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Abstract

Introduction

Macrophage migration inhibitory factor (MIF) is an inflammatory cytokine associated with

acute and chronic inflammatory disorders and corticosteroid insensitivity. Its expression in

the airways of patients with chronic obstructive pulmonary disease (COPD), a relatively ste-

roid insensitive inflammatory disease is unclear, however.

Methods

Sputum, bronchoalveolar lavage (BAL) macrophages and serum were obtained from non-

smokers, smokers and COPD patients. To mimic oxidative stress-induced COPD, mice

were exposed to ozone for six-weeks and treated with ISO-1, a MIF inhibitor, and/or dexa-

methasone before each exposure. BAL fluid and lung tissue were collected after the final

exposure. Airway hyperresponsiveness (AHR) and lung function were measured using

whole body plethysmography. HIF-1α binding to theMif promoter was determined by Chro-

matin Immunoprecipitation assays.

Results

MIF levels in sputum and BAL macrophages from COPD patients were higher than those

from non-smokers, with healthy smokers having intermediate levels. MIF expression corre-

lated with that of HIF-1α in all patients groups and in ozone-exposed mice. BAL cell counts,

cytokine mRNA and protein expression in lungs and BAL, including MIF, were elevated in
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ozone-exposed mice and had increased AHR. Dexamethasone had no effect on these

parameters in the mouse but ISO-1 attenuated cell recruitment, cytokine release and AHR.

Conclusion

MIF and HIF-1α levels are elevated in COPD BAL macrophages and inhibition of MIF func-

tion blocks corticosteroid-insensitive lung inflammation and AHR. Inhibition of MIF may pro-

vide a novel anti-inflammatory approach in COPD.

Introduction
Macrophage migration inhibitory factor (MIF) is an inflammatory cytokine originally
described as a T-cell mediated factor that suppressed the migration of macrophages and subse-
quently as a factor regulating macrophage host-defence functions [1, 2]. Increased expression
and secretion of MIF has been reported in several acute and chronic inflammatory diseases
such as sepsis [3], arthritis [4], asthma [5, 6] and lung cancer patients with COPD [7]. MIF is
produced by a variety of inflammatory and immune cells and its expression is regulated by sev-
eral different stimuli; however, its precise mechanism of action is still unclear [1, 2].

Chronic obstructive pulmonary disease (COPD) is characterised by airflow limitation and
tissue destruction as exemplified by the presence of emphysema [8]. No murine model can
recapitulate all the hallmark features of COPD but ozone-exposure and cigarette smoke-expo-
sure can model aspects of COPD. Six-week ozone exposure of mice resulted in a COPD-like
phenotype similar to that seen with more chronic 6 to 8 month cigarette smoke exposure. This
was associated with emphysema-like enlargement of the alveolar spaces, chronic lung inflamma-
tion and enhanced levels of pro-inflammatory cytokines [9]. The inflammatory effects in the cig-
arette smoke-induced COPDmodel can vary with exposure time and COPD-like features,
however the rapid intense 8–12 week model exhibits major characteristics of COPD including
reduced lung function and emphysema-like lesions [10]. These models are also corticosteroid
(CS)-insensitive, a main aspect of COPD and a critical issue with disease control [9, 10].

Under normoxic conditions, the continuous expression of the transcription factor, hypoxia
inducible factor-1α (HIF-1α) is balanced by its degradation through the actions of prolyl-
hydroxylases (PHD). However under hypoxic conditions, PHDs are inhibited and degradation
reduced. This leads to HIF-1α stabilisation and subsequent nuclear translocation and tran-
scription of target genes such as vascular endothelial growth factor (VEGF) [11, 12].

We hypothesised that MIF is involved in maintaining the chronic inflammatory process of
COPD. We therefore investigated the role of MIF in the inflammation and pathophysiology of
COPD by measuring MIF in patients with COPD and by studying the effect of a MIF inhibitor,
(S,R)3-(4-hydroxyphenyl)-4,5-dihydro-5-isoxazole acetic acid methyl ester (ISO-1), in our
chronic ozone-exposed mouse model of COPD. ISO-1 inhibits MIF tautomerase activity in a
concentration-dependent manner with an IC50 of ~7μm [13], and has been previously shown to
prevent airway hyperresponsiveness (AHR) in mouse ovalbumin (OVA)-challenge models [14].

