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Interbrain cortical synchronization 
encodes multiple aspects of social 
interactions in monkey pairs
Po-He Tseng1,2, Sankaranarayani Rajangam1,2, Gary Lehew1,2, Mikhail A. Lebedev1,2 &  
Miguel A. L. Nicolelis1,2,3,4,5,6

While it is well known that the primate brain evolved to cope with complex social contingencies, the 
neurophysiological manifestation of social interactions in primates is not well understood. Here, 
concurrent wireless neuronal ensemble recordings from pairs of monkeys were conducted to measure 
interbrain cortical synchronization (ICS) during a whole-body navigation task that involved continuous 
social interaction of two monkeys. One monkey, the passenger, was carried in a robotic wheelchair to 
a food dispenser, while a second monkey, the observer, remained stationary, watching the passenger. 
The two monkeys alternated the passenger and the observer roles. Concurrent neuronal ensemble 
recordings from the monkeys’ motor cortex and the premotor dorsal area revealed episodic occurrence 
of ICS with probability that depended on the wheelchair kinematics, the passenger-observer distance, 
and the passenger-food distance – the social-interaction factors previously described in behavioral 
studies. These results suggest that ICS represents specific aspects of primate social interactions.

Observing the behaviors of others is essential for primates, including humans, to be able to handle the complex 
dynamics of their social groups. Such observations may allow individuals to learn social ranks, recognize threats 
and potential allies, as well as learn new motor skills1,2. Experiments in monkeys have demonstrated that, while an 
animal observes the actions performed by a different subject, frontal and parietal neurons of the observer respond 
as if the observer performed the same action by itself3–14. Such cortical neurons, which represent the actions of 
others, are classically known as “mirror neurons”15.

Studies of mirror neurons have provided insights on how cortical neuronal ensembles mediate social inter-
actions through imitation and motor cooperation16–22. Several of these studies employed interactive tasks where 
monkey pairs cooperated or competed14,23,24. Such experiments usually employed single-unit recordings from 
one of the subjects’ brains, but not large-scale neuronal ensemble recordings obtained simultaneously from both 
brains of the interacting animals. This shortcoming resulted mostly from the major technical challenges involved 
in obtaining concurrent neuronal recordings from multiple subjects. Because of this limitation, the neuronal 
correlates of social interaction among multiple subjects have not been fully investigated in studies dealing with 
mirror neuron activity.

In the present study, we overcame this technical barrier by introducing a new paradigm that allowed mul-
tichannel wireless recording from the brains of a monkey pair engaged in a whole-body navigation task. Using 
this new neurophysiological approach, we asked how cortical activity recorded simultaneously from two mon-
keys could reflect such parameters as the animals’ relative position in space and their closeness to food – crucial 
factors determining primate social interaction25–28. In the whole-body navigation paradigm, pairs of monkeys 
alternatively played one of two distinct roles from day to day: while one monkey, the passenger, was carried 
by a motorized wheelchair, another, the observer, was seated in a stationary chair, watching the passenger’s 
whole-body movement. Both monkeys were motivated to attend to the wheelchair movements because they were 
both rewarded upon the passenger reaching the target: the passenger collected grapes, while the observer received 
juice. Our analysis showed that ICS between the two monkeys reflected the passenger’s whole-body movements 

1Department of Neurobiology, Duke University, Durham, NC, 27710, USA. 2Duke University Center for 
Neuroengineering, Duke University, Durham, NC, 27710, USA. 3Department of Biomedical Engineering, Duke 
University, Durham, NC, 27708, USA. 4Department of Psychology and Neuroscience, Duke University, Durham, 
NC, 27708, USA. 5Department of Neurology, Duke University, Durham, NC, 27710, USA. 6Edmund and Lily Safra 
International Institute of Neurosciences, Natal, 59066060, Brazil. Correspondence and requests for materials should 
be addressed to M.A.L.N. (email: nicoleli@neuro.duke.edu)

Received: 18 October 2017

Accepted: 27 February 2018

Published: xx xx xxxx

OPEN

mailto:nicoleli@neuro.duke.edu


www.nature.com/scientificreports/

2SCiENtifiC RePorTs |  (2018) 8:4699  | DOI:10.1038/s41598-018-22679-x

and spatial location, the distance between the passenger and observer, and the distance between the passenger 
and food reward.

Results
Experiments were conducted in three female monkeys, monkeys C, J and K. Of these, monkey C was the most 
dominant, as judged by the feeding priority in conflict over food29–31, followed by monkey K, and then by mon-
key J (see Methods: Social ranking). Monkeys were chronically implanted with multiple cortical multielec-
trode arrays. A monkey pair participated in each experimental session; monkey pairs C-K and C-J were tested. 
Neuronal ensemble activity was recorded in both monkeys simultaneously, using a 256-channel wireless record-
ing system32,33. In monkey J, we recorded bilaterally from the primary motor cortex (M1), and in monkeys C 
and K, bilaterally from M1 and dorsal premotor cortex (PMd) (Fig. 1A). The number of recorded units ranged, 
depending on the session, 66–68 in monkey J, 70–90 in monkey C (M1, 43–54; PMd, 27–36), and 43–48 in mon-
key K (M1, 30–33; PMd, 43–48).

During the experiments, animals were seated in their monkey chairs and placed inside a 5.0m-by-3.9 m room 
(Fig. 1B). The chair of the monkey, called observer, remained stationary. The chair of the other monkey, called 
passenger, was mounted on an electrically actuated cart that traveled freely in the room. The task consisted of the 
passenger navigating toward a grape dispenser to collect a grape. At the time the passenger obtained the grape, 
the observer also received a juice reward. The grape dispenser was situated in the corner of the room; the observer 
stayed in another corner. The passenger started navigation from a location near the wall opposing the grape 
dispenser and observer. For both monkey pairs (C-K and C-J), the passenger and observer roles were alternated 
among monkeys in different experiments. The wheelchair was moved by a computer program along a randomly 
generated trajectory.

