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ABSTRACT

The ability to detect selection by analyzing mutation
patterns in experimentally derived immunoglobulin
(Ig) sequences is a critical part of many studies.
Such techniques are useful not only for under-
standing the response to pathogens, but also to
determine the role of antigen-driven selection in
autoimmunity, B cell cancers and the diversification
of pre-immune repertoires in certain species.
Despite its importance, quantifying selection in
experimentally derived sequences is fraught with
difficulties. The necessary parameters for statistical
tests (such as the expected frequency of replace-
ment mutations in the absence of selection) are
non-trivial to calculate, and results are not easily
interpretable when analyzing more than a handful
of sequences. We have developed a web server
that implements our previously proposed Focused
binomial test for detecting selection. Several
features are integrated into the web site in order to
facilitate analysis, including V(D)J germline segment
identification with IMGT alignment, batch submis-
sion of sequences and integration of additional test
statistics proposed by other groups. We also imple-
ment a Z-score-based statistic that increases the
power of detecting selection while maintaining spe-
cificity, and further allows for the combined analysis
of sequences from different germlines. The tool is
freely available at http://clip.med.yale.edu/selection.

INTRODUCTION

During the course of an immune response, B cells that
initially bind antigen with low affinity through their im-
munoglobulin (Ig) receptor are modified through cycles of

somatic hypermutation and affinity-dependent selection
to produce high-affinity memory and plasma cells.
This affinity maturation is a critical component of T
cell-dependent adaptive immune responses. It helps
guard against rapidly mutating pathogens and underlies
the basis for many vaccines. Somatic hypermutation is a
process unique to B cells responding to antigen that results
in a mutation rate that is 7–8 orders of magnitude above
normal background, thus introducing about one point
mutation per cell per division in the Ig receptor (1,2).
Understanding the somatic hypermutation process also
has applications far beyond pathogen responses. It has
been found to occur in autoimmune responses, and in
several proto-oncogenes (3). We have also demonstrated
that somatic hypermutation can act genome-wide and thus
represents a risk for genomic instability (4).
The ability to detect selection from mutated Ig se-

quences is a critical part of many studies. Current
methods are based on comparing the observed frequency
of replacement (i.e. non-synonymous) mutations to their
expected frequency under the null hypothesis of no selec-
tion (5–8). Elevated levels indicate positive selection, while
decreased levels indicate negative selection with signifi-
cance determined by a binomial test. It is common to
look for negative selection in the framework regions
(FWRs), which provide the structural backbone of the
receptor, and positive selection in the complementary
determining regions (CDRs), where most contact
residues for antigen binding are found. As the intrinsic
biases of somatic hypermutation can give the appearance
of selection (9), a significant challenge for these methods is
calculating the expected frequency of replacements under
the null hypothesis of no selection. We previously de-
veloped the Focused binomial test for detecting selection
that improved upon existing methods by fully accounting
for microsequence specificity and base substitution bias in
somatic hypermutation (10). The Focused test also
corrects for the decrease in specificity due to cross-talk
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in other methods by using a carefully derived null model
of mutation.
Our web site implementing the Focused test has been

increasingly used by a large number of groups since the
initial publication of the method in 2008 (10). Here, we
present an improved web server that includes many of the
most requested features from users, such as V(D)J
germline segment identification with IMGT alignment
and batch submission of sequences. For comparison, we
also integrate results from the previously proposed Local
binomial (5) and multinomial (7) tests. Note that we have
shown that the multinomial test is mathematically equiva-
lent to a much simpler binomial test, referred to in this
article as the Global binomial test. Along with these
features, we have implemented an improved Z-
score-based statistic that increases sensitivity and allows
for the combined analysis of multiple-independent Ig se-
quences or clones.