Our study demonstrated enhanced MIF expression in the sputum and BAL macrophages of
patients with COPD compared with control subjects. MIF expression correlated with that of
HIF-1α in patients and in an animal model of COPD and in mouse lung HIF-1α binding to the
Mif promoter was associated with enhanced MIF expression. ISO-1 attenuated ozone-induced
cell recruitment, cytokine release and AHR in the mouse but did not affect measures of emphy-
sema. These data suggest that MIF may drive COPD inflammation but not emphysema but
clinical trials using anti-MIF approaches are needed to confirm this.

MIF in COPD
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Materials and Methods

COPD Subjects
Aged matched groups of non-smokers (NS) and smokers (S) with normal lung function and
COPD patients (GOLD stage II) were recruited. St Mary’s Hospital Local Ethics Committee
approved the study (07\H0712\138). All subjects were aged 40–75 years; had no history of
asthma or allergic rhinitis and were not atopic on skin testing; had no current or previous his-
tory of bronchiectasis, carcinoma of the bronchus or other significant respiratory disease
(other than COPD); an absence of significant systemic disease; no COPD exacerbation or
respiratory tract infection within the previous eight weeks; had a serum antibody titre to rhino-
virus 16<1.2 at screening and had not been treated with antibiotics, oral, inhaled or nasal topi-
cal steroids, long-acting β-agonists or tiotropium in the previous three months. COPD patients
had an FEV1 50–79% predicted normal value and β2-agonist reversibility<12%; an FEV1/FVC
ratio<70% and were current or ex-smokers with at least 20 pack years cumulative smoking.
Smokers had an FEV1�80% predicted normal value, FEV1/FVC ratio>70% and were current
or ex-smokers with at least 20 pack years cumulative smoking. In contrast, non-smokers had
an FEV1 �80% predicted normal value, FEV1/FVC ratio>70%.

All subjects gave written informed consent and none were using inhaled or oral CSs. Sub-
jects were recruited to an experimental rhinovirus (RV) infection study and the samples used
were those collected at baseline prior to inoculation [15, 16]; all subjects were free of respiratory
infection for 8 weeks prior to the study Sputum was induced [15] and cytokines measured by
ELISA in sputum supernatant. Due to limited sample quantity not all patient samples were
assessed (11 NS, 8 S and 12 COPD patients). Bronchoalveolar lavage (BAL) was performed by
fibreoptic bronchoscopy; macrophages were isolated from BAL [16] and whole cell proteins
were extracted and MIF was measured by ELISA (13 NS, 12 S and 12 COPD patients)
(Table 1).

In a separate cohort, aged-matched non-smokers and smokers with normal lung function
and COPD subjects (GOLD stage I-III) were recruited. Cytokines in serum were measured by
ELISA. The Royal Brompton and Harefield Hospital Trust Ethics Committee approved the
study (09\H0801\85) and all subjects gave written informed consent. No subjects were using
inhaled or oral CSs (Table 2).

Mice models of cigarette and ozone exposure
The cigarette smoke model was performed at The University of Newcastle (Australia); the
institution animal ethics committee approved all experiments. Female BALB/c mice were

Table 1. Sputum and BAL participant details. FEV1: Forced expiratory volume in one second; FVC: forced vital capacity.

Non-smokers Smokers COPD

n 13 12 12

Gender (male/female) 6/7 7/5 8/4

Pack years 0 32(21–51)** 39(25–57)***

Age (years) 59(46–71) 54(41–66) 59(44–72)

FEV1 (%predicted) 106±4 99±3* 65±2***

FEV1/FVC (%) BAL cell count 79±1 1.98±0.04 77±2 2.44±0.15 58±2***2.28±0.18*

* p<0.05

** p<0.01

*** p<0.001 compared to healthy control, data expressed as median and percentiles or mean±SEM.

doi:10.1371/journal.pone.0146102.t001

MIF in COPD
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exposed to cigarette smoke for 75 minutes, twice a day, 5 times week for 6, 8 or 12 weeks using
custom-designed, purpose-built nose-only, directed-flow inhalation and smoke exposure sys-
tems [10, 17]. Control groups were exposed to ambient air.

Ozone experiments were approved and performed under a British Home Office, UK Project
License 70/7581 and approved by the Imperial College London institution animal ethics com-
mittee. Male C57BL/6 mice (Harlan, UK) were exposed to 3ppm of ozone generated from an
ozoniser (model 500 Ozoniser, Sander, Germany) for 3 hours, twice a week for 6 weeks [18].
Control groups were exposed to ambient air.

ISO-1 and dexamethasone treatments
ISO-1 (20mg/kg in 5% DMSO, Calbiochem, UK) and/or dexamethasone (2mg/kg, Sigma, UK)
were given 1 hour (i.p.) before each ozone exposure. Air-exposed control mice received ISO-1
and/or dexamethasone treatment at the same time points.

