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Abstract 

Background:  Lately, high-throughput RNA sequencing has been extensively used to 
elucidate the transcriptome landscape and dynamics of cell types of different species. 
In particular, for most non-model organisms lacking complete reference genomes with 
high-quality annotation of genetic information, reference-free (RF) de novo transcrip‑
tome analyses, rather than reference-based (RB) approaches, are widely used, and RF 
analyses have substantially contributed toward understanding the mechanisms regu‑
lating key biological processes and functions. To date, numerous bioinformatics studies 
have been conducted for assessing the workflow, production rate, and completeness 
of transcriptome assemblies within and between RF and RB datasets. However, the 
degree of consistency and variability of results obtained by analyzing gene expression 
levels through these two different approaches have not been adequately documented.

Results:  In the present study, we evaluated the differences in expression profiles 
obtained with RF and RB approaches and revealed that the former tends to be satisfac‑
torily replaced by the latter with respect to transcriptome repertoires, as well as from 
a gene expression quantification perspective. In addition, we urge cautious interpre‑
tation of these findings. Several genes that are lowly expressed, have long coding 
sequences, or belong to large gene families must be validated carefully, whenever 
gene expression levels are calculated using the RF method.

Conclusions:  Our empirical results indicate important contributions toward address‑
ing transcriptome-related biological questions in non-model organisms.

Keywords:  Transcriptome analysis, RNA-seq, Reference-based assembly, Reference-
free assembly, Quantification of gene expression
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Background
Understanding transcriptome dynamics and their impact on gene expression levels 
is essential for unveiling gene regulatory mechanisms and interpreting genotypic and 
phenotypic variations. With the recent advent of high-throughput RNA sequencing 
(RNA-seq) technologies, researchers have gained a powerful tool for not only inves-
tigating the expression profiles at the transcriptional level but also identifying novel 
and non-coding transcripts [1–3]. To date, several transcriptome analysis methods for 
RNA-seq data have been developed. Based on whether a reference genome is taken 
into account, two different approaches have been proposed [4–6]. The reference-
based (RB) transcriptome analysis method is based on aligning the sequenced reads 
to a pre-existing reference genome, followed by assembling overlapping alignments 
into transcripts. In contrast, the reference-free (RF) de novo transcriptome analysis 
method allows to directly assemble sequenced reads into transcripts by using high 
levels of redundancy and overlapping of reads, without using a reference genome.

In recent years, many bioinformatics studies have evaluated the advantages and dis-
advantages of several tools implementing either the RB or RF transcriptome analysis 
method and have provided guidance for selecting easy-to-handle, reliable, and objec-
tive tools. Currently, there are several distinct types of methodological quality assess-
ment strategies for transcriptome assembly. By using a reference genome, multiple 
RB approaches have been compared, and it has been found that their performances 
vary with genome complexity, which may potentially complicate correct alignments 
due to a certain level of variance that may arise from polymorphisms, intron signals, 
incomplete annotation, and alternative splicing. Therefore, applying relevant meth-
ods effectively for handling both low- and high-complexity regions is required [7]. 
Without using any reference genomes, Holzer and Martz [8] assessed 10 reference-
free methods using 9 RNA-seq datasets from 5 different species. The performance of 
each method was shown to display species- and data-dependent differences. There is 
no gold standard tool for achieving the best results for any type of RNA-seq dataset. 
Intriguingly, it has been suggested that in cases where a well-annotated genome from 
a closely related species is available, this neighbor genome could be utilized to guide 
de novo transcriptome assembly, albeit with caution [9, 10]. Finally, comparison of 
differential gene expression analysis results obtained by the RB or RF method have 
highlighted that 70–80% of the differentially expressed genes are shared [11–13].

