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Electromyography (EMG) signals can be used for clinical diagnosis and biomedical applications. It is very important to reduce
noise and to acquire accurate signals for the usage of the EMG signals in biomedical engineering. Since EMG signal noise has
the time-varying and random characteristics, the present study proposes an adaptive Kalman filter (AKF) denoising method
based on an autoregressive (AR) model. The AR model is built by applying the EMG signal, and the relevant parameters are
integrated to find the state space model required to optimally estimate AKF, eliminate the noise in the EMG signal, and restore
the damaged EMG signal. To be specific, AR autoregressive dynamic modeling and repair for distorted signals are affected by
noise, and AKF adaptively can filter time-varying noise. The denoising method based on the self-learning mechanism of AKF
exhibits certain capabilities to achieve signal tracking and adaptive filtering. It is capable of adaptively regulating the model
parameters in the absence of any prior statistical knowledge regarding the signal and noise, which is aimed at achieving a
stable denoising effect. By comparatively analyzing the denoising effects exerted by different methods, the EMG signal
denoising method based on the AR-AKF model is demonstrated to exhibit obvious advantages.

1. Introduction

Surface electromyography (sEMG) refers to a weak bioelec-
tric signal recorded by surface electromyography pick-up
electrodes, which is capable of reflecting information associ-
ated with muscle and bone activity [1]. It has been exten-
sively employed in sports medicine and rehabilitation
training, and it is an ideal control signal for artificial pros-
theses and bionic control [2, 3].

sEMG is recognized as a nonlinear and nonstationary sig-
nal. The useful signal displays the major distribution between
10Hz and 500Hz, which is extremely weak (with the ampli-
tude of only μV level). The signal is vulnerable to a range of
characteristics (e.g., interference, time variance, and random-
ness) [4]. The sEMG signal is collected by detecting electrodes
placed on the skin surface, and such a collecting process is easy
to be affected by surrounding environments. On the whole,
sEMG noise sources consist of inherent noise of electronic
devices, environmental noise, noise generated by electrode jit-
ter and micromovement, and interference noise created by
other human bioelectric signals. In addition, the signal-to-

noise ratio (SNR) of the sEMG signal decreases with the
increase in the muscle contraction force. The mentioned
noises may seriously affect the quality of the signal and may
even fail to effectively achieve the detection and analysis appli-
cations. Accordingly, noise removal processing should be per-
formed before sEMG is studied in depth.

On the hardware, noise interference can be suppressed by
taking shielding and grounding or introducing high- and low-
pass filters, as well as notch filters, which is recognized as a
routine operation. However, the noise interference of the
sEMG cannot be eliminated through hardware processing
independently [5] . As digital signal processing technologies
are leaping forward, digital filtering has become a vital
approach to reduce noise interference. The common existing
sEMG signal denoising methods comprise wavelet denoising
[6, 7], empirical mode decomposition (EMD) [8, 9], adaptive
filtering [10], and principal component analysis (PCA) [11]
and independent component analysis (ICA) [12]. These
denoising methods exhibit their own advantages and disad-
vantages, and a balance remains difficult to reach between
denoising and muscle power signal restoration. Even in a
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segment of signal, there may be varied levels of noise, and it is
difficult to perform well in different levels of noise.

An autoregressive (AR) model is a prediction model that
creates a linear sum of previous data. The coefficients of the
AR model are used in sEMG classification [13, 14]. The AR
model of order is usually according to the previous works; then,
the model is determined. There is no way to judge whether the
AR model is appropriate for sEMG data. In order to overcome
existing problems above, we propose the following method.

The AR-AKF model-based denoising method organically
combines the dynamic modeling ability of the autoregressive
model and the time-varying noise estimation ability of the
adaptive Kalman filter. By using AKF, the noise in the sEMG
is effectively eliminated. Moreover, with the AR model, the
signal affected by noise can be restored. This method is capa-
ble of learning and tracking, as well as regulating model
parameters by complying with the adaptive criteria in the
absence of any prior statistical knowledge regarding the signal
and noise, as an attempt to achieve a stable denoising effect.
Theoretically, this method exhibits better applicability, which
is also suitable for other similar bioelectric signals.

2. AR-AKF Model

Set xt as the EMG signal at sampling time t, and xt−n sig-
nifies the EMG signal at sampling time t − n, which is a ran-
dom noise. Moreover, an n-order AR model can be adopted
to express the EMG signal. An n-order AR model of sEMG,
written as ARðnÞ, is

xt =Φ1xt−1 +Φ2xt−2+⋯+Φnxt−n + εt , ð1Þ

where n denotes the model order, ϕn represents the model
parameter, and εt is the white noise with zero mean and var-
iance σ2ε .