Pulmonary function analysis
Twenty-four hours after the final ozone exposure, mice were anesthetised with ketamine
(100 mg/kg, Ketaset, Fort Dodge, USA) and xylazine (10 mg/kg, Xylacare, Animal Care, UK)
i.p., were tracheostomised and placed in a plethysmograph (eSpira™ Forced Manoeuvers Sys-
tem, EMMS, UK) [18]. Functional residual capacity (FRC) was determined by Boyle’s law and
lung compliance (Cchord) was measured from the quasi-static pressure-volume manoeuvre.
Total lung capacity (TLC) and the forced expiratory volume in first 75 milliseconds of exhala-
tion (FEV75) were recorded during fast-flow volume manoeuvre.

Measurement of airway hyperresponsiveness
Tracheostomised mice were ventilated (MiniVent, Hugo Sach Electronic, Germany) at 250
breaths/minute and tidal volume of 250μl. Transpulmonary pressure was assessed via an oeso-
phageal catheter (EMMS, Hants, UK). Pulmonary airway resistance (RL) was recorded for
3-minutes after increasing concentrations (4-256mg/ml) of aerosolized acetylcholine (Sigma,
UK). RL was expressed as percentage change from PBS baseline (Sigma, UK). The acetylcholine
concentration required to increase RL by 100% from baseline was calculated (PC100), -log
PC100 was taken as a measure of AHR.

Table 2. Serum participant details. FEV1: Forced expiratory volume in one second; FVC: forced vital
capacity.

Non-smokers Smokers COPD

N 14 22 25

Gender (male/female) 8/6 14/8 16/9

Pack years 0 28±3** 44±11***

Age (years) 51±2 59±2 70±2

FEV1 (%predicted) 105±4 86±3** 63±4***

FEV1/FVC (%) 98±3 84±3** 58±2***

* p<0.05

** p<0.01

*** p<0.001 compared to healthy control, data expressed as median and percentiles or mean±SEM.

doi:10.1371/journal.pone.0146102.t002

MIF in COPD

PLOSONE | DOI:10.1371/journal.pone.0146102 January 11, 2016 4 / 17



Bronchoalveolar lavage cells
After mice were sacrificed, BAL samples were obtained [9] and total cell counts calculated.
Cytospin slides (Shandon Cytospin 4; Thermo Electron Corporation, USA) of BAL cells were
stained using Diff-Quick kit (Reagena, Toivala, Finland) and differential cell counts performed
in a blinded manner. In brief, following an overdose of aesthetic, mice were lavaged with one
0.8-ml aliquot of PBS via a 1-mm diameter endotracheal tube, and bronchoalveolar lavage
(BAL) fluid was retrieved. Total cell counts and differential cell counts from slide preparations
prepared by using a cytospin procedure and stained by Wright-Giemsa stain set (Sigma, UK)
were determined under an optical microscope (Olympus BH2; Olympus Optical, Tokyo,
Japan). At least 400 cells were counted per mouse and identified as macrophages, eosinophils,
lymphocytes, and neutrophils according to standard morphology under ×400 magnification.

RNA isolation
Total RNAwas extracted from frozen lung tissue using an RNeasy mini kit (Qiagen, Crawley, UK)
[19]. Transcript levels were determined by RT-qPCR (Corbett Research, Sydney, Australia) using
SYBR1Green PCRMaster Mix Reagent (Qiagen, Crawley, UK), Primers are listed in Table 3.

Protein isolation
Protein isolation was performed using a nuclear extraction kit (Active Motif Europe, Belgium)
[20]. Concentrations were determined using a protein assay kit (Pierce Chemical, USA).

Enzyme-linked immunosorbent assays
KC, GM-CSF, TNF-α, MIF and HIF-1α were quantified using commercially-available ELISA
kits (R&D Systems Europe Ltd, UK) according to manufacturer’s instructions.

Statistics
Data are expressed as mean±SD unless otherwise specified. The Kruskal-Wallis ANOVA test
was used for comparisons of multiple groups with a post-test Mann-Whitney analysis per-
formed if necessary. One-way ANOVA and Pearson correlation analysis were used for human
sputum and BAL macrophage data. Grubbs test was used to determine outliers. A p value of
<0.05 was accepted as significant.

Table 3. List of forward and reverse primers and PCR conditions.

