
SA remodeling process (64).

Chymases are able to convert pro-peptides of MMP2 and
MMP9 into their active forms (114). MMPs are important
regulators of trophoblast invasion and play an important role
during SA remodeling (36). Further, chymases have been shown
to degrade the ECM compounds (115). An extensive degradation
of ECM compounds led to a loss of matrix survival signals
and in turn to VSMCs apoptosis that favor SA remodeling.
Additionally, chymases can directly inhibit the growth (116) or
induce apoptosis (117) of VSMCs. Chymases are key enzymes
of the renin-angiotensin-aldosteron-system (RAAS) that convert
angiotensin (Ang) I to AngII independent of the angiotensin
converting enzyme (118). Next to the systemic RAAS there exist
tissue-specific local RAASs e.g., one in the placenta and another
one in the decidua. A high local AngII concentration in the
maternal part of the placenta and the resulting maternal-fetal
AngII gradient contribute to trophoblast migration and invasion
in early pregnancy (119). Additionally, utero-placental AngII is
associated with an increased migration of VSMCs (120, 121),
a process that is an important step effective SA remodeling
(20). Another mediator that is necessary for MC function is the
glycogen-binding protein galectin-1. KitW−sh/W−sh mice have
a reproductive impaired phenotype, including insufficient SA
remodeling. The systemic reconstitution of mice with bone
marrow-derived MCs from wildtype, but not Lgals1−/− mice
could normalize the remodeling of the arteries and contribute to
fetal well-being (103), demonstrating a positive role for galectin-1
forMC function.We anticipate that future studies will contribute
to an increasing understanding of the role of singleMCmediators
for pregnancy success. It is suggested that increased numbers
or exacerbated activation of MCs is associated with human
pregnancy pathologies like recurrent pregnancy losses (122) and
PE (123, 124). The mechanisms underlying this phenomenon
are not explored. That an absence of MCs derives in pregnancy
pathologies, and an increased number of MCs is associated with
pregnancy pathologies again supports the concept of perfectly
regulated cellular processes as modulators of pregnancy.

PE AND IUGR—ADVERSE
CONSEQUENCES OF INSUFFICIENT
UTERINE REMODELING

Insufficient remodeling of maternal uterine or vascular tissue
reportedly leads to severe pregnancy disorders including
miscarriage, preterm birth, PE or IUGR (125, 126). These
pregnancy diseases dramatically impair maternal and fetal health
or survival.

PE affects ∼2–8 % of pregnancies worldwide. The multi-
system disease is one of the most dangerous complication for
both, mother and child with a high morbidity and mortality risk
(127). Hallmarks are maternal hypertension that first manifested
in pregnancy (≥140/90mm Hg on at least 2 occasions, 6 h apart)
and proteinuria (≥300mg or greater in a 24 h urine, after 20
weeks of gestation) (128). Although the symptoms of the disease
manifest in the second half of pregnancy, the pathogenesis is
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established during the first trimester, concretely during the time
when SA remodeling takes place. Indeed, it has been shown
that PE is associated with abnormal trophoblast invasion and
inadequate SA remodeling during the first trimester (129, 130).
This is thought to be a consequence of imbalanced immune cell
numbers or activity. For example increased Th17 and impaired
Treg activity, altered activation of macrophages, DCs, T cells,
B cells, or NKs (131) were appointed as cause of impaired SA
remodeling. To date, delivering the baby and removing of the
placenta is the only effective treatment for PE. Here, a decision
for the right time point of inducing the birth based on maternal
health condition and fetal maturity must be taken.

Insufficient vascular remodeling can be associated with fetal
IUGR (22). IUGR is defined as the failure of the neonate
to reach its genetically determined growth potential and a
weight under the 90th percentile compared to age-matched
babies. IUGR occurs as consequence or independent of PE
and results from inadequate blood supply due to impaired
maternal SA remodeling (22). Besides, it can manifest due
to an inadequate nutrition supply resulting from a failure of

different placental transporter expression (132, 133). IUGR is
associated with an increased risk of intrauterine death and a
programming of diseases later in life such as hypertension, heart
diseases, stroke, overweight, diabetes, metabolic syndrome or
osteoporosis (134, 135).

Additionally to the participation of immune cells in SA
remodeling and hence, a role of a dysregulated immune response
in abnormal SA remodeling, research of the last years emphasized
the negative effects of man-made environmental substances in SA
remodeling and pregnancy complications (Figure 1).

