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Despite improvements in cancer therapy and treatments, tumor recurrence is a common event in cancer patients. One explanation
of recurrence is that cancer therapy focuses on treatment of tumor cells and does not eradicate cancer stem cells (CSCs). CSCs
are postulated to behave similar to normal stem cells in that their role is to maintain homeostasis. That is, when the population of
tumor cells is reduced or depleted by treatment, CSCs will repopulate the tumor, causing recurrence. In this paper, we study the
application of the CSC Hypothesis to the treatment of glioblastoma multiforme by immunotherapy. We extend the work of Kogan
et al. (2008) to incorporate the dynamics of CSCs, prove the existence of a recurrence state, and provide an analysis of possible
cancerous states and their dependence on treatment levels.

1. Introduction

Dynamical systems continue to play an important role in
understanding cancer dynamics [1–4]. A recent development
in cancer dynamics is the cancer stem cell hypothesis. The
cancer stem cell hypothesis states that malignant tumors are
initiated and maintained by a population of tumor cells that
share similar biologic properties to normal adult stem cells
[5]. With evidence mounting in support of the cancer stem
cell hypothesis, recent work has been devoted to the inclusion
of cancer stem cells (CSCs) in current cancer models [6–9].

Cancer stem cells are a specialized type of cancer cell that
are believed to be responsible for populating tumors. CSCs
have a very small population in comparison to normal cancer
cells because of their specialized function. While tumor cells
are only able to undergo a limited number of divisions, CSCs
are able to repopulate a depleted tumor, even if there are only
a few CSCs left [10]. Once the number of CSCs begins to
drop, usually due to treatment, they cease creating cancer cells
and focus on repopulating themselves. The small population
of CSCs is hard to detect and therefore treatment is often

stopped before all CSCs have been eradicated, which leads to
recurrence of cancer [11]. It is clear that, for treatment to be
effective, wemust focus our efforts on eliminating both tumor
cells and CSCs.

The cancer stem cell hypothesis has been biologically
verified for many solid tumors, including brain cancer [12].
Glioblastoma is a type of brain tumor which forms in the
cerebral hemisphere of the brain, often in the frontal and
temporal lobe. These types of tumors are highly malignant,
forming from normal brain cells, astrocytes, or star-shaped
glial cells which support nerve cells. These cells can grow
rapidly due to ample amounts of blood available in the
brain. Immunotherapy is a cancer treatmentwhich stimulates
the immune system to work harder to attack cancer cells.
The therapy uses additive components, such as man-made
proteins, vaccines, or white blood cells, to further attack can-
cer cells. Immunotherapy is essential to treating multiforme
glioblastomas because of their sensitive location, the brain,
which is too delicate to be treated by chemotherapy or surgery
[10, 13].
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2. Presentation of the Model

In this paper, we extend the previous work of Kogan et al.
[13] to include cancer stem cells in modeling the treatment
of glioblastomamultiformewith immunotherapy.We present
an abstract model that can be adapted to fit various biological
assumptions. We analyze the stability of the model both with
and without treatment and derive sufficient conditions on
treatment to ensure a globally asymptotically stable cure state.
We conclude with an example illustrating the transition from
coexistence of cancer cells to eradication of cancer cells with
various treatment levels. Much of this model is based on
experimental results obtained by Kruse et al. [14].

The following system models the dynamics of tumor
cells (𝑇), cancer stem cells (𝑆), alloreactive cytotoxic-T-
lymphocytes (𝐶), TGF-𝛽 (𝐹𝛽), IFN-𝛾 (𝐹𝛾), and major histo-
compatibility complex classes I and II (𝑀I and𝑀II, resp.):

𝑇
󸀠
= 𝛼 (𝑇, 𝑆) + 𝑅1 (𝑇) 𝑇

− 𝑓𝑇 (𝐹𝛽) 𝑔𝑇 (𝑀I) ℎ𝑇 (𝑇) 𝐶𝑇,

𝑆
󸀠
= 𝑅2 (𝑆) 𝑆 − 𝛼 (𝑇, 𝑆) − 𝑓𝑆 (𝐹𝛽) 𝑔𝑆 (𝑀I) ℎ𝑆 (𝑆) 𝐶𝑆,

𝐶
󸀠
= 𝑓𝐶 ((𝑇 + 𝑆) ⋅ 𝑀II) 𝑔𝐶 (𝐹𝛽) − 𝜇𝐶𝐶 + 𝑁 (𝑡) ,

𝐹
󸀠
𝛽 = 𝑓𝛽 (𝑇 + 𝑆) − 𝜇𝛽𝐹𝛽,

𝐹
󸀠
𝛾 = 𝑓𝛾 (𝐶) − 𝜇𝛾𝐹𝛾,

𝑀
󸀠
I = 𝑓𝑀I

(𝐹𝛾) − 𝜇𝑀I
𝑀I,

𝑀
󸀠
II = 𝑓𝑀II

(𝐹𝛽) 𝑔𝑀II
(𝐹𝛾) − 𝜇𝑀II

𝑀II.

(1)

To understand the formation of the system above, we
discuss the biological interpretations of each equation in the
model:

𝑇
󸀠
= 𝛼 (𝑇, 𝑆) + 𝑅1 (𝑇) 𝑇 − 𝑓𝑇 (𝐹𝛽) 𝑔𝑇 (𝑀I) ℎ𝑇 (𝑇) 𝐶𝑇. (2)

The first term on the right hand side (RHS) of the
equation represents differentiated tumor cells produced by
the CSCs without immune intervention, where 𝛼(𝑇, 𝑆) is the
rate at which CSCs produce tumor cells and 𝑇 is the number
of nonstem tumor cells (TCs) currently present. The second
term stands for normal tumor growth, the cells produced
by regular reproduction of nonstem tumor cells. Both the
first and second terms use classical logistic growth (note that
the carrying capacities for 𝑆 and 𝑇 are distinct). The third
term on the RHS represents tumor elimination by CTL in
proportion to both 𝑇 and 𝐶. CTLs are white blood cells
responsible for attacking tumor cells, in this case. The third
term also introduces the effects of MHC class I receptors
(𝑀I) and TGF-𝛽 (𝐹𝛽), which is assumed to be a major
immunosuppressive factor for CTL activity [10]. Consider

𝑆
󸀠
= 𝑅2 (𝑆) 𝑆 − 𝛼 (𝑇, 𝑆) − 𝑓𝑆 (𝐹𝛽) 𝑔𝑆 (𝑀I) ℎ𝑆 (𝑆) 𝐶𝑆. (3)

The first term on the RHS stands for the rate of stem
cell growth without immune intervention. As before, this

follows a logistical growthmodel with a carrying capacity, the
maximal tumor cell burden. The second term, like the first
of the previous equation, stands for differentiated tumor cells
produced by CSCs. The third term is almost identical to the
third term of the previous equation, except that the functions
𝑓𝑆 and 𝑔𝑆 represent the interaction of CSCs and CTLs with
regard to TGF-𝛽 and MHC class I (as opposed to TCs in the
above equation) [11]. Consider

𝐶
󸀠
= 𝑓𝐶 ((𝑇 + 𝑆) ⋅ 𝑀II) 𝑔𝐶 (𝐹𝛽) − 𝜇𝐶𝐶 + 𝑁 (𝑡) . (4)

The first summand of the RHS stands for CTL recruit-
ment from the blood system. The recruitment function is
positively affected by MHC class II (𝑀II) and the number of
TCs (𝑇) and CSCs (𝑆). The cytokine TGF-𝛽 suppresses the
proliferation and activation of T-lymphocytes [2], as well as
leukocyte migration across the brain-blood boundary (BBB)
[15]; these are collectively represented by the function 𝑔𝐶.
We assume a constant death rate for 𝐶, represented by 𝜇𝐶.
The term𝑁(𝑡) describes the rate of infusion of primed CTLs
directly to the tumor site.𝑁(𝑡) is set equal to 0 in absence of
immunotherapy [14, 16]. Consider

𝐹
󸀠
𝛽 = 𝑓𝛽 (𝑇 + 𝑆) − 𝜇𝛽𝐹𝛽,

𝐹
󸀠
𝛾 = 𝑓𝛾 (𝐶) − 𝜇𝛾𝐹𝛾.