Due to the widespread availability and affordability of high-throughput next-
generation sequencing technologies, the genomes of numerous species have been 
sequenced. However, most non-model species lack a high-quality reference genome, 
and thus, the number of studies comprising transcriptome characterization by 
RNA-seq has rapidly increased and is continuously growing, particularly in studies 
related to genetics and genomics. In these studies, RF is the only method available, 
and according to previous reports, it can very effectively complement the results 
of genome-based transcriptome analyses in terms of the transcriptome repertoire 
[14–18]. Although the fragmented and misassembled transcripts from RNA-seq data 
with intrinsic methodological issues, including low sequencing accuracy, incomplete 
gene coverage, and chimerism [6, 19], can negatively affect accurate and reproducible 
quantification of gene expression levels, to the best of our knowledge, no previous 
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study has provided a comprehensive evaluation of the consistency of expression levels 
between RF and RB approaches.

In the present study, we evaluated whether gene expression profiles obtained by RF 
and RB approaches could be generally compared. Using six human RNA-seq datasets, we 
observed that the RF analysis could predict on average up to 80% of the expressed genes; 
additionally, there was a significant positive correlation of gene expression levels when 
compared with those of the RB analysis. Expectedly, owing to the intrinsic methodologi-
cal issues of the RF method, the overall gene expression levels were underestimated by 
approximately 30–44%. Here, we revealed that this disparity between gene expression 
levels obtained by RF and RB methods could partly be attributed to the proportion of 
genes that were lowly expressed, had long coding sequences (CDSs), or belonged to large 
gene families.

Methods
RNA‑seq data collection and preprocessing

In this study, we used RNA-seq data from six different human tissues (the brain, colon, 
heart, liver, ovary, and testis) collected by Zhu et al. [20], which generated high-quality 
Illumina sequencing-based transcriptome datasets of two technical replicates. The cor-
responding raw data deposited in the NCBI SRA database (accession no. SRX1830410, 
SRX1830402, SRX1830412, SRX1830413, SRX1830414, and SRX1830405) were down-
loaded. To discard low quality and adaptor sequences, all raw reads were preprocessed by 
Trimmomatic (v.0.33) [21] using the following parameters: ILLUMINACLIP:TruSeq3-
PE-2.fa:2:30:10 LEADING:3 TRAILING:3 SLIDINGWINDOW:4:15 MINLEN:36. 
On average, 55.7 million trimmed reads were obtained per sample (Additional file  1: 
Table S1).

Genome‑guided transcriptome assembly for RB method

For genome-guided transcriptome assembly, we had previously built the index of refer-
ence genome with all assembled human chromosomes (chromosomes 1–22, X, and Y), 
including the mitochondrial genome, except for unplaced and unlocalized sequences, 
using Bowtie (v.2.2.6) [22]. Trimmed reads were aligned to the human reference genome 
using Tophat (v.2.1.1) [23] and HISAT2 (v.2.1.0) [24] with default parameters. Human 
reference genome and annotation data (GRCh38) were obtained from the Ensembl 
genome browser (https://​www.​ensem​bl.​org).

De novo transcriptome assembly for RF method

For de novo transcriptome assembly, we used the Trinity (v.2.1.1) tool [15], which is con-
sidered one of the best assemblers for full-length transcript data obtained by Illumina 
sequencing [25]. After assembly, CDSs within assembled transcripts were predicted 
by TransDecoder (v3.0.0; https://​github.​com/​Trans​Decod​er/​Trans​Decod​er/​wiki) with 
homology searches (BLASTP with E value < 10–5) against the Uniprot/Swiss-Prot data-
base (http://​www.​unipr​ot.​org) [26]. To obtain high-quality non-redundant CDSs, those 
encoding < 100 amino acids were removed, and CDSs with more than 99% sequence 
identity were clustered. Of those, the longest CDSs were subjected to further analysis 
using CD-HIT (v4.6.5) [27] with the following parameters: identity cutoff -c 0.99 and 

https://www.ensembl.org
https://github.com/TransDecoder/TransDecoder/wiki
http://www.uniprot.org
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word length -n 5. Non-redundant CDSs were annotated by performing a BLASTP search 
against the human proteome database from the Ensembl genome browser (https://​www.​
ensem​bl.​org).