Interbrain cortical synchronization between the passenger and observer.  We observed that 
cortical activity concurrently recorded in both the passenger and observer exhibited episodic ICS, where the 

Figure 1.  Interbrain cortical synchronization (ICS) during the navigation task. (A) Locations of cortical 
implants in three monkeys (C,J, and K). Neuronal-ensemble recordings were conducted in M1 (red dots) and 
PMd (blue dots), in both hemispheres. (B) The experimental setup. Two monkeys (passenger and observer) 
were placed in a 5.0-by-3.9 m room. The passenger sat in an electrically actuated wheelchair. The observer sat 
in a stationary chair placed in the corner of the room. During each trial, the passenger moved from a starting 
location (shown on the left) to a stationary grape dispenser. Five representative routes of the wheelchair 
are plotted in different colors. These routes were randomly generated by a computer program. (C) Color 
plots of neuronal-ensemble activity for two representative trials. Each horizontal line corresponds to a unit. 
Color represents normalized (z-scored) firing rate of 69 units were recorded in monkey C (observer in 
this experiment) and 47 in monkey K (passenger). Episodes of ICS are marked by red horizontal lines. (D) 
Continuous evaluation of ICS for the trials shown in (C). Instantaneous values of the distance correlation were 
computed with a sliding window, of the same 3-s width as the red bars in (C). Correlation peaks are marked by 
arrows. (E) Wheelchair routes for the same trials as in (C) and (D). The routes are color-coded to indicate ICS.
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correlation of neuronal firing patterns between the two monkeys was significantly higher than the one obtained 
for permuted data (i.e., null distribution). While the cause of this ICS was not apparent in individual trials, sta-
tistical analysis of the ICS episodes (see Methods: Episodic ICS) showed that their probability of occurrence 
depended on wheelchair position and velocity, the distances between the passenger and grape dispensers, and the 
distance between the passenger and observer. Figure 1C–E shows two representative trials containing several ICS 
episodes, with correlation coefficients as high as 0.5. ICS episodes constituted 19.7% ± 2.1% (mean ± standard 
error) of the total session time for monkey pair C-K, and 35.7% ± 4.7% for C-J (Supplementary Fig. S1).

To determine the factors influencing such an ICS, we calculated the probability of ICS episodes as a function 
of different parameters of the wheelchair movements: translational and rotational velocity, room coordinates 
of the wheelchair, distance from the wheelchair to the grape dispenser, and distance from the wheelchair to the 
observer (see Methods: ICS probability). We found that ICS probability depended on each of these parameters, 
and was also influenced by monkey pair composition and task roles (passenger vs. observer) assigned to each 
monkey.

Figure 2 illustrates how ICS probability depended on the wheelchair position (Fig. 2A–D) and velocity 
(Fig. 2E,F). When monkey C was paired with monkey K, and C was the passenger, episodes of high ICS became 
more frequent when the distance between the monkeys decreased (Fig. 2A,C, left panels, where the two distri-
butions look like mirrored images as the observer and the reward swapped locations). This relationship reversed 
when monkey C was the observer (Fig. 2A,C, right panels): synchrony episodes occurred less frequently when 
the monkeys were close to each other. For the same monkey pair, the probability of ICS episodes also depended 
on the wheelchair velocity. This dependence also reversed after the monkeys’ roles changed (compare left and 
right panels in Fig. 2E). Similar effects were observed for monkey pair C-J. Wheelchair position, velocity and 

Figure 2.  The dependence of ICS on wheelchair position and velocity, expressed as conditional probability of 
ICS episodes. (A–D) Probability of ICS episodes as a function of room x,y coordinates. The values of probability 
at each pixel are averaged with immediate neighbors and are color coded. The one-dimensional bars below 
each two-dimensional plot show the dependence of probability on the distance between the passenger and food 
reward (top), and between the passenger and the observer (bottom). The results for monkey pair C-K are shown 
in (A,C) and for monkey pair C–J in (B,D). Monkey C was either passenger (panels on the left) or observer 
(panels on the right). In (A,B) the observer was in the right corner of the room (relative to the passenger at 
the starting location), and the grape dispenser was in the left corner. In (C,D), the locations of the observer 
and grape dispenser were swapped. (E,F) Color-coded probability of ICS episodes as a function of wheelchair 
velocity for monkey pairs C–K (E) and C–J (F). Horizontal axis corresponds to rotational velocity, and vertical 
axis corresponds to translational velocity. (See Fig. S4 for the number of samples contributed to each pixel).
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monkey roles influenced the probability of ICS (Fig. 2B,D,F). Notably for this monkey pair, higher levels of ICS 
were frequent when monkey C, as the passenger, was far away from monkey J (Fig. 2D, left), the observer. When 
C approached J, ICS episodes became less frequent. The dependence of ICS on the passenger’s position changed 
dramatically after C became the observer (Fig. 2D, right), as did the dependence of ICS on wheelchair velocity 
(Fig. 2F).

In addition to the effect of the distance between the monkeys, ICS probability was affected by the distance 
between the passenger and the grape dispenser (Fig. 2A–D). These ICS patterns depended on the monkey pair 
composition. For example, in monkey pair C-K, the probability of ICS episodes increased when the passen-
ger (C or K) approached the grape dispenser (Fig. 2A,C; Spearman correlation = −0.28 ± 0.18). Conversely, for 
pair C-J, the ICS decreased when the passenger (C or J) was close to the grape dispenser (Fig. 2B,D; Spearman 
correlation = 0.47 ± 0.17).

While ICS probability clearly depended on where the passenger was positioned relative to the observer and 
the grape dispenser, these neural patterns could also reflect room landmarks, for example, left versus right corner. 
We tested for this possibility by swapping the locations of the grape dispenser and observer on different sessions. 
This manipulation produced a reversal of the ICS patterns (e.g., compare Fig. 2A and C), indicating that room 
landmarks were not as important as the positions of the observer and the grape dispenser.

ICS probability also depended on the wheelchair velocity. In the example of Fig. 2E, the dominant monkey C 
was the passenger and monkey K was the observer. In these settings, ICS probability increased when the wheel-
chair had high rotational velocity. However, when the monkeys’ roles were swapped, the ICS probability did not 
vary with increases of the wheelchair rotational velocity. ICS patterns depended on the wheelchair velocity in the 
monkey pair C-J, as well (Fig. 2F).

Since in the monkey pair C-K we recorded from M1 and PMd in both animals, we could compare the engage-
ment of each of these cortical areas in ICS. For every ICS episode, determined by the analysis for the entire neu-
ronal sample, we measured whether a particular pair of cortical areas exhibited ICS (permutation test, p < 0.05). 
When monkey K was the observer, M1-to-M1 synchronization was found to be most frequent (60.5% ± 1.3% 
of the episodes), followed by M1-to-PMd (51.5% ± 1.0%) and PMd-to-PMd (42.5% ± 1.4%). The same trend 
was found when monkey C was the observer: 53.0% ± 1.3% for M1-to-M1, 47.0% ± 1.0% for M1-to-PMd, and 
43.6% ± 1.4% for PMd-to-PMd.

