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Involvement of B cells in non-infectious uveitis
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Non-infectious uveitis—or intraocular inflammatory disease—causes substantial visual morbidity and reduced quality of life

amongst affected individuals. To date, research of pathogenic mechanisms has largely been focused on processes involving

T lymphocyte and/or myeloid leukocyte populations. Involvement of B lymphocytes has received relatively little attention. In

contrast, B-cell pathobiology is a major field within general immunological research, and large clinical trials have showed that

treatments targeting B cells are highly effective for multiple systemic inflammatory diseases. B cells, including the terminally

differentiated plasma cell that produces antibody, are found in the human eye in different forms of non-infectious uveitis; in

some cases, these cells outnumber other leukocyte subsets. Recent case reports and small case series suggest that B-cell

blockade may be therapeutic for patients with non-infectious uveitis. As well as secretion of antibody, B cells may promote

intraocular inflammation by presentation of antigen to T cells, production of multiple inflammatory cytokines and support of

T-cell survival. B cells may also perform various immunomodulatory activities within the eye. This translational review

summarizes the evidence for B-cell involvement in non-infectious uveitis, and considers the potential contributions of B cells to

the development and control of the disease. Manipulations of B cells and/or their products are promising new approaches to the

treatment of non-infectious uveitis.
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Autoimmune and autoinflammatory uveitis is a heterogeneous group
of diseases characterized by non-infectious inflammation within the
eye.1 Although uveitis is an uncommon medical condition in the
general community, it is a leading cause of visual disability and loss of
sight,2 and it is associated with a marked reduction in the patient’s
quality of life.3 Conventional immunosuppressive drugs, delivered
systemically or locally, are not universally effective for uveitis, and side
effects further limit their use.4 Today considerable research is focused
on understanding the basic mechanisms of the inflammation and
developing biological approaches that target key pathogenic cells or
molecules.
The involvements of helper T lymphocytes and monocytes or

macrophages in uveitis have been well established in many studies
using experimental models, and through observations made in
patients suffering from immune-mediated uveitis.1,5,6 In contrast,
there has been relatively little investigation of the participation of
B lymphocytes in the disease. However, scattered across the peer-
reviewed literature are reports that implicate B cells in various forms
of experimental and clinical uveitis. In addition, B-cell-targeted
treatments have recently been used effectively in the clinic for some
recalcitrant forms of intraocular inflammation.7–9

This translational review presents the lines of evidence for B-cell
involvement in non-infectious uveitis and provides discussion of the
potential roles of B cells in the pathogenic and regulatory mechanisms
of disease. The review begins with an overview of uveitis, and
summaries of B-cell immunology and unique aspects of ocular

immunology. In the conclusion to the review, recommendations are
made for future directions of study in this field.

HUMAN NON-INFECTIOUS UVEITIS AND THE EXPERIMENTAL

MODELS

Definition and classification of uveitis
Uveitis is a diverse group of inflammatory diseases that involve one
or more of the tissues within the eye. By convention,10 uveitis is
classified anatomically, according to the primary clinical site of the
inflammation: ‘anterior uveitis’ is based in the anterior chamber;
‘posterior uveitis’ is based in the retina or choroid; ‘intermediate
uveitis’ is based in the vitreous (Figure 1). When the severity of
inflammation at two tissue locations cannot be distinguished, these
terms are combined (for example, anterior and intermediate uveitis).
However, when inflammation is present throughout the eye, with no
tissue site predominating, the term ‘panuveitis’ is applied.
Inflammation within the eye may be infectious or non-infectious in

nature.1,11 Often a specific cause is identified, through consideration of
the location of the inflammation, specific ocular signs, clinical course,
and patient demographics and co-morbidities. Many infectious agents,
including viruses, bacteria, fungi and protozoa, are causes of uveitis.
However, infectious uveitis will not be considered further in this
review.
Non-infectious uveitis may be the component of a systemic

inflammatory disease, or it may be isolated to the eye.1,11 The systemic
diseases most often associated with uveitis include: sero-negative
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HLA-B27-positive spondyloarthropathies; juvenile idiopathic arthritis;
sarcoidosis; multiple sclerosis; inflammatory bowel disease; tubuloin-
terstitial nephritis; Behçet disease; and Vogt–Koyanagi–Harada
syndrome. Relatively rare, but recently highlighted as inherited
syndromes that include non-infectious uveitis, are: familial juvenile
systemic granulomatosis and neonatal-onset multisystem inflamma-
tory disease (NOMID).6 Systemic vasculitis seldom co-exists with
uveitis, although it is commonly associated with scleritis, which is an
inflammation of the external scleral coat of the eye.12 Diseases
confined to the eye may have characteristic clinical pictures.
This applies particularly to the ‘white dot’ forms of uveitis, including
entities such as birdshot retinochoroidopathy and serpiginous

choroidopathy, which present with focal inflammation of the retina
and/or choroid.13

Current management of non-infectious uveitis
Non-infectious uveitis is often challenging to manage, requiring drugs
to suppress the abnormal immune response within the eye.4 The first
treatment for most patients is corticosteroid, which may be delivered
to the anterior eye by eye-drop, but requires either injection around
(periocular) or into (intravitreal) the eye, or systemic administration,
for intermediate or posterior uveitis. The side effects of corticosteroid
generally limit the duration of such treatment. Corticosteroid given
systemically has diverse side effects, such as weight gain with