The main work for ARðnÞ model building is to estimate
the values of parameters n, ϕ1, ϕ2 ⋯ , ϕn, and εt in the
model. The reason is that ϕ1, ϕ2 ⋯ , ϕn and εt satisfy

εt = xt − ϕ1xt−1 − ϕ2xt−2−⋯+ϕnxt−n, ð2Þ

σε
2 = 1

N − n
〠
N

t=n+1
xt − 〠

n

i=1
φixt−i

 !2

, ð3Þ

where N denotes the number of samples.
Thus, if ϕ1 is estimated, σε

2 can be estimated by equation (3).
The method of parameter estimation falls to direct and

indirect methods. Direct methods comprise the least square
method, Yule-Walker equation method, Ulrych-Clayton
method, etc. In addition, indirect methods include the
LUD method, BSMF method, and Burg method. Using the
least square method to estimate the parameters is considered
to be extremely simple. The parameter estimation is unbi-
ased with high accuracy, as expressed by

Y = Xϕ + ε, ð4Þ

where Y = ½xn+1 xn+2 ⋯ xN �T , ϕ = ϕ1 ϕ2 ⋯ ϕn½ �T , and
ε = εn+1 εn+2 ⋯ εN½ �T .

Subsequently, the least square estimate of ϕ is

ϕ = XTX
� �−1

XTY : ð5Þ

The model order n can be determined by complying with
the applicability test criterion of the model. Common informa-
tion criteria consist of FPE (Final Prediction Error), AIC (An
Information Criterion), and BIC (Bayesian Information Crite-
rion) criteria of theAkaike information inspection criterion [13].

AIC function:

AIC nð Þ =N ln σ2
ε + 2n: ð6Þ

BIC function:

BIC nð Þ =N ln σ2
ε + n ln N: ð7Þ

FPE function:

FPE nð Þ = N + n
N − n

σ2
ε , ð8Þ

where AICðnÞ, BICðnÞ, and FPEðnÞ represent the corre-
sponding criterion indexes in the case of order n.

The model when the minimum value of the respective cri-
terion function is selected is the applicable model. Thus, the
estimation criterion of the optimal n-order is presented as

n∗ = arg min
n

AIC nð Þ, BIC nð Þ, FPE nð Þf g: ð9Þ

The core idea here is to simulate the volatility of the EMG
signal through the ARðnÞ model and subsequently use adap-
tive filtering to correct the error attributed to random noise.
To be suitable for adaptive filters, an accurate mathematical
model is required. First, equation (1) is extended to n AR
model groups of order 1 to n:

x1 t + 1ð Þ =Φ11x1 tð Þ + ε1ω tð Þ,
x2 t + 1ð Þ =Φ21x1 tð Þ +Φ22x2 tð Þ + ε2ω tð Þ,

⋯

xn t + 1ð Þ =Φn1x1 +Φn2x2 tð Þ+⋯+Φnnxn tð Þ + εnω tð Þ:
ð10Þ

Next, this model group is converted into an n-dimensional
state space model:

x1 t + 1ð Þ
x2 t + 1ð Þ

⋮

xn t + 1ð Þ

2
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zt = ϕnl , ϕn2, ⋯ ϕnn½ �

xt−1

xt−2

⋮

xt−n

2
666664

3
777775 + εt , ð12Þ

where (11) expresses the state transition equation, (12)
presents the observation equation, x represents the measured
EMG signal, y denotes the EMG observation signal, and ϕni
is the i-th parameter of the n-order ARmodel. The mentioned
(11) and (12) can be simplified to the state space model below:

X t + 1ð Þ = AX tð Þ +w tð Þ,
Z tð Þ =HX tð Þ + v tð Þ,

(
ð13Þ

where wðtÞ denotes the system noise and vðtÞ is the obser-
vation noise. The above system state transition matrix coeffi-
cient A is

A =

Φ11 0 ⋯ 0
Φ21 Φ22 ⋯ 0
⋮ ⋮ ⋱ ⋮

Φn1 Φn2 ⋯ Φnn

2
666664

3
777775: ð14Þ

The noise covariance matrix Q of the state equation is
written as

Q =

σ2ε1 0 ⋯ 0

0 σ2ε2 ⋯ 0
⋮ ⋮ ⋱ ⋮

0 0 ⋯ σ2εn

2
666664

3
777775: ð15Þ

The observation matrix H is

H = ϕn1, ϕn2, ⋯ ϕnn
� �

: ð16Þ

The noise covariance matrix R of the observation equation
is

R = σ2εn : ð17Þ

Through the mentioned A, H, Q, and R, a complete state
space model of SEMG can be determined. Based on the built
system model, the digital filtering method is adopted to opti-
mally estimate the signal sequence. To be specific, a Kalman
filter refers to a recursive unbiased linear minimum variance
estimation method, capable of estimating the current signal
value by complying with the existing system estimation value
and the current observation value.

As impacted by the time-varying and randomness of
noise in practice, the statistical characteristics of noise may

remain unknown and time-varying. Accordingly, the prior
data commonly loses its meaning, causing the filtering effect
to lose its optimality or to eventually lead to divergence [15].