Gene Primer Sequence PCR conditions

18S Forward
Reverse

CTTAGAGGGACAAGTGGCG ACGCTGAGCCAGTCAGTGTA 20s@95°C, 30s@60°C, 30s@72°C x 30
cycles

Kc Forward
Reverse

CGCTGCTGCTGCTGGCCACCA
GGCTATGACTTCGGTTTGGGTGCA

20s@95°C, 30s@60°C, 30s@72°C x 60
cycles

Gmcsf Forward
Reverse

TGGTCTACAGCCTCTCAGCA GCATGTCATCCAGGAGGTTC 20s@95°C, 30s@60°C, 30s@72°C x 60
cycles

Ifng Forward
Reverse

GTGGTTGACACTTAGTGGTCTC
GGTGACATGAAAATCCTGCAGAGC

20s@95°C, 30s@60°C, 30s@72°C x 60
cycles

Tnfa Forward
Reverse

AGTTCTATGGCCCAGACCCT AGGGTCTGGGCCATAGAACT 20s@95°C, 30s@62°C, 30s@72°C x 60
cycles

Mif Forward
Reverse

CAAGCCCGCACAGTACATC AGGCCACACAGCAGCTTACT 20s@95°C, 30s@60°C, 30s@72°C x 60
cycles

Mif (Cig
Smoke)

Forward
Reverse

CGTGCACTGCGATGTACTGT CCATGCCTATGTTCATCGTG 20s@95°C, 30s@60°C, 30s@72°C x 60
cycles

Hprt Forward
Reverse

AGGCCAGACTTTGTTGGATTTGAA
CAACTTGCGCTCATCTTAGGCTTT

20s@95°C, 30s@60°C, 30s@72°C x 60
cycles

doi:10.1371/journal.pone.0146102.t003

MIF in COPD
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Results

MIF protein expression is elevated in sputum from COPD patients
MIF protein levels were increased in sputum samples from COPD patients (7.9±2.4ng/ml,
p<0.05, 95% CI[4.3, 11.5]) compared to non-smoking controls (3.8±1.6ng/ml, 95% CI[2.2, 5.4],
Fig 1A). There was no significant difference in MIF expression between smokers (6.5±2.3ng/ml,
95% CI [2.0, 11.0]) and COPD patients.

There were no significant differences in serumMIF concentrations between groups (Fig 1B).
Intracellular/cytoplasmic MIF concentrations were significantly elevated in BALmacrophages iso-
lated from smokers (67.0±6.8ng/ml, p<0.001, 95% CI [21.5, 110.0]) and COPD patients (96.7±
6.8ng/ml, p<0.001, 95% CI [63.3, 206.6]) compared to non-smoking controls (10.8±2.1ng/ml,
p<0.001, 95% CI [7.6, 15.3], Fig 1C). There were no outliers as determined by Grubbs test.

Correlation between MIF and HIF-1α protein expression in human BAL
macrophages
HIF-1α protein expression was also elevated in BAL macrophages isolated from smokers (6.1
±2.7pg/ml, p<0.001, 95% CI [4.3, 7.8]) and COPD patients (8.2±3.4pg/ml, p<0.001, 95% CI
[6.5, 10.0]) compared to non-smokers (2.3±1.5ng/ml, 95% CI[1.5, 3.0] Fig 1D). HIF-1α and

Fig 1. MIF and HIF-1α expression levels in COPD.MIF protein was measured in sputum (A; RV cohort), serum (B) and isolated BAL macrophages (C; RV
cohort). HIF-1α protein concentration was measured in isolated BAL macrophages (D; RV Cohort). Data are expressed as mean±SEM. *p<0.05 and
***p<0.001 compared to non-smoking groups. Rhinovirus Infection (RV).

doi:10.1371/journal.pone.0146102.g001

MIF in COPD
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MIF levels were strongly correlated in all groups with the strongest correlation seen in the
COPD group (Fig 2A–2C).

To test whether there was a mechanistic link driving these correlation we tested whether
HIF-1α protein bound to HIF-1α response elements (HREs) in the MIF promoter. Due to the
limited amounts of sample available from human BAL macrophages these experiments were
conducted in ozone-treated lung samples where there was also a good correlation between
HIF-1α and MIF expression. Ozone exposure induced binding of HIF-1α protein to the HIF-
1α response element (HRE)1 site (-702bp) in ozone-exposed animals 15-fold (p<0.05), but not
on the HRE2 (-1483bp) site (Fig 2D). The binding to the HRE1 site in ozone-exposed mice was
associated with elevatedMifmRNA expression in the lung.