Figure 1 (A) Cartoon of the human eye in cross-section. Anterior uveitis is based in the anterior chamber, which is the space bordered by the cornea, the iris
and the lens, that is filled with aqueous. Posterior uveitis is based in the retina and/or choroid. Intermediate uveitis is based in the vitreous. (B) Clinical
photographs of the right (a) and left (b) anterior eyes of a patient with anterior uveitis. Circular whites spots (keratic precipitates), formed by collections of
leukocytes, are present on the interior surface of the cornea. (C) Clinical photographs taken through the dilated pupil of the right posterior eye in a patient
with posterior uveitis. When uveitis is active (a), there are fluffy white patches of retinal inflammation with hemorrhages, and the view is hazy due to
secondary inflammation in the vitreous. As the uveitis goes into remission (b), the vitreous inflammation resolves, and there is a crisp view of the retina,
which is without whitening or hemorrhages.
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cushingoid features and skin striae, psychiatric disturbances, acceler-
ated cardiovascular disease and bone pathology. Locally delivered
corticosteroid may precipitate or progress opacification of the lens
(cataract) and/or elevate the intraocular pressure, which ultimately
may irreversibly damage the optic nerve (glaucoma).
When extended anti-inflammatory intervention is needed, patients

are prescribed ‘conventional immunosuppressive drugs’.4 Drug classes
include anti-metabolites, which disrupt nucleic acid synthesis (for
example, methotrexate, azathioprine and mycophenolate mofetil), and
calcineurin inhibitors, which reduce proliferation and activation of
immune cells (for example, cyclosporine). These drugs achieve control
of the inflammation within 12 months in just 30–51% of patients, and
to maintain control, many of those individuals require additional
treatment with corticosteroid.14–17

Over the past decade, ‘biologic immunosuppressive drugs’ that
inhibit specific inflammatory mechanisms and that have revolutio-
nized the course of systemic inflammatory diseases, have also been
employed to treat non-infectious uveitis. In particular, antibodies that
target the inflammatory cytokine, tumor necrosis factor (TNF)-α, are
being used with increasing frequency to treat recalcitrant uveitis. The
use of antibody-based TNF blockade in uveitis was discussed in a
recent expert panel review of 400 publications over 15 years.18 In
essence, patients with various forms of non-infectious uveitis who fail
conventional immunosuppressive drugs frequently show response to
this treatment. Challenges include the high cost of the medication,
and the potential for life-threatening side effects, including serious
infections, new autoimmune disease and malignancy, particularly for
uveitis that is confined to the eye. Hypersensitivity reactions and
immune-mediated drug resistance may also complicate TNF blockade.
Multiple other biologic immunosuppressive drugs with a range of
targets (for example, lymphocytes, inflammatory cytokines and
co-stimulation) have been used to treat uveitis, but in relatively small
groups of patients and/or at relatively few centers.4

Burden of uveitis
Uveitis is a cause of substantial visual morbidity that reduces quality
of life and has a high economic cost. The incidence of uveitis is
17–52/100 000 person years in Western nations, and higher in the
developing nations.1 Uveitis causes vision loss in 70% of individuals
who present to a specialist service, with 55% of these persons
experiencing legal blindness; and uveitis begins during the working
years in up to 90% of patients.2 Thus, based on calculations made with
US data, the total annual cost of blindness from uveitis equals that of
blindness from diabetic eye disease, although uveitis is far less
common.1 For one in two patients, conventional immunosuppressive
drugs will not adequately control the disease and/or treatment-limiting
complications will develop.14–17 Quality of life in persons with uveitis
is considerably lower than would be expected, based on level of vision
alone.3

Experimental models of non-infectious uveitis
The most widely used model of non-infectious uveitis is experimental
autoimmune uveoretinitis (EAU), in which a pathological immune
response is directed against one of several retinal photoreceptor-
associated antigens.19 Inflammation is based in the retina, but also
involves the anterior chamber and vitreous. The model may
be induced in many animals, including non-human primates.20

Commonly EAU is induced in the mouse, against interphotoreceptor
retinoid-binding protein (IRBP); this was originally performed as a
primary immunization, requiring adjuvant, but today adoptive transfer

with pathogenic T-cell lines is popular.5 Severity of inflammation and
structural damage may be graded grossly and histologically.
There are many other experimental models of non-infectious

uveitis. Spontaneous uveitis occurs in horses as recurrent equine
uveitis,21 HLA-A29 transgenic mice22 and autoimmune regulator
knockout mice.23 Intraocular inflammation accompanies some
experimental models of systemic inflammation, such as mouse
proteoglycan-induced spondylitis24 and rat experimental autoimmune
encephalomyelitis.25 Uveitis may be produced in rodents that are
challenged with proteins expressed from transgenes within the retina,
and by intraocular injection of inflammatory cytokines or chemokines.
Uveitis also may be induced in rodents by intraocular or systemic
injection of bacterial products, including lipopolysaccharide and
muramyl dipeptide.26

B-CELL IMMUNOLOGY

Development of B cells
B cells coordinate the adaptive immune response, alongside T cells. In
humans, B cells arise in the bone marrow from CD34+ hematopoietic
stem cells that are maintained by several populations of stromal cells.27

Studies in mice implicate CXCL12-producing reticular cells and
osteoblast precursors in this process.28 B-cell precursors pass from
common lymphoid progenitor, through early B cell, pro-B cell and
pre-B-cell stages, as they acquire expression of CD19 and then
assemble the B-cell receptor, which is fully functional in the CD34−

CD10+CD19+IgM+ immature B cell. Immature B cells enter the
circulation and travel to spleen, becoming CD10− mature naive B cells,
which are capable of specific antigen recognition via their B-cell
receptor. Subpopulations of transitional B cells are distinguished in the
human on the basis of cell surface markers and functional responses.29

Autoreactive B cells are identified for negative selection at the
conversions from the pre-B to immature B cell (central tolerance)
and transitional stages (peripheral tolerance).30

Most mature naive B cells recirculate to secondary lymphoid organs,
including lymph nodes, tonsils and mucosa-associated lymphoid
tissue, where they enter lymphoid follicles. Here they interact with
particulate and soluble antigens, presented in immunological synapses
by subcapsular macrophages, dendritic cells and follicular dendritic
cells.31 Chemokines and cholesterol metabolites direct B-cell
movement within the follicle.32,33 CXCR5-expressing mature B cells
are directed into the follicle by the chemokine, CXCL13, which is
expressed on follicular dendritic cells. CXCL13–CXCR5 signaling
also promotes B-cell receptor-mediated B-cell activation.34 After
internalizing and processing the B-cell receptor and antigen, B cells
move to T-cell area under the direction of receptor–ligand interactions
involving oxysterol and Epstein–Barr virus-induced G-protein coupled
receptor 2, and CCR7 and CCL21, to present antigen to follicular
helper T cells and become fully activated.