METHODS

Preparing and submitting sequences

The input consists of the mutated sequences to be
analyzed along with their associated germlines. In many
cases, the experimental results consist only of the mutated
sequences so the first step in preparing the data is to define
the germline sequence so that individual mutations can be
identified. There are numerous databases, such as IMGT/
GENE-DB (11) and VBASE2 (12), that provide curated
lists of Ig V(D)J germline gene segments. There are also
several online tools that can infer the most likely germline
rearrangements, including: SoDA (13), iHMMune-align
(14) and IMGT/V-QUEST (15). Separate tests are
carried out for detecting selection in the CDR and
FWR. By default, the web server assumes that the se-
quences are aligned to conform with the IMGT unique
numbering system. This allows standard definitions of
CDR and FWR to be used. However, this is not
required and users can choose a custom numbering to
define these regions. All the sequences in a single input
use the same CDR and FWR boundaries. The user may
enter or upload their sequences in FASTA format.
Multiple sequences sharing the same germline can be
grouped together by placing the germline sequence first
followed by the test sequence(s). Multiple groups of se-
quences sharing different germline sequences can also be
placed in a single input file by placing an additional ‘>’ at
the start of the header line in all the germline sequences.
Users also have the option of having the germline se-
quence(s) appear after each set of mutated sequences. To
expedite the steps of germline determination and IMGT
alignment, we provide an option for users to input a set
of mutated Ig sequences without associated germlines.
These sequences are processed using SoDA (13) to
identify the V(D)J germline gene segments and align the
input and germline using IMGT numbering. Users are
given the option to download the resulting FASTA-
formatted alignment as a text file or directly proceed to
the selection analysis.

Analyzing sequences for detecting selection

Calculating the observed number of mutations. By com-
paring the input sequence to its associated germline, our
program identifies the mutations and determines the
number of replacement (R) and silent (S) mutations.
Each mutation is considered independently in its
germline context when determining whether it is an R or
S. R and S mutations that fall into CDR and FWR are
tabulated individually using the boundaries indicated by
the user. A checkbox is provided to indicate that se-
quences are clonally related. In this case, each group of
sequences associated with a germline is analyzed as a
single unit and only unique mutations are used in the
analysis. That is, the same base substitution occurring at
the same position in multiple sequences is counted only
once.

Estimating the expected frequencies of mutations. Having
computed the observed number of mutations, the next
step is to compute the expected number of mutations
under the null hypothesis of no selection. Expectations
are computed independently for each germline sequence
in the input as previously described (10). A significant
advantage of the Focused test over previous methods is
that our null model fully accounts for the effects of
microsequence specificity (16) and also introduces the
well-characterized transition bias of somatic hypermuta-
tion (17,18). Briefly, the expected number of R mutations
in the CDR (RCDR) is the sum of the product of an indi-
vidual point mutation falling in the CDR and the prob-
ability the base substitution results in an R mutation
[Equation (1)]:

�Rregion ¼
X
i

X
b

f ~GL
ðiÞ �MGL½i�!bI ~GL

ði; bÞ ð1Þ

where i is summed over all positions in the region (i.e.
CDR or FWR) and b over all possible nucleotides
({A,C,T,G}). In this equation, ~GL is a vector containing
the nucleic content of each position in the germline

sequence, f ~GL
ðiÞ is the mutability index for position i

in germline ~GL [as explained in (10)], Ma!b is the

relative rate in which nucleotide a mutates to b (while

Ma!a=0) and I ~GL
ði; bÞ is an indicator function that is

1 in cases where a mutation in position i from a to b

results in a replacement mutation and 0 otherwise.

The binomial framework for detecting selection. The Local
binomial, multinomial and Focused binomial tests for
selection all determine whether the observed number of
R mutations (x), in either the CDR or FWR, is signifi-
cantly different than the expected number (RCDRRFWR)
out of n observed mutations. The expected frequency (x/
n) under the null hypothesis of no selection is denoted by
p. For x/n� p (an indication of negative selection), the
significance of the test is calculated as the probability
of observing x or fewer R mutations by adding half the
probability density function (P ) at x to the cumulative
distribution function (F ) at (x� 1). The P-value of
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x/n> p (an indication of positive selection) is one minus
that of negative selection.

PBinom ¼ �ðx� pnÞ � fFðx� 1jn; pÞ þ 0:5 � Pðxjn; pÞg ð2Þ

where Pðxjn; pÞ ¼
�
n
x

�
pxð1� pÞn�x, Fðxjn; pÞ ¼Px

i¼0 Pðxjn; pÞ and �(x) is 1 for x> 0 and 0
elsewhere. Table 1 defines these parameters for each
implemented test.

Using Z-scores to compute P-values. The standard way
of calculating P-value (PBinom) described in the previous
section is conservative in the sense that the resulting spe-
cificity is often greater than the cutoff used to obtain it.
This limits sensitivity and is particularly a problem when
the total number of mutations per sequence is relatively
low (�10), as is common for many Ig data sets, but is
still significant for dozens of mutations. To correct this
problem, we have implemented a Z-score-based method
for computing the P-value. The Z score is defined as
follows: for a random variable xi corresponding to the x
for sequence or clone i as defined in Table 1, the associated
zi score (which is itself a random variable) is defined as:

zi � ðxi � �iÞ=�i ð3Þ

where�i= pini and �i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pið1� piÞni

p
are the mean and

standard deviation of xi, respectively. In order to obtain
a P-value from the zi, we use the normal approximation
and get:

Pz ¼ �ðziÞ � erf zið Þ ð4Þ

where erf is the Gauss error function; the reader is referred
to Figure 1 to see graphically the different P-values defin-
itions [normal approximation and the traditional way
of defining it for a binomial distribution, Equation (2)].
We call this the Focused Z test (Pz) to distinguish it from
the Focused binomial test (PBinom).