(5)

The above two equations describe the dynamics of TGF-
𝛽 and IFN-𝛾, respectively. In the first equation, the first term
represents the natural basal level in the CNS (central nervous
system). This includes TGF-𝛽 produced by the tumor, which
is assumed to be proportional to the tumor’s size. The
degradation of TGF-𝛽 is assumed to be constant with the rate
𝜇𝛽 and is represented by the second term.

In the second equation, the first term on the RHS is a
linear production of IFN-𝛾, 𝐹𝛾. We assume the only source
of IFN-𝛾 is CTL. The second term is the natural degradation
of IFN-𝛾 with constant rate 𝜇𝛾 [15]. Consider

𝑀
󸀠
I = 𝑓𝑀I

(𝐹𝛾) − 𝜇𝑀I
𝑀I,

𝑀
󸀠
II = 𝑓𝑀II

(𝐹𝛽) 𝑔𝑀II
(𝐹𝛾) − 𝜇𝑀II

𝑀II.
(6)

The above two equations represent the dynamics ofMHC
classes I and II, respectively. For the first equation, the first
term on the RHS is the basal rate of𝑀I receptor expression
per tumor cell. This includes the stimulation by IFN-𝛾 of𝑀I
expression on the surface of a glioblastoma cell. The second
term is the natural degradation of𝑀I with constant rate 𝜇𝑀I

.
In the second equation, the first term represents the rate

of𝑀II per tumor cell as a function of IFN-𝛾 and TGF-𝛽 [17].
The second term is the degradation of𝑀II with constant rate
𝜇𝑀II

[15].

3. Preliminary Results

Throughout the paper, we will assume that system (1) is
subject to nonnegative initial conditions. In addition, the
functions 𝛼, 𝑅1, 𝑅2, 𝑓𝑇, 𝑓𝑆, 𝑓𝐶, 𝑓𝛽, 𝑓𝛾, 𝑓𝑀I

, 𝑓𝑀II
, 𝑔𝑇, 𝑔𝑆,
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𝑔𝐶, 𝑔𝑀II
, ℎ𝑇, and ℎ𝑆 are all C1 functions with nonnegative

values. Here, we use C1 to denote the space of continuously
differentiable functions. These assumptions imply that the
nonnegative orthant is invariant under (1) and there exists a
unique solution to (1) subject to initial conditions. To ensure
solutions to (1) stay bounded over time, we need additional
assumptions. We make the following mathematical assump-
tionsmodified from [13] to account for cancer stem cells (A1):

(1) 𝑅1(𝑇) and 𝑅2(𝑆) are at most linear;
(2) 𝛼(𝑇, 𝑆) is increasing;
(3) 𝑓𝑇(𝐹𝛽) and𝑓𝑆(𝐹𝛽) are decreasing and bounded below;

𝑔𝑇(𝑀I) and 𝑔𝑆(𝑀I) are increasing and bounded
above;

(4) ℎ𝑇 and ℎ𝑆 are decreasing and bounded below;
(5) 𝑓𝐶((𝑇 + 𝑆) ⋅ 𝑀II) is increasing and bounded above;

𝑔𝐶(𝐹𝛽) is decreasing and bounded below;
(6) 𝑁(𝑡) is nonnegative and bounded above;
(7) 𝑓𝛽(𝑇), 𝑓𝛽(𝑆), and 𝑓𝛾(𝐶) are increasing;
(8) 𝑓𝑀I

(𝐹𝛾) is increasing and bounded above;
(9) 𝑔𝑀II

(𝐹𝛾) is increasing and bounded above; 𝑓𝑀II
(𝐹𝛽) is

decreasing and bounded below.

We will use the following substitutions to simplify our
equations:

𝐹𝛽 = 𝑥,

𝑓𝛽 = 𝑓𝑥,

𝜇𝛽 = 𝜇𝑥

𝐹𝛾 = 𝑦,

𝑓𝛾 = 𝑓𝑦,

𝜇𝛾 = 𝜇𝑦

𝑀I = 𝑢,

𝑓𝑀I
= 𝑓𝑢,

𝜇𝑀I
= 𝜇𝑢

𝑀II = V,

𝑓𝑀II
= 𝑓V,

𝜇𝑀II
= 𝜇V.

(7)

These substitutions give us the following system equiva-
lent to (1):

𝑇
󸀠
= 𝛼 (𝑇, 𝑆) + 𝑅1 (𝑇) 𝑇 − 𝑓𝑇 (𝑥) 𝑔𝑇 (𝑢) ℎ𝑇 (𝑇) 𝐶𝑇,

𝑆
󸀠
= 𝑅2 (𝑆) 𝑆 − 𝛼 (𝑇, 𝑆) − 𝑓𝑆 (𝑥) 𝑔𝑆 (𝑢) ℎ𝑆 (𝑆) 𝐶𝑆,

𝐶
󸀠
= 𝑓𝐶 ((𝑇 + 𝑆) ⋅ V) 𝑔𝐶 (𝑥) − 𝜇𝐶𝐶 + 𝑁 (𝑡) ,

𝑥
󸀠
= 𝑓𝑥 (𝑇 + 𝑆) − 𝜇𝑥𝑥,

𝑦
󸀠
= 𝑓𝑦 (𝐶) − 𝜇𝑦𝑦,

𝑢
󸀠
= 𝑓𝑢 (𝑦) − 𝜇𝑢𝑢,

V󸀠 = 𝑓V (𝑥) 𝑔V (𝑦) − 𝜇VV.
(8)

Also as in [13] and included here for the reader’s benefit,
we make the following biological assumptions on our system
(A2):

(1) 𝑅1(𝑇) and 𝑅2(𝑆) are decreasing on [0, 𝐾1], [0, 𝐾2],
respectively, where 𝐾1 and 𝐾2 are their respective
carrying capacities. Furthermore, 𝑅1(𝐾1) = 0 and
𝑅2(𝐾2) = 0. Also, 𝑅1(0) = 𝑟1 > 0 and 𝑅2(0) = 𝑟2 > 0.

(2) 𝛼(𝑇, 𝑆) = 𝑟𝛼(𝑆/𝐾2)(𝑇/𝐾1)(𝐾1 − 𝑇) (when the CSC
population is small, CSCs repopulate themselves, but
as their population grows, they focus on populating
the TC population) [11].

(3) 𝑓𝑇(𝑥) and 𝑓𝑆(𝑥) are decreasing, 𝑓𝑇(0) = 𝑓𝑆(0) = 1,
and lim𝑥→∞𝑓𝑇(𝑥) = 𝑎𝑇,𝑥, lim𝑥→∞𝑓𝑆(𝑥) = 𝑎𝑆,𝑥, for
some 𝑎𝑇,𝑥, 𝑎𝑆,𝑥 > 0 (TGF-𝛽 decreases the efficacy of
tumors killed by CTLs up to some limit).

(4) 𝑔𝑇(𝑢), 𝑔𝑆(𝑢) are increasing, 𝑔𝑇(0) = 𝑔𝑆(0) = 0, and
lim𝑢→∞𝑔𝑇(𝑢) = 𝑎𝑇 > 0, lim𝑢→∞𝑓𝑆(𝑢) = 𝑎𝑆 > 0

(MHC class I receptors are necessary for the action of
CTLs and increase their efficiency up to some limit).