Differentiation of B cells
After activation, some B cells secrete specific immunoglobulin M
(IgM) as short-lived plasma cells. Other activated B cells move to
germinal centers for clonal expansion, and selective somatic hyper-
mutation and class-switch recombination, which enable production of
high affinity, class switched antibodies.35 These B cells become long-
lived CD19− plasma cells or CD27+CD19+ memory B cells. Shlomchik
and Weisel36 hypothesize that early germinal center reactions generate
memory B cells, and late reactions generate plasmablasts destined
become long-lived plasma cells. Memory B cells reside in lymphoid
and non-lymphoid organs when not in the circulation.37 Long-lived
plasma cells are maintained in the bone marrow. According to mouse
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studies, eosinophils maintain these plasma cells by secreting
proliferation-inducing ligand (APRIL) and interleukin (IL)-6.38

In addition to conventional B cells, also known as follicular or B-2 B
cells, the B lymphocyte population includes innate-like B-1 B cells and
marginal zone B cells. These subsets are well described in the mouse,
but their existence in humans continues to be discussed. B-1 cells,
which develop from common lymphoid progenitors, are characterized
by spontaneous secretion of natural antibodies that have broad
reactivity against microbial and other danger signals. Rothstein39 has
taken a functional approach in building a case for a human B cell with
this capacity, albeit with different cell surface markers and more
specifically directed antibody than characterizes mouse B-1 cells.
Marginal zone B cells develop from transitional B cells and are located
in the marginal zone of the spleen, for early contact with circulating
microbes. Their polyreactive B-cell receptor binds many molecular
patterns and they express Toll-like receptors (TLRs) at high levels.
Cerutti et al.40 argue that human marginal zone B cells are not simply
memory B cells, as suggested by others.

Regulatory B cells
A small proportion of B cells have regulatory activities that include
production of the immunomodulatory cytokine, IL-10. Rosser and
Mauri41 provide a comprehensive summary of present understanding
of these regulatory B cells, which were first described just over 10 years
ago. Regulatory B cells have been equated functionally with regulatory
T cells. They may be generated at different stages of B-cell
development and differentiation, according to microenvironmental
conditions, including activation of TLRs or CD40, or by cytokines.
Originally described in mice, regulatory B cells also exist in the human,
and diverse involvements have been reported. Iwata et al.42 identified
IL-10-producing B cells in newborns and adults, and in a large group
of patients suffering from inflammatory diseases that ranged from
rheumatoid arthritis to multiple sclerosis; some patients had expanded
numbers of these cells. Flores-Borja et al.43 showed that human
CD19+CD24hiCD38hi B cells inhibited differentiation of naive CD4+

T cells into helper subsets, and promoted differentiation of effector
CD4+ T cells into regulatory T cells. These activities were curbed in
patients with rheumatoid arthritis, who had low numbers of regula-
tory B cells in blood, but relatively high numbers of such cells in
inflamed joints.

OCULAR IMMUNOLOGY AND INFLAMMATION

Ocular immune privilege
Detection of Ebola virus inside the eye of a physician who
survived Ebola virus disease recently focused world interest on the
phenomenon of ocular immune privilege.44 Beginning in the 1970s,
Streilein expanded on the experimental work of Medawar, Billingham
and Brent, which had established the concept of the eye as an
immune-privileged site;45 he worked from the principle that ‘immune-
privileged sites allow foreign grafts to survive for extended, often
indefinite intervals’, and identified microanatomical, cellular and
molecular components of ocular immune privilege. This privilege
functions to limit inflammation within the eye, where scarring is likely
to result in blindness and disadvantage to survival. Thus ocular
immune privilege impacts the course of ocular immune responses, and
some systemic immune responses
The blood–ocular barriers are microanatomical barriers that restrict

the movement of leukocytes into the eye.46 The intraocular vascular
bed of the anterior eye is located in the iris; tight junctions between iris
endothelial cells combined with tight junctions between cells of the
posterior iris epithelium and the contiguous non-pigmented ciliary

body epithelium form the ‘blood–aqueous barrier’. In the posterior
eye, an equivalent ‘blood–retinal barrier’ exists as tight junctions
between endothelial cells lining the retinal blood vessels and cells of
the retinal pigment epithelium. The absence of blood vessels and/or
lack of lymphatic drainage of certain ocular surface and intraocular
tissues may also limit leukocytic infiltration. However, the extent of a
lymphatic-based barrier is unclear as new research suggests a more
extensive lymphatic network within the eye than was previously
believed.47

Deviant immune responses occur when foreign antigens are placed
within the eye, in the anterior chamber (anterior chamber-associated
immune deviation), vitreous cavity or subretinal space.48 This
phenomenon has been extensively investigated in the mouse.
Spleen-based interactions between ocular F4/80+ antigen-presenting
cells (believed to be macrophages), B cells and natural killer (NK)
T cells and conventional T cells, promote the development of CD8+

regulatory T cells that suppress systemic immune responses to antigens
previously introduced into the eye.49,50