Detecting selection in groups of sequences. Our web server
also implements a test for detecting selection in a group of
independent sequences. This can be helpful to improve
sensitivity if the sequences do not exhibit statistically
significant selection when analyzed individually. Previous
tools did not allow for such analysis since grouping
P-values computed by Equation (2) from sequences with
different p’s and n’s cannot be done for a fixed P-value
cutoff in a simple way. However, this can be done using
the Z-score approach, through the application of

Stouffer’s Z-score method (19), which has proven to be
superior to alternatives (20). The resulting P value tests
whether the collection of observed mutations came from
binomial distributions with associated probabilities pi.
To analyze G-independent sequences, Z is defined as the
mean of the previously computed Z-scores zi, i2 1 . . .G
from Equation (3). Since the xi’s in this equation are
independent, the expected mean and variance of Z are 0
and 1

G, respectively. Using the normal approximation once
again, the resulting P value for detecting selection is:

PZ;G ¼ �ðZ Þ � erf
ffiffiffiffi
G
p

Z
� �

ð5Þ

By default, this test is applied to compute P values for
each group of sequences associated with a single
germline, as well as for the set of all sequences provided
in the input. In order to compare with the original
Focused binomial test, a checkbox allows the use of
PBinom for individual sequences. If the user indicates that
sequences are clonally related then the set of clones is
analyzed as a group (in which case, G will be the
number of germlines provided in the input).

PERFORMANCE RESULTS

We have previously shown, using a simulation-based val-
idation strategy, that the Focused binomial test provides
the best trade-off between sensitivity and specificity
compared with other available methods (10).
Furthermore, we found that the Focused binomial test is
able to detect selection in experimentally derived Ig se-
quences that have undergone affinity maturation, while
maintaining good specificity on non-functional Ig se-
quences where selection is not a force (10). An independ-
ent study has corroborated these findings (21). As
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Figure 1. Graphic representation of the calculation for PBinom, the
binomial-based test (projected upwards) and, PZ, the Z-score based
test (projected downwards). The binomial distribution depicted by the
bars corresponds to x=11, n=20 and p=0.389 (typical parameters
from the simulations presented in Figures 2 and 3). PBinom [Equation
(2)] is the sum of the yellow bars, while PZ is calculated by
approximating the binomial distribution with a normal distribution
with the same mean (dotted line) and variance (1 SD interval around
the mean is shaded in darker gray) and taking the integral (area under
the curve) from x=11 to 1 (shaded red).

Table 1. Definition of x, n and p for each of the implemented tests

to detect selection in the CDR

Test x n p

Focused RCDR RCDR+SCDR+SFWR

�RCDR

�RCDRþ �SCDRþ �SFWR

Local RCDR RCDR+SCDR

�RCDR

�RCDRþ �SCDR

Global RCDR RCDR+SCDR+RFWR+SFWR

�RCDR

�RCDRþ �SCDRþ �RFWRþ �SFWR

Equivalent tests for detecting selection in the FWR are obtained by
swapping CDR and FWR in the definitions.
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described below, we use a simulation-based validation
strategy to evaluate the performance characteristics of
our updated Z-score-based methods.

Simulation of somatic hypermutation and selection

Simulation enables us to produce synthetic sequence data
with a prescribed number of somatic mutations subject
to varying amounts of positive and/or negative selection
pressures. The simulation is initiated with a single IMGT
formatted Ig V germline sequence. Mutations are
introduced one-by-one along the entire length of the
sequence (excluding gaps) in two steps. First, the
position is chosen stochastically based on the micro-
sequence specificity of each nucleotide. Second, the par-
ticular substitution is determined accounting for transition
bias. Selection (x) is implemented separately in the CDR
and FWR as uniformly increasing or decreasing by a log
factor the expected probability of the expected frequency
of R mutations in each region:

�region � log
�region

1� �region

� �. pregion
1� pregion

� �	 

ð6Þ

where pregion is the expected frequency of R mutations
defined by the Local test (Table 1) and pregion is the
actual probability applied to the simulated sequences in
the region of interest (i.e. CDR or FWR). For example,
xCDR values of �1, 0 and 1 yield synthetic data with
negative, neutral and positive selection in the CDR,
respectively.