Neuronal modulation to wheelchair velocity and acceleration.  Having established that ICS 
depended on the passenger’s position and velocity, we examined the relationship between the presence of ICS 
and the modulation of neuronal firing rates to position and velocity, in both the passenger’s and observer’s cortex. 
For that, we first evaluated neuronal modulation patterns to wheelchair kinematics, i.e. velocity and acceleration 
(Fig. 3). This analysis revealed that the passenger had more velocity and acceleration modulated units in both M1 
and PMd (χ2(1) > 9.35, p < 0.05). In the passenger’s PMd, 40.6% and 19.5% units (data from all monkey pairs 
combined) were modulated to velocity and acceleration, respectively, whereas in the observer’s PMd these values 
dropped to 0.8% and 0%. Considering M1, the corresponding values were 43.8% and 15.5% for the passenger 
and 0.5% and 0% for the observer. The dependence of neuronal firing rate on different parameters of naviga-
tion was quantified using modulation depth as a metric (see Methods: Modulation depth). Modulation depth 
for both velocity and acceleration was on average higher in the passenger compared to the observer (ANOVA, 
F(1,1434) > 270.2 for monkey role, p < 0.05; See Table S1, S2 and Methods: ANOVA for modulation depth). 
Additionally, significant differences were found when M1 modulation depth was compared to that of PMd (per-
mutation test, p < 0.05). Monkey pair-dependent effects were found: in monkey C, modulation was stronger 
in PMd than M1 when C was paired with K but weaker when C was paired with J (permutation test, p < 0.05) 
(Table S9).

To assess whether there was any correspondence between the modulation depth values during navigating 
and observing, we calculated the correlation coefficient between the neuronal population features recorded in 
different areas (Fig. S2). We found significant correlations for both M1 (Spearman correlation rho = 0.24–0.64, 
p < 0.05) and PMd (rho = 0.48–0.81, p < 0.05).

The presence or absence of ICS clearly correlated with changes in modulation of neuronal rates to wheel-
chair kinematics (Fig. 3A,B, top vs. bottom). Figure 3A,B shows two representative units. The first was recorded 
in monkey C’s PMd when C was paired with K (Fig. 3A). When monkey C was the passenger, this PMd unit 
was non-directionally modulated to rotational velocity: its firing rate increased for both rightward and leftward 
rotations (see X-axis). Yet, during ICS episodes in which monkey C became the observer, this PMd unit’s veloc-
ity modulation pattern became more prominent since its neuronal firing rate increased for rightward rotations 
and decreased for leftward rotations (Fig. 3A, right, see X-axis). The second example illustrated is an M1 unit 
recorded in monkey J when it was paired with monkey C (Fig. 3B). This M1 unit responded to both translational 
and rotational velocity and its firing increased during the ICS episodes. As before, this M1 unit also changed its 
velocity modulation properties when the monkeys’ roles were reassigned. When monkey J was the passenger, the 
unit increased firing rate in response to wheelchair rightward rotation combined with forward movement. When 
monkey J was the observer, the unit decreased firing rate to this pattern of wheelchair movement.

For the entire neuronal sample, more units were modulated to the wheelchair velocity in the presence of syn-
chrony episodes (39.0% ± 5.0%, data from all monkeys combined) than in their absence (23.9% ± 3.2%) (Fig. 3C, 
left). This difference was statistically significant for all monkey combinations (χ2(1) = 70.1, p < 0.05), and was not 
related to changes in absolute firing rate between the presence and absence of ICS (see Supplementary Materials: 
Controlling firing rate in ICS). The analysis of population-averaged modulation depth also showed a clear main 
effect of the presence of synchronization (ANOVA, F(1,1434) = 7.6, p < 0.05) (Table S1; Fig. 3D, left). Thus, we 
observed both a significantly larger number of modulated units and an increase in modulation depth in the indi-
vidual units during the ICS episodes. Additionally, ANOVA showed the main effect of monkey dominance rank. 
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In this analysis, monkey C had a higher dominance rank than the others. We found weaker neuronal modulations 
in the more dominant monkeys (F(1,1434) = 13.6, p < 0.05), and the modulation depth also depended on the 
monkey pairs (C-K or C-J pair, F(1,1434) = 9.3, p < 0.05). The analysis of neuronal modulations to acceleration 
showed that more units were modulated to acceleration in the presence of ICS episodes (19.3% ± 1.2%; data from 
all monkeys combined) than in their absence (10.3% ± 1.3%) (χ2(1) = 38.8, p < 0.05) (Fig. 3C, right). However, 
population-average modulation depth to wheelchair acceleration did not increase during the synchronous 

Figure 3.  Modulation of passenger’s and observer’s units to wheelchair kinematics. (A) Modulation patterns 
to rotational (horizontal axis) and translational (vertical axis) velocity in a representative PMd unit recorded 
in monkey C. Color represents normalized (z-scored) firing rate. In these experiments, monkey C was paired 
with monkey K, and acted as passenger (left panels) or observer (right panels). ICS episodes were detected, and 
neuronal modulation was assessed separately when these episodes were present (ICS+, top panels) and absent 
(ICS−, bottom panels). (B) Modulation patterns in an M1 unit recorded in monkey J. Monkey J was paired 
with monkey C. Conventions as in (B). (C) Bar plots representing average proportion of units modulated to the 
wheelchair velocity (left panel) and acceleration (right panel) for different monkey pairs, monkeys, and monkey 
roles (passenger or observer). Values are shown separately for the presence and absence of ICS episodes. Error 
bars represent 95% confidence interval obtained by 1,000 bootstrap replicates. (D) Averaged neural modulation 
depth to the wheelchair velocity (left panel) and acceleration (right panel). Conventions as in (C).
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episodes (ANOVA, F(1,1434) = 0.03, p = 0.86), and did not depend on the dominance rank (F(1,1434) = 0.06, 
p = 0.81) or monkey pair (F(1,1434) = 0.39, p = 0.53) (Table S2; Fig. 3D, right).

Spatial modulation.  M1 and PMd units were modulated to wheelchair room position in both the passen-
ger’s and observer’s brains (Fig. 4). The color plots of Fig. 4A,B show two representative PMd units whose firing 
rate changed when the passenger traveled to different room locations. These spatial modulation patterns were 
affected by the presence or absence of ICS episodes and monkey roles. Figure 4A shows a PMd unit recorded in 
monkey C when it was paired with monkey K. The neuronal rate increased with decreasing distance between the 
monkeys when monkey C was the passenger or observer. In both cases, the unit’s firing response to the distance 
between the monkeys increased during the ICS episodes (Fig. 4A, top vs bottom). The second illustrated unit 
was recorded in monkey K’s PMd. This unit’s rate decreased when monkey K was the passenger and approached 
monkey C (Fig. 4B, left). Conversely, the firing rate increased when monkey K approached the grape dispenser. 
The response pattern of the same unit was very different when monkey K was the observer (Fig. 4B, right). In this 
case, the neuronal rate increased when monkey K approached monkey C, but decreased when it approached the 
grape dispenser. For both the passenger and observer roles of monkey K, spatial modulation was stronger during 
the synchrony episodes (Fig. 4B, top vs bottom).

Several analyses were conducted to assess different features of spatially-dependent modulations of neuronal 
rates. We first assessed neuronal rate as a function of room x,y coordinates. Next, we analyzed the dependence of 
firing rate on the distance between the monkeys. Lastly, we analyzed the role of the distance from the passenger 
to grape dispenser. In each analysis, we used the same ANOVA as in the previous section (see Methods: ANOVA 
for modulation depth).