The eye contains multiple soluble and cell-bound immunomodu-
latory molecules.45 Transforming growth factor (TGF)-β 2 is produced
within the eye in latent form, and is converted to active form in the
presence of inflammatory cytokines.51 This cytokine suppresses
activation of infiltrating lymphocytes and macrophages, and confers
tolerance-promoting properties on antigen-presenting cells. Other
intraocular immunomodulatory cytokines include IL-10, IL-1RA and
macrophage migration inhibitory factor. Various neuropeptides—α-
melanocyte stimulating hormone, vasoactive intestinal peptide,
somatostatin and calcitonin gene-related peptides—also suppress
immune responses in the eye.52 Constitutive expression of Fas ligand
permits the eye to eliminate Fas-bearing infiltrating leukocytes by
apoptosis.53 Other intraocular immunomodulatory molecules include
indoleamine 2,3-dioxygenase, thrombospondin-1 and programmed
death-ligand 1. The eye demonstrates low levels of complement
activity, along with multiple complement regulatory proteins. Binding
of complement C3 fragment iC3b to CR3 on antigen-presenting cells
induces the production of TGF-β2.54

Mechanisms of non-infectious uveitis
Non-infectious uveitis is a result of failed ocular immune privilege. In
human patients and experimental models, the inflammation is
characterized by a mixed intraocular infiltrate of leukocytes.55,56

Studies conducted primarily in mouse EAU indicate a cell-mediated
autoimmune response directed against antigens normally confined to
the retina, which is coordinated by T cells and macrophages. The
obvious human example of autoimmune uveitis is the devastating
disease known as sympathetic ophthalmia, in which an injury to one
eye is followed by explosive panuveitis in both eyes, as sequestered
ocular antigens are suddenly exposed to the systemic immune
system.57

Experimental autoimmune uveoretinitis is controlled by CD4+

helper T cells. Anti-CD4 antibody prevents EAU,58 and inflammation
is transferred passively by a CD4+ T-cell line.59 In different forms of
EAU, the Th17 subset—characterized by synthesis of IL-17A and other
inflammatory cytokines—or the Th1 subset—characterized by
synthesis of interferon (IFN)-γ—direct the inflammation. Antibody
neutralization of IL-17 limits EAU when B10RIII wild-type mice are
immunized with IRBP peptide 161–180 in complete Freund’s
adjuvant; the same blockade has no effect on EAU induced by
infusion of an activated CD4+ Th1 cell line that recognizes the same
peptide.60 These observations suggest that the effector response—Th1
or Th17—depends on the context of antigen presentation.
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Consistently, ligation of different TLRs on dendritic cells induces
different ratios of IL-17:IFN-γ production by co-cultured IRBP-
reactive CD4+ T cells.61 Th1 and Th17 cells may also act together to
induce pathology.62 Research using transgenic B10RIII mice, which
express a T-cell receptor specific to IRBP peptide 161–180 and
spontaneously develop EAU, show that IRBP-specific T cells may be
activated by non-cognate antigen present in intestinal microbiota.63

CD4+FoxP3+ regulatory T cells expand in the eye during the course of
EAU and act to resolve the uveitis.64 Regulatory T cells also occur in
spleens of mice that have recovered from EAU.65

Macrophages are primarily responsible for the tissue destruction
that occurs in EAU. Although the retina contains resident macro-
phages (microglia), newly recruited macrophages effect the destruction
of retina by the production of free radicals. This was elegantly
demonstrated in independent studies using chimeric mice with bone
marrow reconstituted from mice expressing green fluorescent protein
(GFP) in their monocyte population; the majority of cells infiltrating
the photoreceptor layer at the peak of inflammation were GFP+,
implying migration from the blood.66,67 Normal retinal structure is
retained when early infiltration by macrophages is prevented.67,68

As the severity of EAU peaks, retinal-infiltrating macrophages
produce nitric oxide, which is consistent with the M1 macrophage
phenotype.69

Recently there has been widespread recognition that some forms of
non-infectious uveitis are the result of autoinflammation, not
autoimmunity.6 Innate immune cells are triggered when pathogen-
associated or damage-associated molecular patterns interact with
extra- or intra-cellular pattern recognition receptors, activating
inflammasomes, and the IL-1 family of cytokines.70 Clear examples
of autoinflammatory uveitis are provided in two hereditary syndromes
with gain-of-function mutations: familial juvenile systemic granulo-
matosis, caused by mutations in the NOD2 gene; and NOMID,
caused by mutations in the NLRP3 gene. It has been suggested
autoinflammation may also contribute to more common forms of
uveitis (for example, inflammatory bowel disease-associated uveitis
and Behçet uveitis).6 Experimental autoinflammatory uveitis may be
induced by bacterial lipopolysaccharide or the muramyl dipeptide
component of bacterial peptidoglycan.26

B-CELL INVOLVEMENT IN NON-INFECTIOUS UVEITIS

In contrast to the intensive research on the roles of T cells and
monocytes/macrophages in non-infectious uveitis, there has been little
work focused on B-cell involvement in the disease. Most descriptions
of B cells and uveitis come from clinical or translational studies
involving human ocular tissues or cells. This also contrasts with
the situation for T cells and monocytes, for which most work
has been conducted in animal models. The evidence for B-cell

involvement in non-infectious uveitis includes histopathological and
immunocytochemical analyses of intraocular tissues and fluids from
patients with uveitis, as well as reports of the therapeutic impact of
manipulating B cells (Table 1). The relevance of mouse models to
human inflammatory diseases has been actively debated recently.71,72