(5) 𝑔𝑆(𝑢) < 𝑔𝑇(𝑢) (CTLs are less efficient when attacking
CSCs) [11].

(6) ℎ𝑇(𝑇) and ℎ𝑆(𝑆) are decreasing, ℎ𝑇(0) = ℎ𝑆(0) = 1,
and lim𝑇→∞ℎ𝑇(𝑇) = 0, lim𝑆→∞ℎ𝑆(𝑆) = 0 (large
tumormass hampers the access of CTLs to tumor cells
and reduces their kill rate).

(7) 𝑓𝐶(𝑇V+𝑆V) is increasing from 0 to 𝑎𝐶,V > 0,𝑓
󸀠
𝐶(0) > 0,

and lim𝑇V+𝑆V→∞𝑓
󸀠
𝐶(𝑇V+ 𝑆V) = 0 (the total number of

MHC class II receptors on all tumor cells and stem
cells determines the recruitment of CTLs; the rate of
CTL recruitment is limited and its growth decreases
to zero).

(8) 𝑔𝐶(𝑥) is decreasing from 1 to some bound greater than
0 (TGF-𝛽 reduces recruitment of CTLs).

(9) 𝑓𝑥(𝑇 + 𝑆) = 𝑔𝑥 + 𝑎𝑥,𝑇𝑇 + 𝑎𝑥,𝑆𝑆, 𝑓𝑦(𝐶) = 𝑎𝑦,𝐶𝐶, where
𝑎𝑥,𝑇, 𝑎𝑥,𝑆, 𝑎𝑦,𝐶 > 0 (TGF-𝛽 and IFN-𝛾 are secreted by
the cancerous cells and CTLs, resp., at constant rate;
there is base level secretion of TGF-𝛽).

(10) 𝑓𝑢(0) = 𝑔𝑢 > 0 and lim𝑦→∞𝑓𝑢(𝑦) = 𝑔𝑢+𝑎𝑢,𝑦, 𝑎𝑢,𝑦 > 0
(there is a constant basic production of MHC class II
receptors at the cell surface, while IFN-𝛾 increases this
production up to some level).

(11) 𝑓V(0) = 1 and 𝑓V(𝑥) is decreasing to 0 (TGF-𝛽
decreases MHC class II production to 0).

(12) 𝑔V(0) = 0, 𝑔V(𝑦) is increasing to 𝑎𝑢,𝑦 > 0, 𝑔󸀠V > 0,
and lim𝑦→∞𝑔

󸀠
V(𝑦) = 0 (IFN-𝛾 is necessary to induce
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production of MHC class II receptors and increases
up to some level with increase declining to zero).

(13) 𝑁(𝑡) ≡ 𝑁 (treatment is assumed to be constant with
respect to time).

Theorem 1. Under the (A2) assumptions, system (1) is dissipa-
tive on [0, 𝐾1] × [0, 𝐾2] × (R≥0)

5.

Proof. Let 𝑐max = max{𝑓𝐶(𝑇V + 𝑆V)𝑔𝐶(𝑥)}, 𝑓𝑥 = (𝑔𝑇 + 𝑔𝑆) +
(𝑎𝑥,𝑇𝐾1 + 𝑎𝑥,𝑆𝐾2) ≥ 𝑓𝑥(𝑇 + 𝑆) for all values of 𝑇 and 𝑆, 𝑓𝑦 =
𝑎𝑦,𝐶𝐶max, where𝐶max = max{(𝑐max +𝑁)/𝜇𝐶, 𝐶(0)}, 𝑓𝑢 = 𝑔𝑢 +
𝑎𝑢,𝑦, and𝑓V = 𝑎𝑢,𝑦.These values are well defined based on the
(A2) assumptions.

In order to show that our system is dissipative, we need to
construct a𝑊 such that

∇𝑊 ⋅ 𝐹 ≤ 𝐴 − 𝛿𝑊, where 𝐴, 𝛿 > 0, (9)

where 𝐹 is the RHS of system (1). Let𝑊(𝑇, 𝑆, 𝐶, 𝑥, 𝑦, 𝑢, V) =
𝑇+𝑆+𝐶+𝑥+𝑦+𝑢+V.Then, since𝑅1(0) = 0 and𝑅1(𝐾1) = 0,
𝑅1(𝑇)𝑇 ≤ 𝑎1 − 𝑏1𝑇 for some 𝑎1, 𝑏1 > 0 on [0, 𝐾1]. Similarly,
𝑅2(𝑆)𝑆 ≤ 𝑎2 − 𝑏2𝑆 for some 𝑎2, 𝑏2 > 0 on [0, 𝐾2].Thus,

∇𝑊 ⋅ 𝐹 = 𝑅1 (𝑇) 𝑇 − 𝑓𝑇 (𝑥) 𝑔𝑇 (𝑢) 𝐶𝑇ℎ𝑇 (𝑇)

+ 𝑅2 (𝑆) 𝑆 − 𝑓𝑆 (𝑥) 𝑔𝑆 (𝑢) 𝐶𝑆ℎ𝑆 (𝑆)

+ 𝑓𝐶 (𝑇V + 𝑆V) 𝑔𝐶 (𝑥) − 𝜇𝐶𝐶 + 𝑁

+ 𝑓𝑥 (𝑇 + 𝑆) − 𝜇𝑥𝑥 + 𝑓𝑦 (𝐶) − 𝜇𝑦𝑦

+ 𝑓𝑢 (𝑦) − 𝜇𝑢𝑢 + 𝑓V (𝑥) 𝑔V (𝑦) − 𝜇VV

≤ 𝑎1 − 𝑏1𝑇 + 𝑎2 − 𝑏2𝑆 + 𝑐max − 𝜇𝐶𝐶 + 𝑁 + 𝑓𝑥

− 𝜇𝑥𝑥 + 𝑓𝑦 − 𝜇𝑦𝑦 + 𝑓𝑢 − 𝜇𝑢𝑢 + 𝑓V − 𝜇V

≤ 𝐴 − 𝛿𝑊,

(10)

where 𝛿 = min{𝑏1, 𝑏2, 𝜇𝐶, 𝜇𝑥, 𝜇𝑦, 𝜇𝑢, 𝜇V} and 𝐴 = 𝑎1 + 𝑎2 +

𝑐max + 𝑁 + 𝑓𝑥 + 𝑓𝑦 + 𝑓𝑢 + 𝑓V.

Since our inequalities𝑅1(𝑇)𝑇 ≤ 𝑎1−𝑏1𝑇,𝑅2(𝑆)𝑆 ≤ 𝑎2−𝑏2𝑆
hold for all values of𝑇, 𝑆 in this space, the system is dissipative
everywhere on [0, 𝐾1] × [0, 𝐾2] × (R≥0)

5, and by a theorem
from Robinson [18], we get the following corollary.

Corollary 2. System (1) has a compact global attractor on
[0, 𝐾1] × [0, 𝐾2] × (R≥0)

5.

4. Stability Analysis

In the following section, we present an analysis of three
potential steady states: tumor elimination (where CSC and
TC populations are eradicated), recurrence (where the TC
population is eradicated, but the CSC population persists),
and coexistence (where CSC and TC populations persist). In
each case, we discuss sufficiency conditions on the treatment
term 𝑁 which will allow for a globally asymptotically stable
cure state (tumor elimination).

4.1. Semitrivial Tumor Elimination. We begin our analysis
with tumor elimination. Setting 𝑇 = 0 and 𝑆 = 0, we find
the equilibrium values:

𝐶
∗
=
𝑁

𝜇𝐶

,

𝑥
∗
=
𝑓𝑥 (0)

𝜇𝑥

,

𝑦
∗
=

𝑓𝑦 (𝐶
∗
)

𝜇𝑦

,

𝑢
∗
=
𝑓𝑢 (𝑦
∗
)

𝜇𝑢

,

V∗ =
𝑓V (𝑥
∗
) 𝑔V (𝑦

∗
)

𝜇V
.