The analysis of modulation to x,y room coordinates showed that more units (χ2(1) = 153.2, p < 0.05) were 
modulated to wheelchair position in the passenger (55.5% ± 6.9%, data from all monkeys combined) com-
pared to the observer (30.9% ± 14.1%) (Fig. 4C; Table S9). Consistent with this result, average spatial modula-
tion depth was higher in the passenger than observer in all cases (ANOVA, F(1,1434) = 88.1, p < 0.05; Methods: 

Figure 4.  Modulation of passenger’s and observer’s units to the wheelchair room coordinates. (A) Modulation 
of a PMd unit recorded in monkey C. Color represents normalized (z-scored) firing rate. In these experiments, 
monkey C was paired with monkey K, and acted as passenger (left panels) or observer (right panels). The 
observer was seated in the left corner (left panels) or right corner (right panels) (relative to the passenger at 
the starting location). Neuronal modulation was assessed separately when ICS episodes were present (ICS+, 
top panels) or absent (ICS−, bottom panels). (B) Modulation of a PMd unit recorded in monkey K. Monkey 
K was paired with monkey C. Conventions as in (A). (C) Bar plots representing average proportion of units 
modulated to wheelchair position for different monkey pairs, monkeys, and monkey roles (passenger or 
observer). Proportions are shown separately for the presence and absence of ICS episodes. Error bars represent 
95% confidence interval obtained by 1,000 bootstrap replicates. (D) Averaged modulation depth. Conventions 
as in (C).
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ANOVA for modulation depth; Table S3). The presence of ICS episodes increased spatial modulation strength 
(F(1,1434) = 31.8, p < 0.05). When expressed as the percentage of spatially modulated units, this effect was sig-
nificant for all monkey pairs (chi χ2(1) = 179.0, p < 0.05): 66.7% ± 2.5% of units (all monkeys combined) were 
significantly modulated to wheelchair location in the presence of ICS episodes and 43.8% ± 5.2% in their absence. 
Additionally, modulation depth was lower for more dominant monkeys (F(1,1434) = 8.6, p < 0.05) (Fig. 4D; 
Table S3).

In terms of the responses to the distance between the monkeys, 47.6% ± 4.3% of units (data from all mon-
keys combined) were modulated in the passenger and 29.5% ± 4.1% in the observer. The difference between 
these proportions was statistically significant (χ2(1) = 102.0, p < 0.05). Modulation strength in the passenger was 
stronger than in the observer (ANOVA, F(1,1434) = 7.2, p < 0.05; Methods: ANOVA for modulation strength) 
(Table S4). The presence of ICS resulted in stronger modulation (F(1,1434) = 11.6, p < 0.05) (Fig. 5A). In addi-
tion, another two ANOVA factors, social rank and role, also showed significant main effects: in a monkey pair, 
stronger modulations occurred in the monkey with a higher dominance rank (F(1,1434) = 12.1, p < 0.05), and in 
the monkey that acted as observer (F(1,1434) = 7.2, p < 0.05) (Table S4). Since it has been shown that mirror neu-
rons are modulated differently to actions occurring in the extrapersonal and peripersonal space4, we conducted 
a separate examination of neuronal activity recorded when the inter-monkey distance was less than 1 m. For this 
distance range, neuronal rates significantly increased during the ICS episodes in both the passenger and observer 
(ANOVA, F = (1,1434) = 358.7, p < 0.05; see Methods: ANOVA for firing rates) (Fig. 5C; Table S5). The rates were 
lower for the dominant monkey in the pair (F = (1,1434) = 7.2, p < 0.05), and units in the observer had higher 
rates compared to the passenger (F = (1,1434) = 43.6, p < 0.05).

Modulation to distance between the passenger and the grape dispenser was found in 52.0% ± 5.4% of the pas-
senger’s units and in a small proportion (5.3% ± 3.4%, χ2(1) = 418.0, p < 0.05) of the observer’s units. Individual 
units were more strongly modulated in the passenger than the observer (ANOVA, F(1,1434) = 270.6, p < 0.05; 
Methods: ANOVA for modulation strength) (Fig. 5B; Table S6). Additionally, modulation strength increased dur-
ing ICS episodes (F(1,1434) = 5.8, p < 0.05) (Fig. 5B; Table S6). For the 1-meter zone around the grape dispenser, 
neuronal rates were higher during the ICS episodes (ANOVA, F(1,1434) = 610.9, p < 0.05; see Methods: ANOVA 
for firing rates) and when the monkey was the subordinate monkey (F(1,1434) = 54.3, p < 0.05) or the observer 
monkey (F(1,1434) = 4.5, p < 0.05) (Fig. 5D; Table S7).

Finally, we analyzed the changes in neuronal spatial modulation after the locations of the observer and grape 
dispenser were swapped. We tested whether the swapping symmetrically reflected the spatial modulation pat-
tern relative to the longitudinal axis of the room. Our analysis showed that a symmetric reflection of the spatial 
modulation patterns occurred only for monkey pair C-K (average flip-index = 0.176 ± 0.018, bootstrapping test, 
p < 0.05; see Methods: flip-index), but not C-J (flip-index = −0.039 ± 0.015, bootstrapping test, p < 0.05). The 
reflection was clearer for units recorded in monkey C, the most dominant monkey, (flip-index of 0.22 ± 0.03) 
than monkey K (flip-index of 0.11 ± 0.03) (bootstrapping test, p < 0.05) (Fig. 5E). The ANOVA for the flip index 
did not show differences in units’ flip-index for cortical area, monkey role, nor the presence of ICS (ANOVA, 
F(1,218) < 1.7, p > 0.19; see Methods: ANOVA for flip-index; Table S8). In monkey pair C-J, the pattern change 
could not be described as a symmetric reflection (flip-index = −0.039 ± 0.015, bootstrapping test, p < 0.05), sug-
gesting that cortical neuronal modulation was affected by the arrangement of the observer and dispenser posi-
tions in room-centered coordinates.

Discussion
In this study, a whole-body navigation/observation task, combined with simultaneous wireless recordings of 
cortical neuronal ensemble activity from pairs of monkeys, was employed to investigate the neuronal correlates 
of spatial social interactions in primates. One monkey (the observer) remained stationary while another mon-
key (the passenger) navigated using a robotic wheelchair. This paradigm allowed us to examine how the social 
interaction between the monkey pair was affected by whole-body movements of either the dominant or the sub-
ordinate animals. Simultaneous recordings of cortical ensemble activity from both the passenger and observer 
revealed that their M1 and PMd units modulated their firing rate in accordance to the roles of the monkey (pas-
senger or observer), as well as the wheelchair position and velocity. Moreover, we found that cortical units located 
in the two monkey brains exhibited episodes of transient synchronized firing. The probability and magnitude of 
such ICS depended on the wheelchair kinematics, the distance between the monkeys, and the distance between 
the passenger and the food reward. Based on these findings, we propose that high ICS defines a fundamental neu-
rophysiological manifestation underlying social interactions in primates, and likely, other animals.