In relation to B cells in particular, there are substantial differences
in B-cell development, phenotypes of differentiated B cells, and
immunoglobulin and class switching between man and mouse.73–75

Human histopathological and immunocytochemical observations
Removal of ocular fluid from eyes of patients with uveitis is a common
procedure for diagnostic purposes. Measurement of a high ratio of
microbial-specific antibody in ocular fluids versus serum is used
routinely to diagnose infectious uveitis.76 There are many published
reports from different groups that detail the phenotype of leukocytes
in aqueous and/or vitreous of patients with various forms of non-
infectious uveitis.55,77,78 B cells are usually present in this exudate,
although the proportion ranges widely from being the least common
cell to the predominant cell. In contrast to fluid analysis, microscopic
evaluations of eye tissue from patients with uveitis are quite
uncommon. However, examinations of eyes with forms of uveitis
that involve the anterior and/or posterior eye identify B cells in the
infiltrate; in some cases these cells outnumber other leukocytes, as
described below.
Histopathological assessments conducted over 30 years ago of

ocular tissues from four children with uveitis secondary to juvenile
idiopathic arthritis consistently described a plasma cell-rich infiltration
of the iris and, if examined, the ciliary body.79–81 This impression was
recently confirmed by Parikh et al.,82 who performed a comprehensive
immunohistochemical analysis of the whole eye from a boy with
juvenile idiopathic arthritis-associated uveitis; CD20+ B cells and
Ig-expressing plasma cells (primarily IgG, but also IgM and IgA)
vastly outnumbered CD3+ T cells and CD68+ macrophages, leading
the authors to conclude that ‘JIA (juvenile idiopathic arthritis)-
associated nongranulomatous iridocyclitis is a primarily B-cell-
infiltrative process’. Consistent with this observation, vitreous schlie-
ren (optical heterogeneity), detected during ocular surgery in a girl
with juvenile idiopathic arthritis-associated uveitis, was the result of
high vitreous levels of IgG, IgM and IgA.83

In studies dating from the 1980s, tissues from eyes of patients with
various forms of posterior uveitis or panuveitis were examined
microscopically. In separate reports, The Laboratories of Immunology
and Pathology at the National Eye Institute84–86 described immuno-
histochemical findings in diffuse subretinal fibrosis uveitis syndrome
and Vogt–Koyanagi–Harada syndrome. Both diseases were character-
ized by a predominantly lymphocytic infiltration of the retina and
choroid; lymphocytes included CD4+ and CD8+ T cells and CD22+ B

Table 1 The evidence for involvement of B cells in non-infectious uveitis

Observations Studies (reference)

B cells in intraocular leukocytic infiltrate in forms of uveitis including: juvenile idiopathic arthritis-associated uveitis, diffuse subretinal fibrosis uveitis

syndrome, Vogt–Koyanagi–Harada syndrome, multifocal choroiditis and sympathetic ophthalmia

57,79–82,84–88

Schlieren caused by vitreous immunoglobulin in juvenile idiopathic arthritis-associated uveitis 83

Remission of juvenile idiopathic arthritis-associated uveitis coincident with onset of combined variable immunodeficiency 91

Effectiveness of rituximab in forms of uveitis including: juvenile idiopathic arthritis-associated uveitis, Behçet disease, isolated chronic anterior

uveitis, diffuse subretinal fibrosis uveitis syndrome, Vogt–Koyanagi–Harada syndrome, autoimmune lymphocytic hypophysitis-associated uveitis

7–9,95–99

Elevated level of B-cell-activating factor in serum of patients with juvenile idiopathic arthritis when uveitis co-exists 92

Prominence of B cells in leukocytic infiltrate of eyes of non-human primates with experimental autoimmune uveoretinitis 20

B cells and uveitis
JR Smith et al

5

Clinical & Translational Immunology



cells, but B cells clearly predominated in diffuse subretinal fibrosis
uveitis syndrome. B cells, defined on the basis of CD20 expression,
were also the most commonly observed lymphocyte in multiple cases
of multifocal choroiditis.87,88 The authors of a most remarkable
65-year-long clinicopathological evaluation of 105 eyes with
sympathetic ophthalmia reported, ‘Plasma cells are said to be
characteristically absent, but 65.0% of steroid-treated and 85.7% of
cases before the steroid era showed plasma cell infiltration.’57

Results of studies in experimental models
Although the most common laboratory animal for EAU is the mouse,
many other animals are susceptible. Non-human primates develop a
disease that is comparable to forms of posterior uveitis syndromes
seen in humans, characterized by vitritis, retinitis, retinal vasculitis and
chorioretinal lesions.89 Fujino et al.20 described the phenotype of
infiltrating leukocytes in 10 Mucaca mulatta immunized intradermally
with S-antigen emulsified in complete Freund’s adjuvant. At 70 days
after first immunization, the predominant ocular infiltrating cell was
the lymphocyte. For the 7 monkeys that developed clinically apparent
uveitis, the proportions of CD22+ B cells and CD4+ T cells were equal
in 3, while in 4 the number of B cells was higher than the number of
T cells. In a separate publication,90 the same team reported a
contrasting picture in mice. B10.A mice were pre-treated with
cyclophosphamide and immunized in the footpad and then into the
muscle with IRBP in complete Freund's adjuvant, plus Bordetella
pertussis vaccine. As followed at weekly intervals for 10 weeks after first
immunization, EAU was characterized by a macrophage and helper
T-cell-rich infiltration, with only rare B cells. B-cell infiltration is also
not reported to be a prominent feature of other rodent uveitis models,
including lipopolysaccharide-induced uveitis.26