Cigarette smoke-induced COPDmodel did not correlate with human
results
To investigate the potential function of MIF in COPD, we used the two different in vivomouse
models of COPD forMif gene expression and determined whether levels of MIF expression in
these models were similar to those seen in human COPD. After 6 and 8 weeks of cigarette

Fig 2. MIF and HIf-1α correlations in COPD and HIF-1 α regulation ofMif expression. Correlation analysis between HIF-1α and MIF protein
concentrations in isolated BAL macrophages from non-smokers (A), smokers (B), and COPD patients (C). Chromatin immunoprecipitation analysis of HIF-1α
binding to HRE1 and HRE2 sites in theMif promoter in mouse lung tissue (D). Data are expressed as mean±SD for 6 animals per group. **p<0.01 compared
to air controls.

doi:10.1371/journal.pone.0146102.g002

MIF in COPD
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smoke exposure,Mif expression in lung tissue was reduced compared to air control by 51%
and 36% respectively (Table 4). At 12 weeks, there was no longer a significant difference inMif
expression between the smoking and air control groups.

In contrast, the 6-week ozone exposure model of COPD showed elevated levels ofMif
expression in lung tissue (0.5±0.1 vs 0.2±0.1, p<0.05, Table 4) correlating with the human data
reported here. Hence, we opted to use the ozone-exposure model for examining the role of
MIF in COPD. There are some strain and gender differences in theMifmRNA levels reported
in the two animal models at baseline, however, in the context of this study the relative changes
seen in the models and the relationship to the clinical samples are the most important.

ISO-1 but not dexamethasone attenuated ozone-induced BAL cell
numbers and cytokine release
In mice, ozone exposure led to an increase in total BAL cells (p<0.01, Fig 3A), reflected in an
increase in neutrophils (3.4-fold, p<0.05), macrophages (3.4-fold, p<0.01) and lymphocytes
(2.9-fold, p<0.01) compared to air-exposed controls (Fig 3B–3D). Dexamethasone had no
effect on the number of BAL inflammatory cells in ozone-treated mice. In contrast, ISO-1
treatment attenuated the number of total BAL cells (1.7-fold decrease, p<0.05), with a reduc-
tion in macrophages (p<0.05) and lymphocytes (p<0.05) but not of neutrophils.

BAL KC (2.3-fold), GM-CSF (3.1-fold), TNF-α (2.3-fold), and MIF (2.8-fold) were
increased in ozone-exposed mice (p<0.01, Fig 4A–4D). BAL KC and TNF-α levels were
reduced 1.4-fold and 1.6-fold respectively by ISO-1 treatment when compared to ozone alone,
but levels did not return to baseline values compared to the air and ISO-1 treated control
groups (p<0.05, Fig 4A and 4C). ISO-1 had no effect on BAL GM-CSF levels (Fig 4B). Ozone-
induced BAL MIF concentration was reduced by 1.5-fold with ISO-1 pre-treatment (p<0.05,
Fig 4D). In contrast, dexamethasone pre-treatment had no effect on ozone-induced increase of
BAL KC, TNF-á or MIF levels (Fig 4A, 4C and 4D).

Ozone-induced cytokine expression in the lung is insensitive to
dexamethasone but sensitive to ISO-1 treatment
The mRNA levels, normalised to the 18S housekeeping gene, of Kc (2.5-fold, p<0.01), Gmcsf
(1.9-fold, p<0.05), Tnfα (2.3-fold, p<0.05) andMif (2.2-fold, p<0.05) were elevated after
ozone exposure (Fig 5A, 5C, 5E and 5G). Dexamethasone treatment did not affect the ozone-
induced increase in gene expression levels. In contrast, ISO-1 treatment reduced the mRNA
levels of each ozone-induced cytokine to basal levels (Fig 5A, 5C, 5E and 5G). Similarly, ozone
exposure enhanced the protein levels of these cytokines in the mouse lung and these were sup-
pressed by ISO-1 but not dexamethasone treatment (Fig 5B, 5D, 5F and 5H).

Table 4. RelativeMifmRNA expression in lungs of mousemodels of COPD. Äct values ofMif expres-
sion in lung tissue relative to Hprt (cigarette model) and 18s (ozone model) expression as measured by RT-
qPCR. ND: not done.