ENDOCRINE DISRUPTING CHEMICALS

The endocrine system is a network of glands and organs
that produce and secrete hormones necessary for physiological
processes including respiration, metabolism, reproduction,
movement, sexual development, and growth. A finely modulated
hormonal balance is indispensable for many pregnancy-related
processes including time-dependent orchestrating of immune

FIGURE 1 | Role of immune cells and endocrine disrupting chemicals (EDCs) for uterine vascular remodeling during pregnancy. In humans and rodents including mice

immune cells like uterine natural killer cells, mast cells, dendritic cells, T cells, especially regulatory T cells, B cells, macrophages and their secreted mediators support

uterine vascular remodeling at the feto-maternal interface. EDCs are found in herbicides and pesticides as well as in many daily used products like cosmetics, plastic

containers and bottles, food cans, and pharmacological drugs like contraceptive pills and many others. EDCs can impair uterine remodeling processes directly or

indirectly due to a hormonal imbalance and in turn an altered immune cell number or function.
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cells that contribute to vascular remodeling, as described earlier
in the review. Hormonal imbalance of any kind can be associated
with serious pregnancy complications likemiscarriage (136, 137),
PE (138, 139), preterm birth (140), or IUGR (141).

A large number of man-made or natural compounds, referred
as endocrine disrupting chemicals (EDC), disturbs the endocrine
system by interfering with biosynthesis, secretion, transport,
metabolism, binding action, or elimination of hormones (defined
by US Environmental Protection Agency). EDCs are able to
bind, activate or inhibit hormone receptors (142) and can change
hormone receptor expression levels in tissue (143).

Synthetic EDCs represent a heterogeneous class of
molecules that includes plastics like bisphenol A (BPA)
and plasticizers named phthalates, substances added to
plastics to make them more flexible, durable, and transparent.
Also pesticides like dichlorodiphenyltrichloroethane (DDT),
fungicides, pharmaceutical agents e.g., diethylstilbestrol (DES),
synthetic chemicals like polychlorinated biphenyls (PCBs),
polybrominated biphenyls (PBBs), or dioxins, but also heavy
metals among others belong to the group of EDCs (144). Due
to their widespread usage, EDCs accumulate ubiquitously
in our environment and enter the human body via different
routes. These routes include inhalation, dermal via direct skin
contact, or oral via food or beverages but also contaminated
drinking water. Several results from animal studies and human
epidemiological studies implicate EDCs as a significant treat to
health and thus, a huge concern to public health. Adverse human
health effects include metabolic, cardiovascular and behavioral
disorders, but also hormone-related cancers (145–147). Also,
reproductive failure in human and wildlife (148, 149) has been
observed. Especially, people who are highly exposed to chemicals,
pesticides, or fungicides at work are at particularly high risk for
developing endocrine or reproductive abnormalities (144).

A challenge when working with EDCs is that these substances
do not follow the typical dose-response dynamics, known for
most chemicals in toxicological studies. In contrast, EDCs often
show low dose effects or non-monotonic dose-response curves
(150), defined as a non-linear relationship between dose and
effect, like U-shaped or inverted-U shaped curves. Therefore,
it is difficult to predict the response of an endocrine acting
substance. Several EDCs are very stable and have a long half-life.
This stability is beneficial for their industrial use, but raises the
harmful effects from the use of the products for the environment
and human health.

BPA
Most studies that will be mentioned and discussed in the
following part of this review, deal with BPA. BPA is one of the
most produced and most studied EDC worldwide. The chemical
is an organic compound consisting of two phenolic rings
connected by a carbon carrying two methyl groups. It belongs
to a subgroup of EDCs, the xenoestrogens, that exhibit estrogen-
like properties by their ability to bind estrogen receptor (ER)
α, ERβ, and the G-protein–coupled estrogen receptors (151–
153). As many immune cells express ERs (154) they are highly
receptive for the influence of xenoestrogens including BPA. Since
the middle of the twentieth century, BPA is mainly used in the
manufacturing of polycarbonate plastics and epoxy resins, both

of which are used in a variety of daily used applications these
days. For example hygiene and cleaning products, electronic
devices, medical and dental devices, children toys, paints and
coatings, cloth, food containers, plastic bottles, sport protection
equipment, and even dental sealants. Under certain conditions
BPA is released from the products. Especially high temperatures,
e.g., placing plastic food containers in the microwave or the
dishwasher, increase BPA release from the products (39). Also,
when BPA is used as an additive e.g., for the coating of thermal
paper or floor covering, BPA is not chemically bound and easily
released from the products (155). BPA ending up in indoor air,
dust, soil, wastewater, contact surfaces, food, and drinking water
from which it enters the human body.