Using Z-scores improves sensitivity

To evaluate performance, a synthetic data set of mutated
sequences was generated. This data set included 10 000
sequences with strong positive selection in the CDR
(xCDR=1), and 10 000 sequences with neutral selection
in the CDR (xCDR=0), allowing us to evaluate sensitivity
and specificity, respectively. All sequences included strong
negative selection in the FWR (xFWR=�1). Each simu-
lation starts with the IgHV7–3 germline sequence and
introduces between 5 and 35 mutations per sequence, sto-
chastically determined to reflect the numbers seen in ex-
perimental data. Results starting with other germline
segments are similar. Plotting the fraction of sequences
predicted as being positively selected for varying alpha
cut-off values in the first data set against the second
produces a receiver operating characteristic (ROC)
curve. The ROC curves (Figure 2) for both the Focused
binomial test (yellow) and the Focused Z test (red) are
comparable, confirming the validity of the Z-score-based
method. However, the position on the ROC curve where
the a cutoff is 0.05 for the Focused binomial test (yellow
X) falls short of the expected 1� specificity of 0.05,
indicated by the dashed line. Applying the Z-score-based
method corrects for this discrepancy leading to an im-
provement in sensitivity of �10%, as shown by the red
X marking the same position on the ROC curve for the
Focused Z test. The accuracy of the Focused Z test at
a=0.05 is 0.72 while it is 0.68 for the Focused binomial
test. Along with the Focused test, a checkbox on our web

site also allows users to include results from the Local and
Global (also known as the multinomial) tests (Table 1).
However, it is important to note that these tests, as ori-
ginally proposed, did not fully include for microsequence
specificity or substitution biases when computing the
expected frequencies of mutations, whereas our imple-
mentation accounts for these intrinsic biases. In
addition, P-values for all the approaches are calculated
using the Z-score-based method. Only results from the
Focused test are output by default since this method
exhibits better sensitivity than the Local test.
Furthermore, we strongly caution against using the
Global test because it fails to maintain the defined
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Figure 2. ROC curves comparing PBinom and PZ on simulated data.
Sensitivity is based on detecting selection in simulated sequences with
xCDR=1 and xFWR=�1. Specificity is based on detecting selection in
simulated sequences with xCDR=0 and xFWR=�1. The dotted line
indicates the expected specificity at a=0.05. The position of this
cutoff on the PBinom and PZ curves is indicated by yellow and red
Xs, respectively. The inset shows the ROC curves from PZ,G calculated
for independent sequences grouped into sizes (G) of: 1,2,4 and 8.
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Figure 3. PZ ROC curves comparing Focused (red triangle), Local
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that corresponds to the a=0.05 cutoff. The sensitivity and specificity
are computed on the same simulated data set from Figure 2.
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specificity [Figure 3 and (10)], but nevertheless make its
output available for comparative studies.

Grouping independent sequences improves senstivity

To see how analyzing sequences as a group would effect
performance, we randomly sample 10 000 groups of G
sequences and compute the PZ,G for each group. This is
representative of testing for selection acting collectively on
groups of independent Ig sequences. Using these sets of
grouped sequences, we produced the ROC curves shown
in Figure 2 (inset). It is evident that combining even small
numbers of independent sequences can dramatically
increase sensitivity without compromising specificity.

IMPLEMENTATION

The web interface makes use of PHP, JavaScript, CSS and
AJAX technologies. All the statistics are computed in the
back-end using R version 2.9.0 (22). The web site may be
accessed using any modern web browser, such as Mozilla
Firefox, Google Chrome, Safari and Internet Explorer.

DISCUSSION

The ability to analyze mutation patterns in Ig sequences
and detect antigen-driven selection is critical to under-
standing adaptive immunity. We have presented a web
site that makes available our previously published
Focused test, along with the Local and Global tests
based on statistics proposed by other groups (5–7).
Consistent with previous results from our own group

and others (10,21), a simulation-based validation found
that the Focused test exhibited the best performance.
The web site offers an integrated pipeline where users
can carry out V(D)J identification with IMGT alignment
using SoDA (13), quantify the mutational load in their
sequences and analyze the mutations for evidence of
positive and/or negative selection (Figure 4). The ability
to carry out batch processing and analyze related se-
quences as a single group will be critical to gain insights
from large-scale data sets generated by emerging tech-
niques such as expression cloning (23) and deep
sequencing of B cell repertoires (24).
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