Using concurrent wireless interbrain recordings, we identified the occurrence of episodes of social interaction 
even without considering behavioral measurements of such an interaction. In our approach, ICS was analyzed as 
a stochastic process, where the occurrence of synchronous episodes was described by conditional probability that 
depended on multiple parameters, including wheelchair position and velocity, inter-subject distance, and the dis-
tance between the passenger and food reward. The color maps of the conditional probability of such ICS episodes 
were similar to classical neuronal tuning curves, with the key difference that our metric represented the combined 
activity of multiple brains rather than the activity of an individual brain. Such ICS maps allowed us to assess the 
role of experimentally controlled parameters in social interaction. Evidently, it is possible – and likely - that other 
uncontrolled factors contributed to the ICS observed here. The contribution from factors like eye/head move-
ments, lip smacking, facial expressions, eye contact, other whole-body signals34–37, and auditory responses (e.g., 
caused by subtle noise from the wheelchair motor) will have to be investigated in greater detail in future studies. 
These uncontrolled factors would only have a significant effect on neural activities if both monkeys attended to 
them simultaneously, and joint attention has been proposed as a basic mechanism for social interaction38.
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Mathematically, ICS can be described as an occurrence of specific neuronal firing patterns, like zero-lag syn-
chrony39, in a high-dimensional neuronal space composed of the activity of multiple brains. Here, we only con-
sidered neuronal firing patterns generated jointly by two monkey brains, but in the future, the same analytical 
approach employed in the present study could be expanded to characterize meaningful and effective social inter-
actions, from a systems neurophysiological point of view, that occur in large groups of primates, and likely, in 
other animal species, like rats and mice. Concurrent EEG and brain imaging can also be employed to study the 
same type of ICS in human subjects. In fact, several recent publications employed functional magnetic resonance 
imaging (fMRI) to assess brain processing in human subjects engaged in interactive and social behaviors40–52. The 
term “hyperscanning” was coined for such fMRI studies43. In these studies, participants interacted simultane-
ously or sequentially through interfaces, such as videos43–48,51 and/or audios49,52. For example, one fMRI study49 
found a high level of synchronization between the subjects that viewed the same segment of a popular movie. 
Voxel-to-voxel synchronization was observed in the visual and auditory cortical areas, including primary, sec-
ondary and association areas. Another study investigated neural correlates of verbal communications49. fMRI 
recordings were first conducted in a speaker and then the audio was replayed while fMRI was obtained from a 
listener. Correlation analysis of the obtained brain scans suggested that successful verbal communication requires 
brain-to-brain coupling. Such coupling occurred when the speaker and listener shared the same language, and it 
diminished when the listener was told a story in a foreign language. Similar brain-to-brain coupling was demon-
strated for non-verbal communications in humans, including communication with gestures47 and facial expres-
sions44. Interestingly, examination of the activity of each communicating brain alone failed to elucidate the extent 
of the neural circuitry involved in these interbrain interactions46. Recently, a dyadic imaging approach was devel-
oped53,54, where two participants laying side-by-side were scanned simultaneously in the same MRI scanner. 
Such a setting allowed face-to-face social interaction to be studied. In one study50, brain activity obtained while 
two subjects placed in the same scanner established eye contact was compared with fMRI data obtained while a 
subject visualized pictures of opened/closed eyes of another person. This comparison revealed that establishing 

Figure 5.  Neuronal activity patterns across monkeys and ICS conditions. (A) Bar plots represent average 
modulation depth to the distance between the passenger and observer. Results are presented separately for 
different monkey pairs, monkeys, monkey roles (passenger or observer), and the presence/absence of ICS 
episodes. Error bars represent 95% confidence interval obtained by 1,000 bootstrap replicates. Panels (B–E) 
use the same conventions as in (A). (B) Average modulation depth to the distance between the passenger and 
grape dispenser. (C) Average normalized firing rates for the close (<1 m) distance between the passenger and 
observer. (D) Average normalized firing rates for the close (<1 m) distance between the passenger and grape 
dispenser. (E) Average flip-index for M1 (left) and PMd units (right).
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eye contact with another person generates a very different pattern of brain activation than the one obtained when 
subjects just looked at pictures of human eyes. At this point, it is important to highlight that our study, as far as we 
can tell, is the first to employ concurrent wireless neuronal ensemble recordings in monkey dyads to demonstrate 
that ICS of cortical motor areas can be involved in representing multiple aspects of primate social interactions.

Additional knowledge on brain-to-brain coupling has been provided by brain-machine interface (BMI) stud-
ies where neural activity was simultaneously decoded from the brains of a group of subjects trained to control 
various external devices jointly. The term “Brainet” was recently coined by our laboratory to describe BMI imple-
mentations of this kind55. Historically, such multi-brain systems were first implemented in the 1970s using elec-
troencephalographic (EEG) recordings in humans41,56. These early applications enabled a variety of cooperative 
tasks, including EEG-controlled music performance by multiple subjects56,57 and drawing of Lissajous curves by 
two participants synchronizing their alpha EEG rhythms58. In our lab, intracranial recordings from ensembles of 
monkey cortical neurons were utilized for a similar purpose: pairs or trios of monkeys learned to cooperatively 
control the reaching movements performed by a virtual arm using their combined cortical ensemble activity55.

Several factors contributed to the occurrence of ICS observed in our study. First, wheelchair movements 
triggered episodes of ICS because they simultaneously engaged cortical processing in both monkeys. When 
the wheelchair moved, the passenger’s M1 and PMd units responded to the animal’s whole-body displace-
ment. Conversely, in the observer, equivalent cortical neuronal populations responded as a way to represent the 
passenger’s movements in a mirror fashion. In addition, the distance between the monkeys was an important 
social-interaction factor that affected the probability of the two monkey motor cortices being synchronized.

Furthermore, cortical activity in both monkeys’ brains was related to the expectation of simultaneously 
acquiring rewards, when the passenger monkey reached the region where it could collect grapes and the observer 
received a fruit juice reward. As such, this reward expectation defined another important way in which the mon-
key pairs interacted socially. Consequently, the distance between the passenger and reward was found to be corre-
lated with the probability of ICS episodes. Although previous studies have considered behavioral manifestations 
of similar social-interaction factors, including joint displacement and relative position of group members59,60 
and food seeking and consumption29,61,62, our study is the first to document the occurrence of ICS in at least two 
cortical motor areas, M1 and PMD, as the potential neurophysiological manifestations underlying such social 
interactions. In this context, our present finding extends previous results obtained in individual monkeys that 
showed that M1 and PMd neuronal ensembles also encode reward magnitude and expectation63–65. Here we 
showed that potential rewards are also encoded by ICS. Since responses to reward in the acting monkey likely 
represented dopaminergic inputs to M1 and PMd64, it is reasonable to suggest that similar dopaminergic effects 
could be present in the observer’s brain in our task. Taking this argument further, one could raise the hypothesis 
that dopaminergic effects during the observation of rewarded actions may explain the phenomenon of learning 
by observation66,67. In the context of the present study, ICS could be interpreted as a potential neuronal mani-
festation of social learning and even a mechanism to facilitate knowledge transfer from one subject to the other.