(11)

Substituting this equilibrium point into the Jacobian matrix

(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(

(

−
𝑁𝑓𝑆 (𝑥

∗
) 𝑔𝑆 (𝑢

∗
)

𝜇𝐶

+ 𝑟2 0 0 0 0 0 0

0 −
𝑁𝑓𝑇 (𝑥

∗
) 𝑔𝑇 (𝑢

∗
)

𝜇𝐶

+ 𝑟1 0 0 0 0 0

𝑓V (𝑥
∗
) 𝑔𝐶 (𝑥

∗
) 𝑔V (𝑥

∗
) 𝑓
󸀠
𝐶 (0)

𝜇V

𝑓V (𝑥
∗
) 𝑔𝐶 (𝑥

∗
) 𝑔V (𝑥

∗
) 𝑓
󸀠
𝐶 (0)

𝜇V
−𝜇𝐶 0 0 0 0

0 0 𝑓
󸀠
𝑦 (𝐶
∗
) −𝜇𝑦 0 0 0

𝑓
󸀠
𝑥 (0) 𝑓

󸀠
𝑥 (0) 0 0 −𝜇𝑥 0 0

0 0 0 𝑓
󸀠
𝑢 (𝑦
∗
) 0 −𝜇𝑢 0

0 0 0 𝑓V (𝑥
∗
) 𝑔
󸀠
V (𝑦
∗
) 𝑓
󸀠
V (𝑥
∗
) 𝑔V (𝑦

∗
) 0 −𝜇V

)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)

)

(12)
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yields eigenvalues 𝜆 = −𝜇𝐶, −𝜇𝑢, −𝜇V, −𝜇𝑥, −𝜇𝑦,
−𝑁𝑓𝑆(𝑥

∗
)𝑔𝑆(𝑢
∗
)/𝜇𝐶 + 𝑟2, and −𝑁𝑓𝑇(𝑥

∗
)𝑔𝑇(𝑢

∗
)/𝜇𝐶 + 𝑟1. So

as long as we choose𝑁 large enough so that

𝑁 >
𝑟2 ⋅ 𝜇𝐶

𝑓𝑆 (𝑥
∗) 𝑔𝑆 (𝑢

∗)
,

𝑁 >
𝑟1 ⋅ 𝜇𝐶

𝑓𝑇 (𝑥
∗) 𝑔𝑇 (𝑢

∗)
,

(13)

we are guaranteed to have a locally asymptotically stable cure
state.

We now show that, under necessary condition (13), (0, 0,
𝐶
∗
, 𝑥
∗
, 𝑦
∗
, 𝑢
∗
, V∗) is locally asymptotically stable. Let 𝑁 =

𝑁
∗, where 𝑁∗ meets condition (13). Then, for some initial

conditions, there exists 𝑡𝜖 such that, for 𝑡 ≥ 𝑡𝜖, 𝐶 > 𝐶
∗
=

(𝑁
∗
/𝜇𝐶)(1 − 𝜖) for arbitrarily small 𝜖. If we also let 𝑦∗ =

(𝑓𝑦(𝐶
∗
)/𝜇𝑦)(1 − 𝜖1) and 𝑢

∗
= (𝑓𝑢(𝑦

∗
)/𝜇𝑢)(1 − 𝜖2), for

𝜖1, 𝜖2 arbitrarily small, we have that 𝑢 > 𝑢
∗ from some

starting moment, and therefore 𝑔𝑇(𝑢)𝐶 > 𝑔𝑇(𝑢
∗
)𝐶
∗. By our

assumptions (A1), ℎ𝑇(𝑇) ≥ ℎ𝑇(𝐾1) and 𝑓𝑇(𝑥) ≥ 𝑓𝑇(𝑥max),
so if we let 𝑁∗ be large enough so that 𝑔𝑇(𝑢

∗
)𝐶
∗
> (𝑟1 +

𝑟𝛼𝐾
2
1/4)/ℎ𝑇(𝐾1)𝑓𝑇(𝑥max), then we have that

𝑇
󸀠
≤ −𝑎1𝑇,

where 𝑎1 = 𝑔𝑇 (𝑢
∗
) 𝐶
∗
−

𝑟1 + 𝑟𝛼𝐾
2
1/4

ℎ𝑇 (𝐾1) 𝑓𝑇 (𝑥max)
> 0.

(14)

A parallel argument works to show that, for𝑁∗ large enough,

𝑆
󸀠
≤ −𝑎2𝑆,

where 𝑎2 = 𝑔𝑆 (𝑢
∗
) 𝐶
∗
−

𝑟2

ℎ𝑆 (𝐾2) 𝑓𝑆 (𝑥max)
> 0.

(15)

Thus, by increasing the treatment value𝑁, we are able to show
that, for some set of initial conditions, the CSC population
𝑆 and TC population 𝑇 decay exponentially to 0, leading to
tumor elimination.

4.2. Persistence of Tumor. We now wish to consider steady
states in which some subset of cancer cell populations persist.
Let our hypothetical equilibrium point be (𝑇𝑝, 𝑆𝑝, 𝐶𝑝, 𝑥𝑝,
𝑦𝑝, 𝑢𝑝, V𝑝), where 𝑆𝑝 > 0.Then

𝑥𝑝 =

𝑓𝑥 (𝑇𝑝 + 𝑆𝑝)

𝜇𝑥

,

𝑦𝑝 =

𝑓𝑦 (𝐶𝑝)

𝜇𝑦

,

𝑢𝑝 =

𝑓𝑢 (𝑦𝑝)

𝜇𝑢

,

V𝑝 =
𝑓V (𝑥𝑝) 𝑔V (𝑦𝑝)

𝜇V
.

(16)

We wish to show existence of 𝑇𝑝, 𝑆𝑝 > 0, and 𝐶𝑝 > 0. To do
so, we must solve the system

𝑅1 (𝑇𝑝) + 𝛼 (𝑇𝑝, 𝑆𝑝) = 𝑓𝑇(

𝑓𝑥 (𝑇𝑝 + 𝑆𝑝)

𝜇𝑥

)

⋅ 𝑔𝑇(

𝑓𝑢 (𝑓𝑦 (𝐶𝑝/𝜇𝑦))

𝜇𝑢

)ℎ𝑇 (𝑇𝑝) 𝐶𝑝,

𝑅2 (𝑆𝑝) 𝑆𝑝 = 𝛼 (𝑇𝑝, 𝑆𝑝) 𝑇𝑝 + 𝑓𝑆(

𝑓𝑥 (𝑇𝑝 + 𝑆𝑝)

𝜇𝑥

)

⋅ 𝑔𝑆(

𝑓𝑢 (𝑓𝑦 (𝐶𝑝/𝜇𝑦))

𝜇𝑢

)ℎ𝑆 (𝑆𝑝) 𝑆𝑝𝐶𝑝,

𝜇𝐶𝐶𝑝

= 𝑓𝐶(

𝑓V (𝑓𝑥 (𝑇𝑝 + 𝑆𝑝) /𝜇𝑥) 𝑔V (𝑓𝑦 (𝐶𝑝) /𝜇𝑦) (𝑇𝑝 + 𝑆𝑝)

𝜇V
)

⋅ 𝑔𝐶(

𝑓𝑥 (𝑇𝑝 + 𝑆𝑝)

𝜇𝑥

) +𝑁.