Mif mRNA expression

Week 6 Week 8 Week 12

Cigarette smoke 0.6±0.1 0.8±0.2 1.0±0.1

Air control 1.2±0.4 1.7±0.4 1.1±0.3

Ozone 0.5±0.1 ND ND

Air control 0.2±0.1 ND ND

doi:10.1371/journal.pone.0146102.t004

MIF in COPD
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ISO-1 attenuates ozone affected lung function and AHR
Ozone alone increased RL, at the greatest concentration of acetylcholine, compared to air con-
trol (226.5±29.8% versus 139.0±37.3%, p<0.05) and was significantly reversed by ISO-1 (170.3
±20.7%, p<0.05 Fig 6A) but not by dexamethasone (206.9±40.3%, p<0.05, Fig 6A). -LogPC100

is the concentration of acetylcholine needed to increase the pulmonary resistance by 100%
from baseline. -LogPC100 was decreased 1.6-fold in ozone-exposed mice (p<0.01, Fig 6B). ISO-
1 treatment reduced ozone-induced -LogPC100 1.7±0.4mg/ml versus 1.3±0.1mg/ml, p<0.05)
but this was not significantly affected by dexamethasone (1.5±0.1mg/ml; Fig 6B). In addition,
FEV75 was decreased 1.2-fold in ozone-exposed mice compared to air controls (0.63±0.06ml
versus 0.55±0.09ml, p<0.01, Fig 6C). This was significantly improved by ISO-1 but not by
dexamethasone treatment (Fig 6C).

Fig 3. Effect of ISO-1 and dexamethasone on ozone-induced airway inflammatory cells. Total cell count (A), neutrophil (B), macrophage (C), and
lymphocyte (D) counts in mouse BAL samples. Data are expressed as mean±SD for 6 animals per group. *p<0.05 and **p<0.01 compared to air controls,
# p<0.05 compared to ozone exposed group.

doi:10.1371/journal.pone.0146102.g003

MIF in COPD
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Cchord (Fig 6D), TLC and FRC (Fig 6E and 6F) were also significantly increased following
ozone exposure (p<0.01). However, neither ISO-1 nor dexamethasone treatment had any sig-
nificant effect on these parameters.

Combination of ISO-1 and dexamethasone has no effect on ozone-
induced inflammation
No additive anti-inflammatory effect on mediator release or BAL cell number was seen with ISO-
1 and dexamethasone in combination compared to dexamethasone or ISO-1 alone. Also, the
ozone-induced change in RL was not affected by treatment with ISO-1 and dexamethasone in
combination. However, the attenuation of RL with ISO-1 alone was no longer evident in the pres-
ence of dexamethasone (Fig 7). These changes may reflect the numbers used per group as the
studies were not powered to detect differences. Future studies should use more animals per group.

Discussion
We demonstrate here that MIF protein expression is elevated in sputum samples, but not
serum samples, from healthy smokers and COPD patients compared to healthy aged-matched

Fig 4. Effect of ISO-1 and dexamethasone on ozone-induced BAL inflammation. Cytokine protein levels in mouse BAL of ozone exposed and ISO-1- or
dexamethasone-treated mice measured by ELISA. KC (A), GM-CSF (B), TNF-α (C) and MIF (D). Data are expressed as mean±SD for 6 animals per group.
*p<0.05 and **p<0.01 compared to air controls, # p<0.05 compared to ozone exposed group.

doi:10.1371/journal.pone.0146102.g004
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non-smoking controls. In addition, we demonstrate that MIF expression is greater in BAL
macrophages from COPD patients compared to control subjects. MIF expression correlates
with HIF-1α which can enhance MIF expression by binding to specific regions within the MIF
promoter. We examined two models of COPD for MIF expression, a 6 week ozone-exposure
model and a cigarette smoke model (6, 8 and 12 weeks) to see which model replicated the
human COPD results. MIF inhibition using ISO-1 prevented ozone-induced BAL, lung inflam-
mation and AHR. In contrast, dexamethasone did not affect these parameters, confirming the

Fig 6. Effect of ISO-1 and dexamethasone on ozone-induced changes in AHR and lung function.Mouse lung function measurements of pulmonary
resistance (RL; A), -logPC100 (B), FEV75 (C), lung compliance (Cchord; D), total lung capacity (TLC; E) and functional residual capacity (FRC; F). Data are
expressed as mean±SD for 6 animals per group. *p<0.05 and **p<0.01 compared to air controls, #p<0.05 compared to ozone-exposed group.

doi:10.1371/journal.pone.0146102.g006

Fig 5. Effect of ISO-1 and dexamethasone on ozone-induced lung inflammation. Cytokine mRNA (A, C, E & G) and protein (B, D, F & H) expression
levels in the lung of ozone exposed and ISO-1- or dexamethasone-treated mice. KC (A&B), GM-CSF (C&D), TNF-α (E&F), and MIF (G&H). Data are
expressed as mean±SD for 6 animals per group. *p<0.05 and **p<0.01 compared to air controls, #p<0.05 compared to ozone exposed group.

doi:10.1371/journal.pone.0146102.g005

MIF in COPD

PLOSONE | DOI:10.1371/journal.pone.0146102 January 11, 2016 11 / 17



corticosteroid insensitive COPD model. Overall, these data indicate that MIF may play a role
in driving COPD inflammation and AHR but not emphysema.