Interestingly, ICS also reflected high-order variables involved in social interactions, such as the composition 
of monkey pairs and their assigned roles in the task. Indeed, the magnitude of the ICS in a monkey pair changed 
when a passenger and an observer flipped their roles. For example, strong ICS was observed when monkey C 
and monkey K were close to each other and C was the passenger. Conversely, this ICS decreased when monkey 
C became the observer. These results could be related to the social hierarchy of the monkeys in our colony. In 
support of this suggestion, it was observed in previous studies that dominant monkeys freely roam in their sur-
rounding space, while submissive monkeys suppress their behaviors in that space to avoid conflict7,62,68,69. In our 
experiment, monkey C’s dominance rank was higher than monkey K and J. This difference in the monkey’s social 
rank could translate into the effects we observed here. Irrespective of the social ranking of our monkey colony, it is 
reasonable to suggest that the one-meter space around the observer could be considered as “the zone of potential 
conflict” for the monkey pairs. This could explain the occurrence of prominent ICS when the passenger entered 
this zone.

Although ICS obviously was not related to direct connectivity between the monkeys’ brains, it is possible that 
the Hebbian rule “fire together, wire together” is a valid metaphor for describing the plastic neurophysiological 
changes resulting from continuous social interaction. Using this analogy, the enhancement of “social connectiv-
ity” between multiple animal brains, instead of synaptic connectivity, may be strengthened or weakened, through 
changes in ICS resulting from social contact. For example, if the passenger’s whole-body movement, associated 
with bursts of activity in the passenger’s M1 and PMd neurons, is consistently coupled with modulations in firing 
rate of the observer’s equivalent neurons, the two monkey brains get “effectively synchronized”, although they are 
not interconnected directly. In real-life situations, such social connectivity is likely to result in causal relation-
ships. For example, cortical activity of a monkey engaged in a behavior would translate into the cortical activity of 
a nearby monkey, and so on, until the repetition of this social interaction could effectively reshape the interbrain 
functional connectivity of an entire social group. Our lab has called the resulting chain of synchronized brains a 
Brainet55. According to our view, the occurrence of strong episodes of ICS would be the major determinant lead-
ing to the creation of such Brainets through animal social interactions occurring in their natural environments. 
In this context, such Brainets could include a large number of individual brains.

Given this new view on how social interactions are represented by the combined activity of multiple brains 
and how ICS could underlie social learning, it would be of interest to compare our findings with the previous 
theoretical framework built around the notion of mirror neurons. Several observations in our study are rem-
iniscent of previous findings related to mirror neuron activity. For example, the observation that a significant 
fraction of M1 and PMd units in the observer’s brain are modulated to the wheelchair’s rotation and translational 
velocity is consistent with the literature on mirror neurons representing observation of actions in premotor4,8,15,16 
and motor6,12 cortical areas. Mirror neurons are described as cortical neurons that respond the same way when 
a subject performs or observes an action. This definition is only marginally applicable to our findings because, 
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generally, a given PMd or M1 neuron had different tuning patterns during the monkey’s navigating or observing. 
Yet, the modulation depth for navigation was correlated with the modulation depth for observation, suggesting 
the existence of typical mirror neuron activity. Additionally, average modulation depth was higher in the pas-
senger than the observer. While it is tempting to attribute this result to a stronger representation of self-motion 
in M1 and PMd, as opposed to motion observation, it is also possible that the observer was not attentive enough 
to the passenger’s movements in our experiments. Indeed, paying attention to the passenger was not required 
by the task. It would be of interest in the future to employ a behavioral task where the observer must attend to 
the passenger to obtain the reward. In one previous study70, monkeys were required to attend to the movements 
performed by a robot, and a significant portion of PMd neurons (~20%) became modulated to spatial attention 
orientation.

The other result that somewhat resembles previous findings on mirror neurons is our demonstration of neu-
ronal tuning to the distance between the passenger and observer. A previous study has already demonstrated 
that the distance between an observer (a monkey) and an actor (a human performing a motor task in front of 
the monkey) influences mirror activity in premotor cortex4. In our experiments, M1 and PMd neurons in both 
the passenger and observer were modulated to the distance between the monkeys, especially when the passen-
ger entered the 1-m zone surrounding the observer. Interestingly, swapping the passenger and observer often 
changed the pattern of this distance tuning, which indicated that the neuronal representation of “someone enter-
ing my space” was different from the representation of “me entering someone’s space”.

Our finding of distance-tuning to reward also bears resemblance to previous reports of mirror-like activity 
related to observation of ingestive actions61,63–65,71–73. Here, we demonstrated that both the passenger’s and observ-
er’s M1 and PMd units were modulated to the distance from the passenger to reward. As in the case of tuning 
to inter-monkey distance, reward-related tuning patterns depended on the monkey pair composition and the 
assigned monkey roles. This finding suggests that monkey dominance ranks, defined by preferential access to 
food and aggression62, played a role in the cortical encoding of reward location.

Despite being generally consistent with the mirror-neuron framework, our findings clearly go beyond this 
classical paradigm by describing, for the first time, a potential neuronal mechanism underlying social interaction 
in the form of episodic ICS involving multiple motor cortical areas. Previously, classic sensorimotor physiology 
described cortical motor control and associated sensory processing as activities confined to distinct cortical areas 
located in a single brain. For example, in an individual animal, cortical motor areas would be involved with the 
planning of an arm movement and then contribute to its execution, while adjusting the movement based on 
sensory feedback. The finding of mirror neurons adds to this view the notion that the same cortical areas that 
control movements also respond to the observation of movements performed by others. These descriptions apply 
to two types of behavior: (1) production of actions, and (2) observation of actions; but do not integrate them. 
Social interaction is a type of behavior where actions are amalgamated with observations. Accordingly, our dis-
covery that social interaction between pairs of monkeys can be represented by widespread ICS merges both action 
and observation as part of a common neurophysiological interactive process, taking place simultaneously in the 
motor cortical areas of multiple primate brains interacting as part of a social group. Therefore, we further propose 
that studying the patterns of such ICS will increase our knowledge of movements that are planned and executed in 
the context of the rich social interactions that characterize the lives of primate and other animal groups, including 
humans. This new view indicates the need to reconsider the role of motor cortical areas to include their involve-
ment in animal social interactions and how the latter influence the moment to moment operation of such cortical 
motor circuits.