(17)

Defining the auxiliary function

𝐻𝑇,𝑆 (𝐶)

= 𝑓𝐶(

𝑓V (𝑓𝑥 (𝑇 + 𝑆) /𝜇𝑥) 𝑔V (𝑓𝑦 (𝐶) /𝜇𝑦) (𝑇 + 𝑆)

𝜇V
)

⋅ 𝑔𝐶 (
𝑓𝑥 (𝑇 + 𝑆)

𝜇𝑥

) − 𝜇𝐶𝐶 + 𝑁,

(18)

we see that, for every 𝑇, 𝑆 ≥ 0,𝐻𝑇,𝑆(0) = 𝑁 > 0.
In addition, taking the derivative with respect to𝐶, we get

𝐻
󸀠
𝑇,𝑆 (𝐶)

= 𝑓
󸀠
𝐶(

𝑓V (𝑓𝑥 (𝑇 + 𝑆) /𝜇𝑥) 𝑔V (𝑓𝑦 (𝐶) /𝜇𝑦) (𝑇 + 𝑆)

𝜇V
)

⋅
𝑓V (𝑓𝑥 (𝑇 + 𝑆) /𝜇𝑥) (𝑇 + 𝑆)

𝜇V
𝑔
󸀠
V (

𝑓𝑦 (𝐶)

𝜇𝑦

)

𝑓
󸀠
𝑦 (𝐶)

𝜇𝑦

⋅ 𝑔𝐶 (
𝑓𝑥 (𝑇 + 𝑆)

𝜇𝑥

) − 𝜇𝐶.

(19)

From assumptions (A2), we have that 𝐻󸀠𝑇,𝑆(𝐶) is decreasing,
so there is exactly one positive 𝐶 for which 𝐻𝑇,𝑆(𝐶) = 0 for
any given 𝑇, 𝑆. Thus, such 𝐶𝑝 > 0 exists, but to further solve
system (17), we need more information about the arbitrary
functions present.

To move forward in the analysis of system (8), we will
need to make the following simplifying assumptions (A3):

(1) The dynamics of TGF-𝛽 are much faster than those of
the other system components.

(2) The inflow of CTLs is constant.
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With these assumptions, we can assume 𝑥 is determined by
its steady-state 𝑥∗ = 𝑓𝑥(𝑇 + 𝑆)/𝜇𝑥 and we get the simplified
system:

𝑇
󸀠
= 𝛼 (𝑇, 𝑆) + 𝑅1 (𝑇) 𝑇 − 𝑓𝑇 (𝑇, 𝑆) 𝑔𝑇 (𝑢) ℎ𝑇 (𝑇) 𝑇𝐶,

𝑆
󸀠
= 𝑅2 (𝑆) 𝑆 − 𝛼 (𝑇, 𝑆) − 𝑓𝑆 (𝑇, 𝑆) 𝑔𝑆 (𝑢) ℎ𝑆 (𝑆) 𝑆𝐶,

𝐶
󸀠
= −𝜇𝐶𝐶 + 𝑁,

𝑦
󸀠
= 𝑓𝑦 (𝐶) − 𝜇𝑦𝑦,

𝑢
󸀠
= 𝑓𝑢 (𝑦) − 𝜇𝑢𝑢,

V󸀠 = 𝑓V (𝑇, 𝑆) 𝑔V (𝑦) − 𝜇VV,

(20)

where

𝑓𝑇 (𝑇, 𝑆) = 𝑓𝑇 (
𝑓𝑥 (𝑇 + 𝑆)

𝜇𝑥

) ,

𝑓𝑆 (𝑇, 𝑆) = 𝑓𝑆 (
𝑓𝑥 (𝑇 + 𝑆)

𝜇𝑥

) ,

𝑔𝐶 (𝑇, 𝑆) = 𝑔𝐶 (
𝑓𝑥 (𝑇 + 𝑆)

𝜇𝑥

) ,

𝑓V (𝑇, 𝑆) = 𝑓V (
𝑓𝑥 (𝑇 + 𝑆)

𝜇𝑥

) .

(21)

Note that if 𝑇 = 0, these equations will simply be referred to
in terms of 𝑆 and vice versa.

With simplifying assumptions (A3), we are able to study
the possible dynamics of persistence of cancer, recurrence,
and coexistence, in the following subsections.

4.3. Recurrence State Stability. Weknow that, for system (20),
the equilibrium points for 𝐶, 𝑦, and 𝑢 must be 𝐶∗ = 𝑁/𝜇𝐶,
𝑦
∗
= 𝑓𝑦(𝐶

∗
)/𝜇𝑦, and 𝑢

∗
= 𝑓𝑢(𝑦

∗
)/𝜇𝑢. In this section, we

wish to study the recurrence steady state, so we will set the
TC population 𝑇 = 0 and observe the consequences for the
CSC population steady state:

𝑆
󸀠
= 𝑅2 (𝑆

∗
) 𝑆
∗
− 𝑓𝑆 (𝑆

∗
) 𝑔𝑆 (𝑢

∗
) ℎ𝑆 (𝑆

∗
) 𝑆
∗
𝐶
∗
= 0. (22)

𝑆
∗ will be a steady state when 𝑆∗ = 0 or

𝑅2 (𝑆
∗
) − 𝑓𝑆 (𝑆

∗
) 𝑔𝑆 (𝑢

∗
) ℎ𝑆 (𝑆

∗
) 𝐶
∗
= 0. (23)

For further analysis, we denote

𝐺 (𝑁) = 𝑔𝑆 (𝑢
∗
(𝑁)) 𝐶

∗
(𝑁) ,

𝐻 (𝑆) = 𝑓𝑆 (𝑆) ℎ𝑆 (𝑆) ,

(24)

where 𝑢∗(𝑁) = 𝑓𝑢(𝑁)/𝜇𝑢. Note that (23) now becomes

𝑅2 (𝑆
∗
) − 𝐺 (𝑁)𝐻 (𝑆

∗
) = 0, (25)

where 𝐺(𝑁) is increasing in𝑁 at least linearly and 𝑅2(𝑆) and
𝐻(𝑆) are both decreasing. We recall from assumptions (A2)
that 𝑅2(𝐾2) = 0 and𝐻(𝐾2) = 𝑓𝑆(𝐾2)ℎ𝑆(𝐾2) > 0. We define

𝐿𝑁 (𝑆) = 𝑅2 (𝑆) − 𝐺 (𝑁)𝐻 (𝑆) , (26)

for which we know 𝐿𝑁(𝐾2) < 0 for any𝑁 > 0.

We also know that 𝐿𝑁(0) = 𝑅2(0)−𝐺(𝑁)𝑓𝑆(𝑔𝑥/𝜇𝑥). Since
𝐺(𝑁) is an increasing function, its inverse exists and we can
define 𝑁min = 𝐺

−1
(𝑅2(0)/𝑓𝑆(𝑔𝑥/𝜇𝑥)). Notice that, for 𝑁 =

𝑁min, 𝐿𝑁(0) = 0. For𝑁 < 𝑁min, 𝐿𝑁(0) > 0, and 𝐿𝑁(𝐾2) < 0.
Therefore, for𝑁 < 𝑁min, 𝐿𝑁(𝑆) = 0 has at least one solution
𝑆
∗
∈ (0, 𝐾2) and, in general, since the functionmust cross the

𝑆-axis an odd number of times, there are an odd number of
solutions, 𝑆∗1 , . . . , 𝑆

∗
𝑛 .

Without loss of generality, we can assume 𝐶, 𝑦, and 𝑢 are
at their respective steady states since these variables will all
converge to their steady-state values exponentially. We can
also assume that, for large enough 𝑡, (20) is arbitrarily well
approximated by

𝑆
󸀠
= 𝑅2 (𝑆) 𝑆 − 𝐻 (𝑆) 𝐺 (𝑁) 𝑆 = 𝑆𝐿𝑁 (𝑆) . (27)

For𝑁 < 𝑁min, the equilibrium point (0, 0, 𝐶∗, 𝑦∗, 𝑢∗, V∗)
is unstable, since any values of 𝑆 less than 0 will yield a
negative value for 𝐿𝑁(𝑆), and any values of 𝑆 between 0 and
𝑆
∗
1 will yield a positive value for 𝐿𝑁(𝑆). Thus our first stable
equilibrium point is at (0, 𝑆∗1 , 𝐶

∗
, 𝑦
∗
, 𝑢
∗
, V∗).