BPA is under scientific examination since many years. Based
on the alarming findings, policies started to enforce restrictions
on the manufacturing and use of BPA. Nevertheless, BPA is
still present in uncountable daily used products. In 2017, BPA
was identified as substances of very high concern (SVHC)
under REACH (Registration, Evaluation and Authorisation of
Chemicals) and is classificated today as a CMR (carcinogenic,
mutagenic or toxic to reproduction) substance of category 1B,
meaning BPA is a “presumed human reproductive toxicant
based on animal studies.” Companies increasingly advertise for
their BPA-free products (Websites European chemicals agency,
Umweltbundesamt). What the consumers do not know is, that
BPA is replaced by other bisphenols like bisphenol F or S that
show comparable or even worse harmful developmental effects
and are able to cross the placenta (156, 157). It was recently
shown that the exposure of the population to BPA substitutes is
almost ubiquitous (158).

Although the numbers of studies is increasing in the last
years, the underlying mechanisms as to how exactly EDCs impair
health are far from being understood and further research is
urgently needed. Next, we will review recent findings concerning
the influence of EDCs on reproductive parameters with special
emphasis to the question if EDCs are able to influence vascular
remodeling, placentation, or immune cell function.

EFFECTS OF EDCs ON UTERINE
REMODELING AND IMMUNE CELLS

Exposure to EDCs in adults can have adverse health effects.
During early development, when hormones play an important
role, organisms are particularly sensitive to EDC exposure.
Several EDCs including BPA are able to pass the placenta barrier
and accumulate in placental tissue (159). Next to placental tissue,
EDCs have been detected in the urine, cord blood, plasma,
amniotic fluid, and breast milk of pregnant women and their
developing fetuses (158, 160, 161). This represents a health
problem for the mother and in more extent for the unborn, as
many enzymes important for degrading dangerous substances
are not expressed until birth.

EDCs and Immune Cells
As discussed earlier in this review, a proper development and
function of immune cells is indispensable for sufficient uterine
remodeling processes during pregnancy. Based on that, we will
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give an insight into the current findings of the diverse influences
of EDCs on immune cells in the following. We will mainly
focus on the effects of immune cell phenotypes and functions,
important for a successful pregnancy.

In mice, it has been shown that BPA exposure lead to
phenotypic changes within distinct immune cell populations
(162). Depending on the concentration and the route of
administration, BPA decrease TNF-α and nitric oxide secretion
of activated macrophages (163–165). Interestingly, BPA did not
influence macrophage viability, but decreased the adherence
ability of rat peritoneal macrophages (166). Taking into account
that adhesion is the first step in the macrophages phagocytic
process and that phagocytosis is important for the uterine
remodeling process during pregnancy, as mentioned earlier in
this review, BPA could in theory inhibit the remodeling process
indirectly via macrophage inhibition.

Exposure of mice to BPA via drinking water for 4 weeks
induced the production of the Th1 type cytokine IFN-γ and
suppressed Th2 type IL-4 expression of CD4+ T cells (167). In
contrast another study show an increase of Th2 polarization by
an enhanced IL-4 production in antigen-activated T lymphocytes
due to BPA exposure (168, 169). Further, Yoshino et al.
demonstrated that prenatal fetal exposure to BPA upregulated
Th1 but also Th2 responses in adulthood after immunization
with hen egg lysozyme. This may explain the dramatic increase in
allergic diseases over the last decades. Additionally, male but also
female mice prenatally exposed to BPA had markedly increased
numbers of splenic CD3+CD4+ and CD3+CD8+ cells (155).
Number of Tregs was reduced in mice exposed to BPA either
prenatally or in adulthood (169, 170). As discussed earlier, an
imbalanced amount of immune cells can cause serious health
consequences. Besides, also an imbalanced activity of immune
cells due to decreased or increased receptor expression can
have detrimental consequences for an organism. A study from
2012 point out that BPA, among other bisphenols, up-regulated
HLA-class II, CD11c and CD86 in mouse bone-marrow-derived
DCs (171). Further, an increase antibody production by B cells
in mice was observed after BPA and DES exposure in mice
(172, 173). O’Brien et al. show that the short-term exposure
of both, BPA but also estradiol, at levels relevant to human
exposure, enhances histamine release by primary bone marrow-
derived MCs of mice. This constitutes yet another explanation
for the increasing allergy prevalence. BPA additionally enhanced
the release of cysteinyl leukotrienes. This was not ER-mediated
(174). In contrast, the structure of the specific paraben, used
as preservatives in cosmetic, medicines and food, determines
if the EDC enhance, inhibit, or do not have any influence
on the histamine release of rat peritoneal MCs (175). During
the embryo stage of zebrafish, the EDCs 17β-estradiol, 17-α-
ethynyestradiol (EE2), permethrin, atrazine, and nonylphenol
significantly change innate immune-related gene transcription.
This was shown by altered mRNA levels of TNF-α, IFN-γ, IL-
1β, IL-8, CXCL-Clc, and CC-chemokine but also genes related to
reactive oxygen species (176).