Overall, the present demonstration of neural correlates of social interaction in the form of ICS has implica-
tions for future clinical application as well, especially for disorders that include social interaction deficits, such as 
autism spectrum disorders, which may involve difficulties in representing/understanding the actions of others, 
while generating appropriate social behaviors74,75. Previously, these conditions have been linked to disorders of 
the brain mirror system76–79. Our current findings are relevant to this framework and add to it by showing that 
social interactions may be encoded by the episodes of ICS. Accordingly, we suggest that our approach could be 
used as a diagnostic tool for detecting abnormal interbrain activities during human social interactions. In addi-
tion to being a potential biomarker for quantifying the severity of different forms of autism, measurement of ICS 
could be used as a tool for monitoring the effects of autism treatment, like behavior therapy, and also as part of a 
neurofeedback system for improving social motor skills, like in high-performance collective sports.

Methods
All animal procedures were performed in accordance with the National Research Council’s Guide for the Care 
and Use of Laboratory Animals and were approved by the Duke University Institutional Animal Care and Use 
Committee.

Study Design.  Three adult rhesus macaques (monkey C, K, and J) were used in this study. They were chroni-
cally implanted with microwire arrays in multiple cortical areas (monkeys C and K in January 2012, and monkey 
J in January 2017). In monkey K, we recorded from M1 and PMd; in monkey C, from M1 and PMd; and in mon-
key J, from M1. Neuronal spiking activity was recorded using a wireless recording system developed in-house 
that samples from 128 channels simultaneously in each monkey. A pair of monkeys (C and K, or C and J) was 
placed in the experimental room. One monkey (the observer) sat in a stationary chair while the other monkey 
(passenger) sat in the robotic wheelchair that navigated in the room. The room size was 5.0-by-3.9 m. The wheel-
chair navigated in the 3.5-by-2.6 m part of that room. The maximum translational and rotational velocities of 
the wheelchair were 0.3 m/s and 0.5 rad/s, respectively, to ensure the comfort of the passenger. When placed in 
the initial position, the passenger faced the observer in one corner of the room and a food dispenser in another 
corner. The positions of the observer and the food dispenser were swapped in different experiments. After the 
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passenger arrived at the dispenser’s location, the dispenser dropped a piece of fruit (grape, apple, blueberry, or 
carrot) on a plate mounted on a robotic arm, the arm extended towards the observer, and the observer grasped 
the food.

Behavioral task.  The robotic wheelchair carried the passenger from a randomly generated starting position 
toward the food dispenser. The navigation trajectory passed through two randomly generated checkpoints before 
arriving at the food dispenser location. After the passenger retrieved the food, the wheelchair autonomously 
navigated back to a new randomly generated starting position. During the wheelchair navigation toward the 
dispenser, the observer monkey received juice rewards: small drops of juice were delivered every 10–30 s, but 
only if the observer’s head pointed in the direction the room center. A large juice reward was delivered when the 
wheelchair arrived at the food dispenser.

Social ranking.  We assessed the social hierarchy in monkey pair C-K and C-J using a paradigm where they 
competed for food29–31. The two monkeys sat in chairs and faced each other at the distance where they could reach 
for a small piece of fruit (grape, apple, or strawberry) placed on a tray. We conducted 50 trials, where the food was 
placed in between the monkeys, and we counted how often each of the monkeys reached out first. For the pair 
C-K, monkey C and K obtained the fruit 32 and 18 times each (χ2(1) = 7.8, p < 0.05); for monkey pair C-J, mon-
key C and J obtained the fruit 36 and 14 times each (χ2(1) = 19.4, p < 0.05). These results suggested that monkey 
C was the dominant monkey in each pair.

System integration.  The experiment setup included three components: (1) the experiment control sys-
tem, (2) the wheelchair navigation system, and (3) the wireless recording system. The experiment control system 
supervised the sequence of task events. The autonomous wheelchair navigation system controlled the wheelchair 
and reported the position of the wheelchair to the experiment control system. The wireless recording system 
recorded neuronal ensemble activity from two monkey brains simultaneously and sent the spike timestamps to 
the experiment control system. The three systems communicated using a local network.

Experiment Control System.  The experiment control system controlled the task sequence, including starting 
a trial, setting target locations for the wheelchair, determining whether the wheelchair has reached the target, 
delivering food and liquid rewards, and ending a trial. This system received the wheelchair coordinates from the 
wheelchair navigation system at 10 Hz and sent target locations to the wheelchair navigation system. The experi-
mental control system also received multichannel neuronal data from the wireless recording system.

Wheelchair Navigation System.  To move the wheelchair from one location to another, the robust autonomous 
navigation was implemented. The wheelchair was equipped with a Roboteq VDC2450 dual channel motor con-
troller and wheel encoders to provide closed-loop control and odometry. A lidar (RPLidar 360 Laser Scanner by 
Robopeak) was installed at the front side of the wheelchair to sense the distance to its surroundings. The motor 
controller and the lidar were interfaced via a local wired/wireless network with a Raspberry Pi (RP), which com-
municated with the computer that ran the experiment control system.

We used Robotic Operating System (ROS) software to provide the wheelchair functionality, including autono-
mous navigation, obstacle avoidance, simultaneous localization and mapping (SLAM). ROS ran on two comput-
ers: the RP and a dedicated desktop computer for navigation. The two computers communicated through ROS 
topics, on which one computer could publish messages and the other could subscribe. To localize the wheelchair, 
a map of the experiment room (Fig. S3) was first generated by Hector SLAM80 before the very first session, and 
this map was used for all the sessions. Then, combining sensor data published by the RP and wheelchair velocity 
commands published by the navigation computer, a particle filter approach was used to localize the wheelchair 
at 10 Hz. Given the position of the wheelchair and the navigation destinations from the experiment control com-
puter, the navigation computer computed and published the wheelchair velocity commands within the predefined 
ranges (0 to 0.3 m/sec for translations, and −0.5 to 0.5 rad/s for rotations) at 20 Hz (ROS navigation package), 
which the RP subscribed and passed to the motor controller for execution.

Wireless Recording System.  The wireless recording system was built in-house, as described in32,33. In short, it was 
composed of two wireless headstages of 128-channels (one for each monkey), two bridge receivers (one for each 
headstage), and one recording computer. Once spikes were sorted in the recording computer, the 16-point spike 
waveform templates were transmitted to the storage on the headstage. The headstage sampled neural activities 
of each channel at 31,250 Hz, and the headstage performed spike sorting on an FPGA using a template algo-
rithm, where a spike was detected if the absolute distance between the waveform and the template was within a 
user-specified threshold. Detected spike occurrences and channel IDs were wirelessly sent to the bridge receiver 
and then routed to the recording computer through wired ethernet. The recording computer timed the detected 
spikes (temporal resolution was estimated about 5 ms) and stored this information and sent neuronal data to the 
system control computer for further processing, such as online decoding of neural signals.