In contrast, if 𝑁 is large enough so that 𝑁 > 𝑁min,
our equilibrium point (0, 0, 𝐶∗, 𝑦∗, 𝑢∗, V∗) is locally stable,
since, for 𝑁 > 𝑁min, 𝐿𝑁(0) < 0. There could, however, still
exist positive solutions 𝑆∗1 , . . . , 𝑆

∗
𝑛 , where 𝑛 is even. If these

solutions are organized in nondecreasing order, 𝑆∗𝑖 is locally
stable for even 𝑖 and unstable for odd 𝑖, since 𝐿𝑁(𝑆) > 0

between an odd and even root and 𝐿𝑁(𝑆) < 0 between an
even and odd root. Note that if (0, 0, 𝐶∗, 𝑦∗, 𝑢∗, V∗) is the only
equilibrium point, it is globally asymptotically stable.

We now show that if we increase our treatment term
𝑁, we can guarantee the existence of a globally asymp-
totically stable cure state. Let ℵ be the maximum of
𝑅2(𝑆)/𝐺(𝑁min)𝐻(𝑆) and choose 𝑁thr such that 𝐺(𝑁thr) =

𝐺(𝑁min)ℵ. Notice that this is possible since 𝐺(𝑁) is increas-
ing and continuous. Then for 𝑁 > 𝑁thr, 𝐿𝑁(𝑆) < 0 for all
0 ≤ 𝑆 ≤ 𝐾2, and so (0, 0, 𝐶∗, 𝑦∗, 𝑢∗, V∗) is now a globally
asymptotically stable equilibrium point.

4.4. Coexistence State Stability. Still working under simplify-
ing assumptions (A3), we conclude our stability analysis with
consideration of a coexistence steady state. As above, for large
values of 𝑡, we can expect𝐶, 𝑦, and 𝑢 to be at steady state, and
so we can reduce our system to the two equations

𝑇
󸀠
= 𝑅1 (𝑇) 𝑇 + 𝛼 (𝑇, 𝑆) − 𝐻1 (𝑇, 𝑆) 𝐺1 (𝑁) 𝑇

= 𝑇(𝐿1 (𝑇, 𝑆) + 𝑟𝛼

𝑆

𝐾2𝐾1

(𝐾1 − 𝑇))

≡ 𝑇𝑀1 (𝑇, 𝑆) ,

𝑆
󸀠
= 𝑅2 (𝑆) 𝑆 − 𝛼 (𝑇, 𝑆) − 𝐻2 (𝑇, 𝑆) 𝐺2 (𝑁) 𝑆

= 𝑆(𝐿2 (𝑇, 𝑆) − 𝑟𝛼

𝑇

𝐾2𝐾1

(𝐾1 − 𝑇)) ≡ 𝑆𝑀2 (𝑇, 𝑆) ,

(28)

where 𝐺1(𝑁) = 𝑔𝑇(𝑢
∗
(𝑁))𝐶

∗
(𝑁), 𝐻1(𝑇, 𝑆) = 𝑓𝑇(𝑇,

𝑆)ℎ𝑇(𝑇), 𝐺2(𝑁) = 𝑔𝑆(𝑢
∗
(𝑁))𝐶

∗
(𝑁), and 𝐻2(𝑇, 𝑆) =

𝑓𝑆(𝑇, 𝑆)ℎ𝑆(𝑆). Define 𝑁min = min{𝑁min,𝑇, 𝑁min,𝑆}, where
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𝑁min,𝑇 = 𝐺
−1
1 (𝑅1(0)/𝑓𝑇(𝑔𝑥/𝜇𝑥)) and 𝑁min,𝑆 = 𝐺

−1
2 ((𝑅2(0) −

𝑟𝛼𝐾1/4𝐾2)/𝑓𝑆(𝑔𝑥/𝜇𝑥)).

Proposition 3. For𝑁 < 𝑁min, system (28) has a locally stable
coexistence steady state.

Proof. We begin by showing the existence of such a steady
state.Without loss of generality, suppose𝑁min = 𝑁min,𝑆.Then
for values of 𝑁 < 𝑁min, 𝑀2(𝑇, 0) > 0 and 𝑀2(𝑇,𝐾2) < 0

for all values of 𝑇 ∈ (0, 𝐾1). Therefore, there exists a value
𝑆
∗
∈ (0, 𝐾2) such that 𝑀2(𝑇, 𝑆

∗
) = 0 for any 𝑇 ∈ (0, 𝐾1).

In general, there exist an odd number of solutions 𝑆∗1 , . . . , 𝑆
∗
𝑛

such that𝑀2(𝑇, 𝑆
∗
𝑖 ) = 0 for any 𝑇 ∈ (0, 𝐾1), 𝑖 = 1, . . . , 𝑛.

Likewise, by our choice of 𝑁min, 𝑀1(0, 𝑆) > 0 and
𝑀1(𝐾1, 𝑆) < 0 for all values of 𝑆 ∈ (0, 𝐾2). Therefore, for
𝑁 < 𝑁min, there exists a value 𝑇∗ ∈ (0, 𝐾1) such that
𝑀1(𝑇

∗
, 𝑆) = 0 for all 𝑆 ∈ (0, 𝐾2) and, in general, there exist an

odd number of solutions 𝑇∗1 , . . . , 𝑇
∗
𝑚 such that𝑀1(𝑇

∗
𝑗 , 𝑆) = 0

for any 𝑆 ∈ (0, 𝐾2), 𝑗 = 1, . . . , 𝑚.
Thus, we are able to deduce the existence of an equi-

librium point (𝑇∗, 𝑆∗) in (0, 𝐾1) × (0, 𝐾2) for system (28).
Moreover, notice that while (0, 0) is an equilibrium point of
system (28), it is unstable since𝑀1(𝑇, 𝑆) > 0 for 0 ≤ 𝑇 < 𝑇

∗
1 ,

𝑆 ∈ (0, 𝐾2), and𝑀2(𝑇, 𝑆) > 0 for 0 ≤ 𝑆 < 𝑆
∗
1 , 𝑇 ∈ (0, 𝐾1).

In fact, if we denote 𝑇0 = 0 and 𝑆0 = 0, equilibrium points
(𝑇
∗
𝑗 , 𝑆
∗
𝑖 ), 𝑗 = 0, . . . , 𝑚, 𝑖 = 0, . . . , 𝑛, are locally unstable when

𝑖 or 𝑗 is even and locally stable when 𝑖 and 𝑗 are odd.

Remark 4. Note that, in the absence of treatment, 𝑁 = 0 <

𝑁min.Therefore, in the case where the tumor is left untreated,
cancer persists.

We now show that, by increasing the treatment term 𝑁,
we will achieve a globally asymptotically stable cure steady
state. For𝑁 ≥ 𝑁min, let us consider the system

𝑇
󸀠
= 𝑇 (𝐿1 (𝑇, 𝑆) + 𝑟𝛼𝐾1) ,

𝑆
󸀠
= 𝑆𝐿2 (𝑇, 𝑆) .