In contrast to our results, MIF has been reported to be reduced in the blood of COPD
patients compared to healthy and smoking subjects [21, 22]. These authors also report reduced
MIF levels in the lungs of mice exposed to cigarette smoke for 6 months or more, which we
also see in our more rapid cigarette smoke model, albeit at 12 weeks this reduction is no longer

Fig 7. Effect of ISO-1 and dexamethasone in combination on ozone-induced lung inflammation.Cytokine mRNA (A & C) and protein (B & D)
expression levels in the lung of ozone exposed and the combination of ISO-1- plus dexamethasone-treated mice. KC (A&B) and MIF (C&D). Pulmonary
resistance (RL; E) was also measured. Data are expressed as mean±SD for 6 animals per group. *p<0.05 and **p<0.01 compared to air controls, #p<0.05
compared to ozone exposed group.

doi:10.1371/journal.pone.0146102.g007
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present. Moreover, these previous studies did not examine MIF levels in the lungs or airways of
COPD patients or controls. Fallica and colleagues [21] report a decrease in serumMIF in COPD
patients as a whole compared to healthy smokers; this is mainly due to a marked reduction in
MIF levels in GOLD IV patients whilst the GOLD II and III patients have similar serumMIF lev-
els as healthy smokers. The 25 COPD patients examined in our study were generally GOLD II
patients with eight GOLD III subjects. Whether reduced MIF expression occurs in the more
severe stages of COPD or in emphysematous patients will need to be further investigated.

In our ozone-induced model of COPD, we show increased MIF expression in the lungs at 6
weeks. Sauler and colleagues [22] showed increased lung MIF levels after 6-months of smoke
exposure in mice but levels were markedly reduced at later time points. Conversely, Fallica
et al., [21] demonstrate reduced MIF expression after 6 months of cigarette smoke exposure.
Further comparisons between the smoking models and the ozone model are warranted particu-
larly since the degree of inflammation and emphysema in both models is similar. Furthermore,
how the data from these cigarette smoke models relate to the clinical results indicating
increased MIF expression in sputum data also requires further experimentation. For this inves-
tigation, the ozone model reflected the higher expression of MIF in COPD patients; therefore
we selected this model to study the inflammation role of MIF.

MIF and its receptors may also have a wider role in airways disease. Alveolar macrophage
polarisation is modulated by smoking and this has important implications for COPD patho-
genesis [23]. The fact that MIF expression is altered in COPD and modulates macrophage
numbers in a murine model suggest that MIF may be implicated in smoking-induced macro-
phage reprogramming although this needs to be formally studied. In addition, MIF and its
receptor CD74 have been shown to be increased in pulmonary arterial hypertension (PAH), a
known COPD co-morbidity. Furthermore ISO-1 and anti-CD74 neutralizing antibodies par-
tially reverse the development of PAH and inflammation in rats [24].

An anti-inflammatory effect of MIF inhibition has been previously reported in several
rodent models of disease. Anti-MIF antibodies have been shown to be protective against endo-
toxemia [25], arthritis [26] sepsis [27] and OVA-induced allergic asthma [28]. In addition,Mif
knockout mice also showed less inflammation in models of atopic dermatitis [29] and endotox-
emia [30]. To our knowledge, this is the first time that MIF antagonism has been shown to
have an anti-inflammatory effect in a corticosteroid-resistant mouse model of COPD and this
also provides evidence that targeting MIF may be a useful therapeutic approach for patients
with this disease. Chen et al. also reported on the effect of ISO-1 in the corticosteroid-sensitive
mouse OVA-challenged model of airway inflammation [14].

COPD is characterised as neutrophilic and low doses of LPS in mice induces a neutrophil-
rich lung inflammation [31], which is prevented by anti-MIF antibodies [32]. ISO-1 signifi-
cantly suppressed ozone-induced total cellular recruitment, mostly as a result of reductions in
BAL lymphocyte and macrophage but not neutrophil numbers. Magalhaes and colleagues also
reported a reduction in AHR (Penh) in MIF knockout mice in response to metacholine in an
OVA model of asthma [33]. Our data further supports the anti-inflammatory role of MIF inhi-
bition, as we report a reduction in AHR (pulmonary resistance) however using a different
model and AHR measurement. In contrast, others did not show effect of ISO-1 on inflamma-
tion in either OVA-challenged or LPS-treated mouse models [34].