Gene expression level quantification

To assess the abundance of the assembled transcripts, two different quantification meth-
ods were performed separately for each analysis. For the RB transcriptome analysis, 
using Cufflinks (v.2.2.1) [2], genome-aligned reads were assembled into a parsimonious 
set of transcripts, and their relative abundances were estimated based on the number 
of reads that supported each transcript. For the RF transcriptome analysis, trimmed 
reads were aligned to a database containing all non-redundant CDSs using Bowtie 
(v.2.2.6) [22], and their relative abundances were estimated with RSEM (v.1.2.26) [28] 
and Kallisto (v.0.46.2) [29]. For human gene families, we downloaded corresponding 
annotations from the HUGO Gene Nomenclature Committee (https://​www.​genen​ames.​
org) [30]. We used both fragments per kilobase per million reads mapped (FPKM) and 
transcripts per million mapped reads (TPM) as a unit of gene expression level, and con-
sidered a gene as expressed if its FPKM (or TPM) value was found to be greater than one 
in one or more samples.

Results and discussion
Assembly and statistics of transcriptome data

To assemble and annotate the transcriptome with next-generation sequencing data, we 
employed two complementary transcriptome analysis methods, and to this end, we pro-
cessed RNA-seq datasets from six different human tissues. First, using the RB approach, 
a total of 236 million reads were uniquely mapped to the human reference genome, and 
58,073 genic regions were covered by 197,856 transcripts. By integrating human refer-
ence genome annotation, 20,393 protein-coding transcripts were identified by using 
the RB method. Next, using the RF method, a total of 334 million reads were used to 
assemble a reference transcriptome de novo, and of the 691,562 fragments assembled, 
75,208 transcripts were obtained. Finally, by performing a BLAST search against the 
human proteome database, we identified 16,663 protein-coding transcripts using the RF 
method.

Comparison of expression profiles generated by RB and RF methods

Previous studies have found that the RB method outperforms the RF method in terms 
of the transcriptome repertoire [12, 15, 17]. Expectedly, in the present study, most 
transcripts assembled by the RF method were covered by the results obtained by the 
RB method, and on average, 17.1% of the transcripts were specific to the RB method. 
Approximately 80% of the transcripts were identified by both RB and RF methods 
(Fig. 1a). To examine the quantification consistency of mRNA transcript levels, we com-
pared gene expression levels between RB and RF methods, which were found to be con-
siderably underestimated by the RF method (Fig. 1b). This could easily be explained by 
fragmented and misassembled transcripts generated by the RF method due to intrinsic 
methodological issues, including low sequencing accuracy and incomplete gene cover-
age, possibly leading to less accurate and reliable expression quantification.

https://www.ensembl.org
https://www.ensembl.org
https://www.genenames.org
https://www.genenames.org
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We then investigated which factors could contribute to such expression level 
discrepancy. The degree of gene expression levels could be one of the potential 
causative factors for this underestimation by the RF method. To this end, we cal-
culated Spearman’s correlation coefficients (ρ) in advance to explore the consist-
ency of gene expression levels obtained by RB and RF methods (hereafter referred 
to as expression level consistency) and found a significant and strong positive cor-
relation ranging from 0.868 to 0.9 with p values < 2.2 × 10−16, suggesting that the 
RF method could be satisfactorily replaced by the RB method from a genome-wide 
gene expression quantification perspective (Fig.  2a). However, these high expres-
sion level consistencies could be decreased significantly and substantially (ρ = 0.737 
and p value = 3.44 × 10–6) with the extent of the gene expression levels (Fig. 2b). In 
addition, the extent of the assembled contigs of the transcriptome sequences could 
be another factor leading to RF method-associated misestimation. Assuming the 
incomplete and fragmented de novo assemblies generated by the RF method, we 
observed highly significant, negative correlations between the expression level con-
sistency and length of the CDS (Fig.  2c). Moreover, the existence of gene families, 
which are sets of genes clustered based on sequence similarities that arose by gene 
duplication and diversification, can partly explain the expression level discrepancy 
between RF and RB methods. A large number of paralogous sequence reads from 
members of the same gene family are often incorrectly de novo assembled, and such 
newly emerging errors can lead to gene expression quantification distortions. This 
trend is promoted by an increase in the number of members in a gene family. We 
examined whether expression level consistency and gene family size were inversely 
coupled and found a negative correlation in the range of − 0.087 to − 0.196, which 
was not significant after Bonferroni correction (p value < 0.008) (Fig. 2d).