Data analysis.  We conducted seven sessions with the monkey pair C-K and four sessions with the pair C-J. 
For C-K, each session lasted 99.3 ± 17.3 (mean ± standard deviation) 99.3 minutes and consisted of 80 ± 45 tri-
als. Only the movements of the wheelchair toward the food dispenser (62.8 ± 10.4 minutes) were analyzed; the 
returns to the starting positions were excluded from the analysis. Each trial began when the wheelchair started 
at the starting positions and ended when the wheelchair arrived the target location, where the fruit has not being 
presented to the monkey at the time so that no reaching related activities was included in the analysis. For the 
first three experimental sessions, monkey K was the passenger, and monkey C was the passenger during the next 
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three sessions. On the last, the seventh session, monkey K was the passenger again. The observer remained in the 
same corner of the room for the first five sessions, and then the locations of the observer and grape dispenser were 
swapped. For the C-J pair, the four sessions lasted on average 55.9 minutes (std. 6.4 minutes) and included 48 tri-
als (std. 1.3 trials). The movements of the wheelchair toward the dispenser lasted 31.5 minutes (std. 0.6 minutes). 
Monkey C was the passenger for the first two sessions, then monkey J became the passenger for the next two 
sessions. The observer was located in one room corner for the first and fourth sessions, and the opposite corner 
for the second and third sessions.

Modulation depth.  Modulation depth was calculated based on linear regression. We sampled the variates (e.g., 
wheelchair position) with a 100-ms sampling interval within the interval 500 ms before and after time t and we 
regressed them to the value of neural firing rate at time t. Once the regression model was trained, we computed 
correlation coefficient between the true and the fitted firing rate time series as the uncorrected modulation depth 
(r′).

To test whether a unit was significantly modulated to a variate, we compared ′r  against the modulation depth 
″r  computed from randomly sampled and permuted firing rate series. We performed the permutation test with 

1,000 permutations, and the p-values were corrected by false-discovery rate. We considered a unit significantly 
modulated if the corrected p-value was under 0.05. Note that for each ICS condition, only the firing rate time 
series that belonged to that condition was permuted and tested against.

To compare neuronal modulation under different ICS conditions, the modulation depth r was computed from 
the same length of data across conditions, where the length was the duration of synchronized episodes for the 
whole session. Finally, we computed unbiased modulation depth, = ′ − ″r r mean r( ), r was used as the metric for 
modulation depth in all analyses.

ANOVA for modulation depth.  We assessed the effect of the presence of synchrony episodes (ICS+ vs. ICS−), 
monkey role (passenger vs. observer), social rank (dominant vs. subordinate), and monkey pair (C-K vs. C-J) 
on modulation depth using a mixed-designed four-way ANOVA, where ICS episode was a repeated measure 
obtained from the same unit, while others were non-repeated measures. Modulation depth of each unit was 
treated as the random effect, while all others were fixed effect. Sums of squares of type 3 were employed when the 
data was unbalanced.

ANOVA for firing rates.  ANOVA was designed the same way as that for modulation depth.

ICS metric.  Bias-corrected distance correlation was originally proposed by Székely and Rizzo81 to quantify the 
strength of correlation between two random vectors in arbitrarily high dimensions that do not need to be equal. 
We chose distance correlation over RV coefficient because distance correlation is more sensitive to detect nonlin-
ear dependency82. The distance correlation was computed as =⁎ ⁎

⁎ ⁎R (X, Y)n
V (X, Y)

V (X, X)V (Y, Y)
n

n n
, where ⁎V (X, Y)n  is the 

modified distance covariance between two random vectors ∈X p and ∈Y q. This distance correlation test 
statistic has an asymptotic student t distribution under independence, and thus t-test is used for multivariate 
independence in high dimension. Also, ⁎Rn is always positive if X and Y are correlated.

Brain-to-brain correlation was computed as bias-corrected distance correlation between two random vec-
tors, where each random vector was the neural firing rate (0.1 s time bins) of the population of units from each 
monkey. When analyzing episodic brain-to-brain correlation, the correlation was computed within a 3-s sliding 
window shifted with 0.1 s steps.

Episodic ICS.  To test whether an ICS episode was significant, we first computed interbrain correlation for all 
0.1 s time steps (see ICS metric above). Then, we permuted the spike trains from one monkey and computed the 
correlation again for the permuted data, which resulted in a null distribution of ICS (Fig. S1). Lastly, we tested ICS 
value of each 3 s sliding window against this null distribution to determine whether it is a significant ICS episode 
(t-test with alpha = 0.05 for a right-tail test, and p-value was corrected by false discovery rate).

ICS Probability.  ICS probability was calculated as the conditional probability of the occurrence of an ICS epi-
sode given the wheelchair position or velocity. To compute the ICS probability as a function of room coordinates 
of the wheelchair, the room coordinates were binned into a 0.2 m2 grid, where x spanned from 0.1 m to 3.1 m and 
y spanned from −0.8 m to 1.2 m. The ICS probability was computed for each bin as the count of ICS episodes, 
divided by the total count of the wheelchair entering the bin. Similarly, the passenger-grape distance and the 
passenger-observer distance were both binned from 0.4 m to 4 m with 0.2 m step. To compute the ICS probability 
as a function of the wheelchair kinematics, the rotational velocity was binned from −0.5 to 0.5 rad/s with bin size 
of 0.05 rad/s; the translational velocity was binned from 0 to 0.3 m/s with bin size of 0.05 m/s.

Decoder output correlation.  Correlation between the decoder outputs was computed as the bias-corrected dis-
tance correlation between the decoded velocities decoded for each monkey. This correlation was also computed 
within 3-s sliding window shift with 0.1 s steps.

Flip-index.  Flip-index measured if the neuronal modulation pattern to different room locations symmetrically 
reflected when the locations of the food dispenser and the observer were swapped. We first computed pixel-wise 
Spearman correlation between the spatial modulation patterns being compared. Then, we flipped one of the 
patterns and computed the correlation coefficient again. The flip index of a unit was the difference between these 



www.nature.com/scientificreports/

13SCiENtifiC RePorTs |  (2018) 8:4699  | DOI:10.1038/s41598-018-22679-x

two correlation coefficient values. Note that, because the food dispenser and the observer only swapped locations 
between different sessions, we assumed units of the same ID number from different sessions were the same units 
for this analysis (see Supplementary Fig. S5). Also, the flip index was calculated between sessions where the mon-
keys had the same roles.

ANOVA for flip-index.  Multi-factor ANOVA assessed the effect of the presence of synchrony episodes (ICS+ vs. 
ICS−), monkey role (passenger vs. observer), recorded area (M1 vs. PMd), and social rank (dominant vs. subor-
dinate) on flip-index. We used a mixed-designed four-way ANOVA. We treated synchrony episodes as repeated 
measures from the same units, while the others as non-repeated measures. Flip-index was the only random effect, 
while others were fixed effect. Sums of squares of type 3 were employed when the data was unbalanced.
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