Corticosteroid insensitivity is a major aspect of COPD and severe asthma [35]. The unique
function of MIF in counter-regulating the function of corticosteroids [25] has driven research
in many corticosteroid insensitive inflammatory diseases in an attempt to restore steroid-sensi-
tivity, improve disease control, reduce exacerbations, disease progression and lower the doses
of oral corticosteroid prescribed. We therefore examined whether combined ISO-1 and dexa-
methasone treatment would result in an enhanced anti-inflammatory effect in the lung.
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Although Chen et al. found that ISO-1 and dexamethasone separately had a comparable anti-
inflammatory effect in the OVA-induced AHR model, they did not examine the effect of com-
bined treatments [14]. In contrast, we found that the effects of ISO-1 and dexamethasone were
not comparable and that ISO-1 pre-treatment had a more potent anti-inflammatory effect than
dexamethasone in the ozone-induced model reflecting the corticosteroid-insensitive nature of
this model. ISO-1 and dexamethasone treatment in combination showed no enhanced or addi-
tive anti-inflammatory effects on any of the ozone-induced parameters measured, including
AHR or cytokines released in BAL fluid, indicating that MIF is unlikely to activate corticoste-
roid-associated pathways in this model.

We have previously demonstrated that chronic ozone exposure resulted in the activation of
hypoxia-induced inflammatory pathways [20]. We now show that HIF-1α can bind to the
nativeMif promoter at specific HREs and thereby provide a mechanism by whichMif expres-
sion is enhanced in the lungs of ozone-exposed animals. Under hypoxic conditions, MIF inhib-
ited dexamethasone-suppressed HIF-1α expression and also enhanced HIF-1α target gene
expression in a positive feedback loop [36]. In support of a positive feedback loop for HIF-1α
and MIF, we found that the increased levels of both proteins correlated in BAL macrophages
from healthy (non-smokers), smokers and COPD patients. Furthermore in support of an arti-
cle published by Gaber et al., we also observed a suppression of HIF-1α protein levels when
MIF was inhibited by ISO-1 [36].

A previous study Baugh JA et al. [37] demonstrated that HIF-1α, acting through an HRE at
+25 in the 5'UTR of the MIF gene, is a potent inducer of MIF expression. They also reported
that this effect is amplified by hypoxia-induced degradation of cAMP responsive element bind-
ing protein (CREB). CREB expression is enhanced in COPD patients and a poor response to
corticosteroid therapy may be related to increase CREB-associated signalling [38]. How MIF
interacts with this pathway to modulate corticosteroid signalling in COPD patients requires
further investigation. The interaction of MIF with the NF-κB pathway and the modulation of
neutrophil apoptosis also requires further studies. NF-κB is activated in COPD patients [39]
and this has been associated with a reduction in sputum neutrophils undergoing spontaneous
apoptosis in COPD patients [40].

There are several limitations of the current study. We were unable to demonstrate a signifi-
cant effect of ISO-1 on indicators of emphysema in the mouse model although AHR and
inflammation were affected. This highlights the importance of COPD phenotyping in under-
standing the disease process. It will be important to perform clinical studies with MIF-targeting
agents in order to fully define a role for MIF in COPD inflammation. Furthermore, the results
to date do not exclude a role for the D-dopachrome tautomerase (D-DT or MIF-2) in driving
COPD inflammation. Finally, we only used female mice in this study and further studies using
male mice are warranted as males make up more than 50% of COPD patients due to previous
smoking habits.

In conclusion, in our studies investigating the role of MIF in COPD inflammation and in
inflammation and AHR in a mouse model of COPD we demonstrate a link between heightened
MIF expression and COPD inflammation. In the ozone-induced corticosteroid-insensitive
murine model of COPD, lung inflammation was attenuated by treatment with the MIF inhibi-
tor, ISO-1. This supports a pro-inflammatory role for MIF in driving steroid-insensitive lung
inflammation and cellular recruitment and infiltration to the lungs. However, ISO-1 treatment
had no effect on suppressing ozone-induced neutrophilia and did not reverse corticosteroid
insensitivity or emphysema, suggesting that MIF is not the primary driver of neutrophilia, ste-
roid insensitivity or emphysema in this COPD model. However, clinical trials in specific sub-
sets of COPD patients will need to be conducted using anti-MIF agents will be required to
confirm this data.
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