Effect on uveitis of manipulating B cells
A remarkable ‘natural experiment’ supports the key role of B cells in
uveitis.91 A patient with unilateral juvenile idiopathic arthritis-
associated uveitis from the age of 3 years, developed severe complica-
tions of the inflammation and became legally blind in the affected eye
over 14 years despite treatment with conventional systemic immuno-
suppressive drugs. At the age of 17 years, her uveitis—and the
associated joint inflammation—went into remission spontaneously.
However, at the same time, she developed recurrent infections and
leukocytopenias. Ultimately she was diagnosed with intercurrent
common variable immunodeficiency and successfully treated with intra-
venous immunoglobulin. The basic feature of this immunodeficiency
is failure of B-cell differentiation and hypoimmunoglobulinemia.
Resolution of the juvenile idiopathic arthritis-associated uveitis after
development of common variable immunodeficiency was consistent
with significant B-cell involvement in the uveitis. Interestingly, ELISA
(enzyme-linked immunosorbent assay) of serum from patients with

oligoarticular juvenile idiopathic arthritis detects increased levels of the
cytokine, B-cell-activating factor, when uveitis co-exists.92

Additional evidence for the participation of B cells in human uveitis
comes from results of depleting B cells in patients with uveitis using
rituximab. Rituximab is a human–mouse chimeric monoclonal anti-
body that targets the surface antigen, CD20.93 This antigen is first
expressed on B cells when they reach the pre-B-cell stage, and
expression ceases with differentiation to the plasma cell.94 The drug
is typically administered in a 2-infusion cycle every 6 months. Various
mechanisms of B-cell depletion by rituximab have been described,
including antibody-dependent cellular cytotoxicity, complement-
dependent cytoxicity and B-cell apoptosis.
Multiple small clinical studies have described therapeutic benefit of

treatment with rituximab in patients with different forms of uveitis,
including those characterized by B-cell infiltration of the eye. Two
retrospective case series8,9 describe the use of rituximab in a total of 18
children with active juvenile idiopathic arthritis-associated uveitis who
had failed treatment with TNF blockade; 15 children experienced
remission of intraocular inflammation after commencing rituximab,
and 13 of these children were able to cease or reduce the dose of
prednisolone and/or other systemic immunosuppressive drugs. In a
prospective clinical trial involving 20 patients with Behçet disease who
were randomized to treatment with rituximab and methotrexate or
cyclophosphamide and azathioprine, plus prednisolone, the rituximab
and methotrexate group experienced significantly better total adjusted
disease index activity at 6 months.7 Recalcitrant cases of idiopathic
chronic anterior uveitis,95 and posterior uveitis caused by the diffuse
subretinal fibrosis uveitis syndrome96 and Vogt–Koyanagi–Harada
disease97,98 also have been treated effectively with rituximab. An
unusual case of uveitis associated with autoimmune B-cell-rich
lymphocytic hypophysitis entered long-term remission following
treatment with the drug.99

PATHOGENIC AND REGULATORY ROLES FOR B CELLS IN

NON-INFECTIOUS UVEITIS

There are multiple potential mechanisms by which B cells might incite
or perpetuate inflammation within the eye (Table 2). Antibody
production is one unique characteristic of B cells. Antibody may
contribute to inflammation within the eye by activating complement
and/or activating innate immune effector cells that are either resident
within the eye or recruited during the course of inflammation. B cells
may also promote intraocular inflammation by production of
inflammatory cytokines, antigen presentation to T cells—which may
occur locally—and/or support of T-cell survival. These activities are
likely balanced by immunomodulatory mechanisms of ocular immune
privilege. New research provides evidence that B cells themselves may
exert immunomodulatory effects in uveitis, as regulatory B cells or
through effects on transendothelial migration of T cells.

Table 2 Inflammatory and immunomodulatory activities of B cells that may contribute to the development and/or progression of non-infectious

uveitis

Inflammatory activities Processes involving immune complexes

Activation of innate immune effector cells (for example, granulocytes, monocyte/macrophages, mast cells, NK cells)

Antigen presentation to CD4+ T cells by dendritic cells

Complement activation by classical pathway

Antigen presentation to CD4+ T cells

Production of inflammatory cytokines (for example, IFN-γ, IL-17, TNF-α, IL-6)
Promotion of CD8+ T-cell survival and proliferation

Immunomodulatory activities Production of immunomodulatory cytokines (for example, IL-10, IL-35)

Regulation of T-cell migration across vascular endothelium
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Antibody-directed mechanisms
In the 1970s and 1980s, there was healthy debate around whether
antibodies had a direct pathogenic effect in uveitis.100 Elevated levels of
serum antibodies to retinal S-antigen were reported in patients with
various forms of uveitis, but they were also detected in normal
controls and in patients with other eye diseases.101 High doses of
S-antigen produced a histopathological picture of granulocytic and
monocytic infiltration that was consistent with an immune complex
disease.102 However, there were conflicting reports about the ability of
systemic injection of photoreceptor hyperimmune serum to induce
EAU in guinea pigs,100 and as the important role of CD4+ T-cell-
mediated pathology in EAU was recognized,19,59 the field moved away
from this debate. Yet, the relatively recent description of ‘humanized’
EAU in the HLA-DR3 transgenic mice suggests that antibody within
the eye is directly inflammatory: adoptively transferred EAU is more
severe when serum and cells are transferred, in comparison to transfer
of cells alone.103

Following classical immunology teaching, antibody within the eye
might trigger inflammation by activation of effector leukocytes and/or
by activation of complement. These possibilities are discussed below.
However, an additional consideration is direct cell toxicity, as occurs in
the rare retinal degeneration termed autoimmune retinopathy. Auto-
immune retinopathy is characterized by the production of auto-
antibodies directed against photoreceptor antigens, such as recoverin
and α-enolase.104 This may occur as a paraneoplastic syndrome (that is,
cancer-associated retinopathy, melanoma-associated retinopathy and
bilateral diffuse uveal melanocytic proliferation) or an isolated disease.
Retinal degeneration is mediated through antibody-triggered apoptosis
of retinal photoreceptors, with sequential activation of caspase 9 and
caspase 3, in the absence of a primary inflammatory response.105