Synthetic EDCs also affect the development and the function
of human immune cell populations (177). BPA exposure in
human significantly increased in the proliferation of PBMC and

modulated their cytokine production leading to a decrease in IL-
10 and IL-13 expression. Additionally, BPA altered the phenotype
of myeloid DCs by an increased CD1a, but decreased HLA-DR
and CD86 expression (178). In contrast, it has been shown that
BPA among other bisphenols decreased the expression of CD1a,
CD80, CD86, and CD83 but increased the numbers of HLA-DR
positive monocyte-derived DCs (179). In response to phthalates
and the common EDCs nonylphenol and 4-octylphenol there was
a modulation of DC cytokine expression (171, 180). Both of the
latter EDCs but also BPA as well as bisphenol B and F interfere
additionally with the differentiation of DCs (171).

Di-ethylhexyl-phthalate, dibutyl-phthalate, 4-tert-
octylphenol, and BPA interfere with the TNF-α, IL-1β,
and IL-8 cytokine secretion (181) and markedly reduce the
phagocytosis ability of a human macrophage cell line (182) in an
estrogen-mediated manner (181).

Contradictory results of studies may be explained the usage of
very different concentrations or different administration routes
or time points of the EDCs. Pharmacokinetic studies showed
that the route of administration strongly influence the rate of
metabolism of EDCs including BPA (183, 184) that in turn
determine their concentrations in blood and tissues. For planning
animal studies it should be kept in mind, that human beings are
mainly exposed orally to BPA.

EDCs and Uterine Remodeling During
Pregnancy
A correct placentation is important to maintain maternal and
fetal health not only throughout pregnancy, but also impacts
the rest of their life. If EDCs interfere with the highly complex
mechanisms of placental development or function and thereby
impact pregnancy outcome, is under research.

In women that undergo in vitro fertilization (IVF), there
is an inverse relationship between BPA urinary concentrations
and estradiol levels as well as the total number of oocytes
retrieved per cycle (185, 186). In addition, high urinary
concentrations of BPA, parabens, and most phthalate metabolites
were associated with lower probabilities of implantation, clinical
pregnancy, and live birth after IVF (187). Phthalate exposure
impacts human placental function by significantly modulating
the expression of 93 critical placental genes like the epidermal
growth factor receptor throughmethylation (188). Another study
showed that high urinary concentrations of specific phthalate
metabolites (mono(2-ethylhexyl) phthalate [MEHP], mono(2-
ethyl-5-oxohexyl) phthalate [MEOHP], mono-n-butyl phthalate
[MnBP), monoisobutyl phthalate [MiBP], and monobenzyl
phthalate [MBzP]) were associated with a lower expression of
the target genes reflecting trophoblast differentiation (189) that
are in turn important for an efficient vascular remodeling during
pregnancy. Moreover, pesticides disturb the hormonal network
and the function of trophoblast cells as shown by reduced cell
viability and altered hormone secretion and steroidogenesis gene
expression in an ER-dependent manner (190).

Although there are many interesting studies about the effect of
EDCs for human pregnancy, it is difficult to extrapolate the effect
of single EDCs, as human are exposed to many EDCs at the same
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time. Studies using combined EDC exposure are needed in the
future to fully understand the consequences on health.