Fig. 1  Comparison of transcriptome profiles between reference-free (RF) and reference-based (RB) methods. 
a Proportion of the number of expressed genes identified by RF only, RB only, or both methods. Genes 
with an FPKM (fragments per kilobase per million reads mapped) value ≥ 1 are annotated as expressed. b 
Expression level differences of commonly identified genes from both RF and RB methods. The central line 
and lower and upper edges of the box indicate the median and 25th and 75th percentiles, respectively. The 
whiskers extend to the furthermost point within 1.2 times the interquartile range (IQR). The p values shown 
were calculated using Mann–Whitney U test
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Robustness of the results

To examine whether the current findings are sensitive to the particular tools or 
approaches used, we applied the following four alternative tools or approaches. First, 
instead of using Tophat tool, we used a recently developed widely used RNA-Seq aligner 
named HISAT2 for the RB method. We found that the comparison results between 
HISAT2-based RB method and original RF method (Additional file  2: Figure S1) are 
almost identical to the corresponding comparison results between Tophat-based RB 
method and original RF method (Fig. 2). Second, instead of using an alignment-based 
RSEM tool, we used Kallisto, which is based on a pseudoaligment protocol without the 
need for real alignment, to quantify the abundance of each transcript for the RF method. 
We compared the results of the original RB method with those of RSEM-based RF 
(Fig. 2) versus Kallisto-based RF (Additional file 3: Figure S2) methods and found that 
there are no significant differences. Third, instead of using FPKM, we used TPM value to 
obtain normalized gene expression levels, and similar comparison results are observed 
between two quantification methods (Additional file 4: Figure S3). Finally, to investigate 
whether RB and RF methods are comparable for identification of differentially expressed 
genes, we calculated fold change of gene expression levels between tissue samples and 

Fig. 2  Factors influencing gene expression variability of reference-free (RF) data. a Scatter plots showing 
global gene expression patterns (log2-transformed) between RF and reference-based (RB) approaches in 
different human tissues with linear regression lines (red color). The ρ value indicates Spearman’s correlation 
coefficient. b Correlation between expression level consistency and average expression levels obtained 
by the RB method. Expressed genes are uniformly divided into five groups with top 0–20% (Group 1), 
20–40% (Group 2), 40–60% (Group 3), 60–80% (Group 4), and 80–100% (Group 5) of the expressed genes. c 
Correlation between expression level consistency and average length of the CDS annotated by the reference 
gene model. d Correlation between expression level consistency and gene family size obtained from 
reference genome sequence data. Solid lines represent the corresponding linear regression. Spearman’s ρ 
and p values were calculated using the cor.test function of the stats package in R
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found significant strong positive correlations in all comparisons (Additional file 5: Figure 
S4). Together, these results suggest that our conclusion that the RF method could be sat-
isfactorily replaced by the RB method with respect to transcriptome repertoires as well 
as from a gene expression quantification perspective is robust.

Conclusions
In the current study, we examined whether the expression level consistency between RF 
and RB methods was well preserved and found that the RF method could be satisfac-
torily replaced by the RB method with respect to transcriptome repertoires as well as 
from a gene expression quantification perspective, together with cautious interpretation 
of the results. Particularly, when using the RF method to estimate the levels of genes that 
are lowly expressed, have long CDSs, or belong to large gene families, the results must be 
evaluated and validated carefully.
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