Antibody complexed with antigen within the eye also might contri-
bute to intraocular inflammation by stimulating effector responses
from Fc receptor-bearing leukocytes. Innate effector mechanisms that
are triggered when immune complexes bind activating Fc receptors
include: mast cell and/or basophil release of vasoactive substances and
chemoattractants; neutrophil release of chemoattractants and cytotoxic
substances; macrophage oxidative burst, cytotoxicity and release of
pro-inflammatory mediators; and antibody-dependent cytotoxicity,
effected primarily by NK cells.106,107 Granulocytes, monocytes and
NK cells that infiltrate the eye in uveitis, along with resident
macrophages and mast cells, could be responsive to immune
complexes. Dendritic cells phagocytose antigen–antibody complexes,
and present processed antigen to T-cell subsets, including CD4+ helper
T cells. Classically this interaction takes place in secondary lymphoid
organs, but it also may occur within the eye, as discussed below.
Immune complexes trigger complement activation via the classical

pathway. Administration of cobra venom, which depletes comple-
ment, reduces the severity of EAU induced in guinea pigs with high
doses of S-antigen.108 Consistently, mice that are genetically deficient
in the complement component, C3, develop significantly less severe
EAU than wild-type control animals.109 Anterior and posterior
segments of the human eye exhibit a low level of complement activity,
and aqueous of patients with uveitis contains activated complement
fragments, C3a, C4a and C5a, at high ratios to total protein, consistent
with intraocular complement activation.110 Thus the potential exists
for intraocular antibody to activate complement and drive inflamma-
tion. Indeed, one rationale for the development of the Fab, ranibizu-
mab, for targeting vascular endothelial growth factor in age-related
macular degeneration, was the possibility that complement-mediated
or cell-dependent cytotoxicity might complicate intravitreal injection
of whole antibody.111 Fortunately, however, clinical inflammation

infrequently complicates the injection of various therapeutic
antibodies into the eye for non-uveitis indications, including macular
degeneration and vitreoretinal lymphoma.112,113

Other pro-inflammatory activities of B cells
It is well established that B cells capture antigen via the B-cell receptor,
internalize and process this complex, and present antigenic peptide in
association with MHC Class II molecule to T cells in secondary
lymphoid organs.31 Clearly this process might contribute to the
pathogenesis of uveitis in patients, with presentation of auto-
antigens to helper T cells. As has been studied extensively in relation
to multiple sclerosis,114 presentation of antigen at the site of
inflammation is also reported in the eye.115 Fluorescence videomicro-
scopy was applied to a mouse model of anterior uveitis: labeled T cells
from transgenic DO11.10 mice were injected intravenously into
BALB/c mice, and the endothelium was activated with lipopolysac-
charide. Eyes injected with ovalbumin saw a significantly higher
percentage of T cells in contact with antigen-presenting cells than
eyes injected with control antigen. In this model, antigen-presenting
cells were defined on the basis of labeled ovalbumin uptake and
believed to be myeloid-derived. However, it is tempting to speculate
the potential for B cells infiltrating the eye in uveitis to also present
antigen locally, thereby perpetuating inflammation.
B cells have the capacity to produce inflammatory cytokines.

Experiments conducted 15 years ago in the mouse demonstrated
conversion of naive B cells to B effector (Be) -1 or -2 cells, with
cytokine profiles characteristic of Th1 or Th2 immune responses,
when co-cultured with Th1 or Th2 helper T cells, respectively.116

Subsequent work has shown human B cells have the capacity to
produce inflammatory cytokines, including IFN-γ, IL-17, TNF-α and
IL-6.117–119 Studies of cytokine levels in ocular fluids and/or cells from
patients with uveitis have identified multiple inflammatory cytokines
within the eye, including each of these cytokines; moreover, compar-
ison of cytokines produced in different forms of uveitis suggests that
particular profiles may be associated with different uveitis subtypes.120

Infiltrating helper T cells and monocytes, and resident macrophages
have been considered the primary sources of inflammatory cytokines
in uveitis.5,56 However, given that B cells have the capacity to
synthesize pro-inflammatory cytokines, it is reasonable to suggest that
B cells also contribute to the inflammatory cytokine milieu present in
an eye with uveitis.
Independent of antigen presentation, B cells interact with activated

CD8+ cytotoxic T cells, in part through engagement of CD27
(expressed by B cells) and CD70 (expressed by T cells), to promote
survival and proliferation of the T-cell subset.121 CD8+ T cells in
blood from patients with uveitis express markers of cytotoxicity,
including CD107a, and demonstrate enhanced target cell lysis
(Hirani S, et al. IOVS 2013;54: ARVO E-Abstract 2026). CD8+

T cells appear to be particularly important in Behçet uveitis, and have
been identified in the aqueous fluid of patients with this disease.122

Immunomodulatory processes
B cells may also have a role in modulating non-infectious uveitis. The
involvement of regulatory B cells in mouse uveitis was demonstrated
convincingly in a series of experiments published by the Egwuagu
Laboratory.123 A population of IL-10-producing regulatory B cells,
including a subpopulation that also produced IL-35, was generated by
exposing splenic B cells to recombinant IL-35. Mice that were
genetically defective in IL-35 signaling did not generate these cells
and developed more severe EAU, and mice treated with regulatory B
cells after induction of EAU experienced substantially less intraocular
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inflammation than mice treated with IL-10− B cells. The work is yet to
be translated to patients with uveitis. However, the group showed that
recombinant human IL-35 substantially expanded the population of
IL-10-producing B cells in isolates of human peripheral B cells.
This population inhibited B cell proliferation induced with phorbol
12-myristate 13-acetate. Thus the authors raised the possibility of
using IL-35 or IL-35-producing regulatory B cells to treat uveitis.
Newly described, peptide inhibitor of transendothelial migration