(29)

Define ℵ𝑆 as the maximum of 𝑅2(𝑆)/𝐺2(𝑁min,𝑆)𝐻2(𝐾1, 𝑆)
and choose 𝑁thr,𝑆 such that 𝐺2(𝑁thr,𝑆) = 𝐺2(𝑁min,𝑆)ℵ𝑆.
Similarly, let ℵ𝑇 be the maximum of (𝑅1(𝑇) + 𝑟𝛼𝐾1)/

𝐺1(𝑁min,𝑇)𝐻1(𝑇,𝐾2) and choose 𝑁thr,𝑇 such that
𝐺1(𝑁thr,𝑇) = 𝐺1(𝑁min,𝑇)ℵ𝑇. Let𝑁cure = max{𝑁thr,𝑇, 𝑁thr,𝑆}.

Proposition 5. For 𝑁 > 𝑁𝑐𝑢𝑟𝑒, (0, 0) is a globally asymptoti-
cally stable equilibrium point of system (29).

Proof. For𝑁 > 𝑁thr,𝑇,

𝐿1 (𝑇, 𝑆) + 𝑟𝛼𝐾1 < 𝑅1 (𝑇) − 𝐺1 (𝑁thr,𝑇)𝐻1 (𝑇, 𝑆)

+ 𝑟𝛼𝐾1

= 𝑅1 (𝑇) − ℵ𝑇𝐺1 (𝑁min,𝑇)𝐻1 (𝑇, 𝑆)

+ 𝑟𝛼𝐾1

= 𝑅1 (𝑇) + 𝑟𝛼𝐾1

−
𝐻1 (𝑇, 𝑆)

𝐻1 (𝑇,𝐾1)
(𝑅1 (𝑇) + 𝑟𝛼𝐾1) ≤ 0

(30)

for 0 ≤ 𝑇 ≤ 𝐾1 since𝐻1 is decreasing based on assumptions
(A2).Thus, 𝐿1(𝑇, 𝑆)+𝑟𝛼𝐾1 < 0 for all (𝑇, 𝑆) ∈ [0, 𝐾1]×[0, 𝐾2].
Similarly, for 𝑁 > 𝑁thr,𝑆, 𝐿2(𝑇, 𝑆) < 0 for all (𝑇, 𝑆) ∈

[0, 𝐾1] × [0, 𝐾2]. Therefore, (0, 0) is the only equilibrium
point for system (29) and (0, 0) is globally asymptotically
stable.

We conclude our analysis by noting that

𝑇
󸀠
= 𝑇(𝐿1 (𝑇, 𝑆) + 𝑟𝛼

𝑆

𝐾2𝐾1

(𝐾1 − 𝑇))

≤ 𝑇 (𝐿1 (𝑇, 𝑆) + 𝑟𝛼𝐾1)

𝑆
󸀠
= 𝑆(𝐿2 (𝑇, 𝑆) − 𝑟𝛼

𝑇

𝐾2

(𝐾1 − 𝑇)) ≤ 𝑆𝐿2 (𝑇, 𝑆)

(31)

for all (𝑇, 𝑆) ∈ [0, 𝐾1] × [0, 𝐾2].

Corollary 6. For𝑁 > 𝑁𝑐𝑢𝑟𝑒, (0, 0) is a globally asymptotically
stable equilibrium solution to system (28).

5. Example

In this section, we present an example to illustrate the
theory presented above. This model is a modification of
the biologically verified system presented in Kronik et al.
[10] to address the CSC Hypothesis as presented in this
paper. Modifications include the incorporation of CSCs and
amending the CTL equation to satisfy assumptions (A3).
Consider the following system:

𝑑𝑇

𝑑𝑡

= 𝑟1𝑇(1 −
𝑇

𝐾1

) + 𝑟𝛼

𝑇

𝐾1

𝑆

𝐾2

(𝐾1 − 𝑇)

− 𝑎𝑇

𝑀I
𝑀I + 𝑒𝑇

(𝑎𝑇,𝛽 +

𝑒𝑇,𝛽 (1 − 𝑎𝑇,𝛽)

𝐹𝛽 + 𝑒𝑇,𝛽

)
𝐶𝑇

ℎ𝑇 + 𝑇
,

𝑑𝑆

𝑑𝑡

= 𝑟2𝑆 (1 −
𝑆

𝐾2

) − 𝑟𝛼

𝑇

𝐾1

𝑆

𝐾2

(𝐾1 − 𝑇)

− 𝑎𝑆

𝑀I
𝑀I + 𝑒𝑆

(𝑎𝑆,𝛽 +

𝑒𝑆,𝛽 (1 − 𝑎𝑆,𝛽)

𝐹𝛽 + 𝑒𝑆,𝛽

)
𝐶𝑆

ℎ𝑆 + 𝑆
,

𝑑𝐶

𝑑𝑡
= −𝜇𝐶𝐶 + 𝑁,

𝑑𝐹𝛽

𝑑𝑡
= 𝑔𝛽 + 𝑎𝛽,𝑇𝑇 + 𝑎𝛽,𝑆𝑆 − 𝜇𝛽𝐹𝛽,
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Table 1: Parameter values.

Parameter Value Units Reference
𝑟1 .001 h−1 Based on data from Burger et al. [19]
𝐾1 10

8 Cell Turner et al. [20]
𝑎𝑇 .12 h−1 Based on data from Arciero et al. [21] and Wick et al. [22]
𝑒𝑇 50 rec⋅cell−1 Based on data from Kageyama et al. [23]
𝑎𝑇,𝛽 .69 None Thomas and Massagué [2]
𝑒𝑇,𝛽 10

4 pg Based on data from Peterson et al. [24]
ℎ𝑇 5 ∗ 10

8 Cell Based on data from Kruse et al. [14]
𝑟2 .1 h−1 Vainstein et al. [8]
𝐾2 10

7 Cell Turner et al. [20]
𝑟𝛼 .006 h−1 Vainstein et al. [8]
𝑎𝑆 .1 ∗ 𝑎𝑇 h−1 Estimated based on data from Prince et al. [11]
𝑒𝑆 𝑒𝑇 rec⋅cell−1 Estimated
𝑎𝑆,𝛽 𝑎𝑇,𝛽 None Estimated
𝑒𝑆,𝛽 𝑒𝑇,𝛽 pg Estimated
ℎ𝑆 ℎ𝑇 Cell Estimated
𝜇𝐶 .007 h−1 Taylor et al. [25]
𝑔𝛽 6.3945 ∗ 10

4 pg⋅h−1 Peterson et al. [24]
𝑎𝛽,𝑇 5.75 ∗ 10

−6 pg⋅cell−1⋅h−1 Peterson et al. [24]
𝑎𝛽,𝑆 𝑎𝛽,𝑇 pg⋅cell−1⋅h−1 Estimated
𝜇𝛽 7 h−1 Coffey Jr. et al. [26]
𝑔𝑀I

1.44 rec⋅cell−1⋅h−1 Based on data from Kageyama et al. [23]
𝑎𝑀I ,𝛾

2.88 rec⋅cell−1⋅h−1 Based on data from Yang et al. [27]
𝑒𝑀I ,𝛾

3.38 ∗ 10
5 pg Based on data from Yang et al. [27]

𝜇𝑀I
.0144 h−1 Milner et al. [28]

𝑎𝑀II ,𝛾
8660 rec⋅cell−1⋅h−1 Based on data from Phillips et al. [29] and Bosshart and Jarrett [30]

𝑒𝑀II ,𝛾
1420 pg Based on data from Phillips et al. [29] and Bosshart and Jarrett [30]

𝑎𝑀II ,𝛽
.012 None Based on data from Suzumura et al. [17]

𝑒𝑀II ,𝛽
10
5 pg Based on data from Suzumura et al. [17]

𝜇𝑀II
.0144 h−1 Based on data from Lazarski et al. [31]

𝑎𝛾,𝐶 1.02 ∗ 10
−4 pg⋅cell−1⋅h−1 Kim et al. [32]

𝜇𝛾 .102 h−1 Turner et al. [33]

𝑑𝐹𝛾

𝑑𝑡
= 𝑎𝛾,𝐶𝐶 − 𝜇𝛾𝐹𝛾,

𝑑𝑀I
𝑑𝑡

= 𝑔𝑀I
+

𝑎𝑀I ,𝛾
𝐹𝛾

𝐹𝛾 + 𝑒𝑀I ,𝛾

− 𝜇𝑀I
𝑀I,

𝑑𝑀II
𝑑𝑡

=

𝑎𝑀II ,𝛾
𝐹𝛾

𝐹𝛾 + 𝑒𝑀II ,𝛾

(

𝑒𝑀II ,𝛽
(1 − 𝑎𝑀II ,𝛽

)

𝐹𝛽 + 𝑒𝑀II ,𝛽

+ 𝑎𝑀II ,𝛽
)

− 𝜇𝑀II
𝑀II

(32)

subject to the initial conditions 𝑇(0) = 70, 𝑆(0) = 30, 𝐶(0) =
250, 𝐹𝛽(0) = 50, 𝐹𝛾(0) = 50,𝑀I(0) = 50, and𝑀II(0) = 50.
Parameter values are given by Table 1; calculations for these
parameter values can be found in [8, 10, 20].