In mice, short-term oral BPA-exposure (50 µg/kg bw/day)
during early pregnancy provoked IUGR in more than half of the
offspring from gd12 onwards as documented by ultrasound and
fetal weight determination. Although velocity parameters of the
uterine artery were normal, SA remodeling was impaired in BPA-
exposed mice. This was shown by the fact that many VSMCs
remain in the vessels walls in BPA-treated mice. Additionally,
the SAs had increased wall thicknesses and increased wall-to-
lumen ratios compared to control mice, both signs for insufficient
remodeled SAs (191). Similar results were obtained by Ye et al.
The authors demonstrated an abnormal vessel remodeling shown
by increased retention of VSMCs and reduced vessel areas at
the junctional zone of the placenta leading to PE-like features
including hypertension. Additionally, they found a decreased
expression ofMMP2 and 9and an enhanced expression of TIMP1
and−2 in BPA-treated mice that might be the reason for an
impaired invasion of the trophoblast cells leading to insufficient
remodeled vessels (192). Indeed, in vitro it was shown that BPA
impairs trophoblast invasion (192). In these mouse studies it was
not clarified if BPA influenced other cells next to trophoblasts.
Whereas, uNK and uMCs numbers were not affected (191), a
possible influence of the EDC on the activity of the immune
cells was not analyzed and is an interesting question for further
research. Morphological changes in the placentas of BPA-treated
mice, including a smaller labyrinthine zone, narrow intervillous
spaces, and degenerative changes in the trophoblastic giant cells
and spongiotrophoblast layers were reported. This was associated
with a decreased number and weight of embryos (193).

Next to BPA, other EDCs have been analyzed and the
results obtained strongly suggest a disturbance of uterine
vascular remodeling by EDCs. PCB-exposure of the mink let to
degenerated placentas, characterized by vascular lesions in the
labyrinthine zones, degeneration of endothelial and trophoblast
cells, and hemorrhage. This was associated with fetal growth
restriction and death (194). EE2, that is massively used as a
compound in contraceptive pills, accumulate in the environment,
open waters and enters the human food chain. A recent study
shows that oral application of EE2 inmice during early pregnancy
leads to reproductive impairments. In a high concentration (5
µg/kg bodyweight (bw)/day) EE2 leads to death of all fetuses
in 80 % of the animals at midpregnancy. In contrast, a lower
concentration (5 ng/kg bw/day) did not affect fetal survival
but was clearly associated with impaired SA remodeling and
abnormal increased fetal and placental growth (195). Thus, the
impact to fetal and placental growth is different depending on
the nature of the EDC.

As earlier mentioned in this review, most EDCs follow non-
monotonic dose-response curves. This fact makes it difficult to
draw conclusions fromEDCs research results. Nevertheless, there

is evidence that EDCs do not only exert a direct negative effect
on vascular remodeling during pregnancy, but also an indirect
effect by their ability to alter immune cell function. Many effects
followed by EDC exposure, especially BPA, were not only dose-,
but also sex-specific (196). The interesting field of phenotypic
gender differences by EDC exposure is still underrepresented
and opens potentially new interesting research fields. Also, the
epigenetic effect of EDCs is an interesting topic for more detailed
research and is not contemplated in this review.

Taken together, the results of numerous research studies
clearly demonstrate that EDCs greatly impact the immune system
and uterine remodeling during pregnancy that may have harmful
effects for the mother and even more for the developing fetus.
It is important to mention that most studies investigate the
health effects of single EDCs exposure, even though exposures do
occur as chemical mixtures of EDCs that most probably impact
health quite different and unpredictable. Avoiding unnecessary
EDCs-containing products, especially during the critical time of
fetal development during pregnancy, may help avoiding harmful
health outcomes.

CONCLUSIONS

The present review aimed to summarize long-term established
and brand-new research results concerning the indispensable
role of innate immune cells for an effective uterine remodeling
process. Additionally, the manuscript visualizes serious
short- and long-term health consequences for mothers
and children followed by an ineffective uterine remodeling
process. An advanced understanding of mechanisms and
disruptors of uterine remodeling helps to identify factors
involved in physiological or pathological pregnancies. The
long-term goal of research is to develop novel therapeutic
options against pregnancy disorders, to elucidate and reduce
potential negative effects on unborn life, and to improve
in-vitro-fertilization techniques.

Moreover, the review focused on the reproductive health
consequences of EDCs that accumulate non-stop in our
environment and are impossible to eliminate or neutralize. We
are convinced that research has an impact on the understanding
of diseases and the potential to improve health care worldwide.
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