(PEPITEM) is a B-cell product that regulates memory T-cell migration
across the vascular endothelium during inflammation.124 The peptide
is produced under the control of adiponectin and binds cadherin
15 on the vascular endothelium; binding results in synthesis of
sphingosine-1-phosphate, which in turn binds sphingosine-1-
phosphate receptors on T cells as they interact with the endothelium,
limiting activation of lymphocyte function-associated antigen-1 and
restricting transendothelial migration. This mechanism is compro-
mised in human autoimmune diseases, rheumatoid arthritis and type I
diabetes mellitus. Relevance to uveitis was studied in mouse
lipopolysaccharide-induced uveitis; treatment of mice with PEPITEM
significantly reduced the number of T cells in the intraocular infiltrate.
Clearly immune privilege may impact any inflammatory activities

perpetrated by B cells. The Mochizuki Laboratory125 have considered
this issue, working in the C57BL/6 mouse. In this animal, TGF-β
produced by the retinal pigment epithelium limited B-cell prolifera-
tion and IgG production by B cells, following stimulation with anti-
CD40 antibody, lipopolysaccharide and IL-4. Although the report
concentrated on events occurring within the retina, the published data
indicated that iris pigment epithelial cells and ciliary body pigment
epithelial cells similarly had the capacity to limit B-cell proliferation.

B-cell entry into the eye
In order for B cells to participate in uveitis, they must first migrate
from the circulation into the eye. Leukocytes move from the blood
stream into peripheral tissues through complex molecular interactions
with the local vascular endothelium.126 Tissue-specific combinations
of endothelial adhesion molecules and chemokines mediate steps that
include tethering, rolling, arrest, firm adhesion and diapedesis. Our
group has a long-standing interest in the molecular basis of leukocyte
migration across the human retinal vascular endothelium, as occurs in
non-infectious posterior uveitis. Endothelial cells may be isolated from
human retina dissected from cadaver donor eyes, by a process of
enzymatic digestion and selection on the basis of CD31 expression;
these cells may be expanded by transduction with lentivirus encoding
the human papilloma virus E6/E7 genes.127 We have showed that
human retinal endothelial cells constitutively express an array of
adhesion molecules and chemokines, and the expression of many of
these migration signals is increased by inflammatory stimuli.
Recently we have investigated the signals that are used by human B

cells for transmigration of retinal endothelium (manuscript under
review). We migrated B cell isolates that were prepared from
individual healthy adults through transwells populated with human
retinal endothelial cells. We examined the effect of antibody blockade
of key immunoglobulin superfamily proteins, intercellular adhesion
molecule (ICAM)-1, vascular cell adhesion molecule (VCAM)-1 and
observed a role for ICAM-1, but not VCAM-1, in B cell transen-
dothelial migration for a majority of the adult subjects. The B cells
migrated in significantly higher numbers in the presence of CXCL13,
which is a B-cell-selective chemokine that we have detected in human
retina. In an unrelated study by another group, aqueous fluid collected
from 11 children with juvenile idiopathic arthritis-associated anterior
uveitis was found to contain increased soluble ICAM-1, but not

VCAM-1, in comparison to control fluid collected from children who
did not suffer from uveitis.128 This finding suggests ICAM-1 may also
be involved in B-cell migration across the iris vascular endothelium, as
occurs in anterior uveitis.

CONCLUSIONS

Although basic research in non-infectious uveitis continues to focus
on the involvement of various T cell and myeloid cell populations, it is
clear that B-cell subsets, including plasma cells, participate in the
pathogenesis of this vision-threatening disease. Recent high impact
basic publications have highlighted specific roles for B cells in uveitis,
and should stimulate interest in clarifying other roles for these cells
and their products. For example, re-visiting the question of antibody
involvement in uveitis could be informative. Consideration should be
given to models in experimental animals other than the mouse, given
the apparent lack of major involvement of B cells in mouse EAU.
Studies in animal models will need to be translated to the human
condition. Although human models are necessarily in vitro, it also may
be important to use these in elucidating the roles of B cells in uveitis.
In parallel with new basic science studies, recent clinical case series

support the possibility of targeting B cells for treatment of uveitis.
Treatments that modulate B-cell mechanisms, not B cells directly, will
be worthy of consideration, given the roles of B cells not only in
promoting, but also in modulating, the process. Options might
include targeting B-cell migration into the eye, or augmenting B cell
regulatory activities. Clinical trials in humans will ideally progress past
non-controlled case series to randomized controlled clinical trials. It
may be advisable to initially target specific uveitis syndromes, in which
there is strongest evidence for B-cell involvement, such as juvenile
idiopathic arthritis-associated uveitis or sympathetic ophthalmia. Such
trials will require enrollment across multiple centers, given the low
prevalence of uveitis.
Finally, it is worth noting that research on the involvement of B

cells in uveitis may have implications for research and development in
other ocular diseases. The obvious example is vitreoretinal lymphoma.
This highly malignant tumor is almost always of diffuse large B-cell
type.129 Treatment with intravitreal rituximab, in addition to standard
chemotherapeutic drugs, is gaining popularity, but is not a definitive
cure for the cancer.113 Knowledge of the molecular mechanisms by
which B cells access the eye, and the activities of B cells within the eye,
is likely to be highly informative in developing more effective
treatments for vitreoretinal lymphoma.
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