The equilibrium values for 𝐶, 𝐹𝛽, 𝐹𝛾,𝑀I, and𝑀II are

𝐶
∗
=
𝑁

𝜇𝐶

,

𝐹
∗
𝛽 =

𝑔𝛽 + 𝑎𝛽,𝑆𝑆 + 𝑎𝛽,𝑇𝑇

𝜇𝛽

,

𝐹
∗
𝛾 =

𝑎𝛾,𝐶𝐶
∗

𝜇𝛾

,

𝑀
∗
I =

𝑒𝑀I ,𝛾
𝑔𝑀I

+ (𝑎𝑀I ,𝛾
+ 𝑔𝑀I

) 𝐹
∗
𝛾

𝜇𝑀I
(𝑒𝑀I ,𝛾

+ 𝐹∗𝛾 )

,

𝑀
∗
II =

𝑎𝑀II ,𝛾
(𝑒𝑀II ,𝛽

+ 𝑎𝑀II ,𝛽
𝐹
∗
𝛽 ) 𝐹
∗
𝛾

𝜇𝑀II
(𝑒𝑀II ,𝛽

+ 𝐹
∗
𝛽
) (𝑒𝑀II ,𝛾

+ 𝐹∗𝛾 )

.

(33)
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Figure 1:𝑁 = 0.

Following calculations from Section 4.4, we get 𝐺1(𝑁) =
(𝑎𝑇(𝑔𝑀I

+ 𝑎𝑀I ,𝛾
𝐹
∗
𝛾 /(𝐹
∗
𝛾 + 𝑒𝑀I ,𝛾

))/(𝑔𝑀I
+ 𝑎𝑀I ,𝛾

𝐹
∗
𝛾 /(𝐹
∗
𝛾 +

𝑒𝑀I ,𝛾
) + 𝑒𝑇))(𝑁/𝜇𝐶) and 𝐺2(𝑁) = (𝑎𝑆(𝑔𝑀I

+ 𝑎𝑀I ,𝛾
𝐹
∗
𝛾 /(𝐹
∗
𝛾 +

𝑒𝑀I ,𝛾
))/(𝑔𝑀I

+ 𝑎𝑀I ,𝛾
𝐹
∗
𝛾 /(𝐹
∗
𝛾 + 𝑒𝑀I ,𝛾

) + 𝑒𝑆))(𝑁/𝜇𝐶). This gives

𝑁min,𝑇

= 𝐺
−1
1 (

𝑟1

𝑎𝑇,𝛽 + 𝑒𝑇,𝛽 (1 − 𝑎𝑇,𝛽) / (𝑔𝛽/𝜇𝛽 + 𝑒𝑇,𝛽)

)

= 𝐺
−1
1 (.00117) = .00245,

𝑁min,𝑆

= 𝐺
−1
2 (

𝑟2 − 𝑟𝛼𝐾1/4𝐾2

𝑎𝑆,𝛽 + 𝑒𝑆,𝛽 (1 − 𝑎𝑆,𝛽) / (𝑔𝛽/𝜇𝛽 + 𝑒𝑆,𝛽)

)

= 𝐺
−1
2 (.09976) = 2.07889.

(34)

Thus, in the case of no treatment, cancer will persist (see
Figure 1).

When we increase treatment past 𝑁min, we are able to
find initial conditions that will allow a locally stable cure
or recurrence state. This can be seen by adding a treatment
value of𝑁 = 1 and increasing our initial amount of CTLs to
𝐶(0) = 2.5 ∗ 10

10 (see Figure 2).
When wemaximize (𝑅1(𝑇)+𝑟𝛼𝐾1)/𝐺1(𝑁min,𝑇)𝐻1(𝑇,𝐾2)

on the interval [0, 𝐾1], we calculate ℵ𝑇 = 3.60322 ∗ 10
17
.

Similarly, when we maximize 𝑅2(𝑆)/𝐺2(𝑁min,𝑆)𝐻2(𝑇, 𝑆) on
the interval [0, 𝐾2], we calculate ℵ𝑆 = 1.4866 ∗ 10

15
. Since

𝐺1(𝑁min,𝑇) = .00245 and 𝐺2(𝑁min,𝑆) = 2.07889, we have

𝑁thr,𝑇 = 𝐺
−1
1 (.00245 ∗ 3.60322 ∗ 10

17
)

= 3.10199 ∗ 10
14
,

𝑁thr,𝑆 = 𝐺
−1
2 (2.07889 ∗ 1.4866 ∗ 10

15
)

= 1.08783 ∗ 10
15
.

(35)
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Figure 2: A locally stable recurrence state.
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Figure 3: Even with large initial populations of tumor cells 𝑇(0) =
7∗10

5 and CSCs 𝑆(0) = 3∗105, a cure state is rapidly achieved when
𝑁 = 1.08783 ∗ 10

15
.

Taking the maximum of these two values, we find𝑁cure =

1.08783 ∗ 10
15 (see Figure 3).

6. Conclusion

In this paper we extend a previous model for the treatment of
glioblastomamultiformewith immunotherapy by accounting
for the existence of cancer stem cells that can lead to the
recurrence of cancer when not treated to completion. We
prove existence of a coexistence steady state (one where both
tumor and cancer stem cells survive treatment), a recurrence
steady state (one where cancer stem cells survive treatment,
but tumor cells do not; hence, upon discontinuation of
treatment, the tumor would be repopulated by the surviving
cancer stemcells), and a cure state (onewhere both tumor and
cancer stem cells are eradicated by treatment). Furthermore,
we categorize the stability of the previously mentioned steady
states depending on the amount of treatment administered.
Finally, in each case, we establish sufficiency conditions on
the treatment term for the existence of a globally asymptot-
ically stable cure state. It should be noted that the amount
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of treatment necessary to eliminate all cancer stem cells as
well as tumor cells is higher than the amount of treatment
necessary to merely eliminate tumor cells, based on the lower
value of 𝑔𝑆 (see (A2)). These results are an improvement
on previous models that do not account for the existence of
cancer stem cells and therefore yield an artificially low value
of treatment necessary for a cure state.

However, it is important to note that the values of
treatment for which we achieve a globally stable cure state
are sufficient, but not necessary. We make the assumption
that the production of cytotoxic-T-lymphocytes is constant in
order to simplify our analysis (see (A2) and (A3)), leading to
a potentially higher-than-necessary value of treatment (since
the treatment would ordinarily be helped along by the body’s
natural production of CTLs, not relying on the treatment,𝑁,
alone). A natural extension of this work would account for
the body’s natural production of CTLs in the analysis of the
recurrence and coexistence steady states, as well as allowing
the treatment term𝑁 to vary over time.
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