To solve this type of problem, AKF is introduced. This
method is capable of estimating the system’s interference noise
and measurement noise online based on the system measure-
ment value and the filter value, tracking the noise change in
real time while filtering, as well as correcting the filter param-
eters to increase the filtering accuracy [16]. Since the AKF
algorithm is more sensitive to the initial value, a robust track-
ing AKF is introduced. The proposed method regulates the
prediction error value by introducing a fading factor, i.e., to
modify the filter gain matrix value, which increases the weight
of the current observation. For this reason, the filter can track
the current change and suppress the filter divergence [17].

Given the mentioned analysis, to optimize and improve
the conventional Kalman filter algorithm, a strong tracking
idea is introduced by using the simplified Sage-Husa adap-
tive filter algorithm. The improved strong tracking adaptive
Kalman filter algorithm abides by the principle below:

X k ∣ k − 1ð Þ = A k, k − 1ð ÞX k − 1ð Þ + B k, k − 1ð ÞU k − 1ð Þ
V kð Þ = Z kð Þ −H kð ÞX k ∣ k − 1ð Þ
P k ∣ k − 1ð Þ = λ kð ÞA k ∣ k − 1ð ÞP k − 1ð ÞAT k, k − 1ð Þ +Q kð Þ
K kð Þ = P k ∣ k − 1ð ÞHT kð Þ H kð ÞP k ∣ k − 1ð ÞHT kð Þ + R kð Þ� �−1
X kð Þ = X k ∣ k − 1ð Þ + K kð ÞV kð Þ
P kð Þ = 1 − K kð ÞH kð Þ½ �P k ∣ k − 1ð Þ 1 − K kð ÞH kð Þ½ �T

+K kð ÞR k − 1ð ÞKT kð Þ
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>>>>>>>>>>>>>>:
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,

ð18Þ

Q kð Þ = 1 − dkð ÞQ k − 1ð Þ + dk K k − 1ð ÞV kð ÞV kð ÞT +
h i

A k, k − 1ð ÞP k − 1ð ÞA k, k − 1ð ÞT

R kð Þ = dk 1 −H kð ÞK k − 1ð Þ½ �V kð ÞVT kð Þ 1 −H kð ÞK k − 1ð Þ½ �T +
n o
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Figure 1: Denoising model based on AR-AKF.
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(a) EMG signal collected when the wrist is turned up
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(b) Noisy signal
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(c) LMS denoising signal

Figure 2: Continued.
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(d) Sym8 wavelet denoising signal
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(e) EMD denoising signal
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(f) AR-AKF noise cancellation signal

Figure 2: Comparison chart of denoising effect.
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λ kð Þ =
λ0

1

(
λ0 ≥ 1
λ0 < 1

λ0 =
tr N kð Þ½ �
tr M kð Þ½ �

N kð Þ = V0 kð Þ −H kð ÞQ k − 1ð ÞHT kð Þ − βR kð Þ
M kð Þ =H kð ÞA k, k − 1ð ÞP k − 1ð ÞAT k, k − 1ð ÞHT kð Þ

V0 kð Þ =
V 1ð ÞVT 1ð Þ
ρV0 kð Þ + V k + 1ð ÞVT k + 1ð Þ
1 + ρ

8><
>:

k = 1
k > 1

, ð20Þ

where dk = ð1 − bÞ/ð1 − bk+1Þ, 0 < b < 1 and b is the forgetting
factor, which usually refers to 0.95~0.99.
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Figure 3: Signal denoising error curve.

Table 1: Signal denoising effect evaluation table.

Noisy signal (dB)
Sym8 EMD LMS AR-AKF

RMSE SNR MAPE RMSE SNR MAPE RMSE SNR MAPE RMSE SNR MAPE

5 34.697 7.007 2.804 32.089 7.686 5.202 35.603 6.783 5.669 35.603 6.783 5.669

10 24.091 10.176 1.576 26.472 9.357 3.794 20.609 11.532 4.001 21.168 11.299 4.645

15 16.084 13.685 1.241 29.907 8.297 2.009 16.804 13.305 1.785 13.068 15.488 2.031

20 10.757 17.179 0.886 30.595 8.100 1.488 15.558 13.974 1.475 7.735 20.043 1.374

25 7.447 20.373 0.700 36.225 6.633 1.052 14.981 14.302 0.913 4.569 24.615 0.761

30 5.548 22.930 0.581 38.624 6.076 1.151 14.723 14.456 0.947 2.960 28.385 0.619

Table 2: Local similarity metric evaluation table.

Noisy signal (dB)
Sym8 EMD LMS AR-AKF

Mean of local similarity metric

5 0.6280 0.7061 0.6683 0.6465

10 0.7301 0.7917 0.7737 0.7448

15 0.8332 0.8300 0.8511 0.8310

20 0.8512 0.8240 0.8831 0.8758

25 0.8676 0.8699 0.9004 0.9026

30 0.8895 0.8450 0.9092 0.9175
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As presented above, equations (18), (19), and (20) con-
stitute AKF, where equation (19) describes an adaptive noise
statistical estimator, equation (18) is an optimal state estima-
tor, and equation (20) expresses an adaptive fading factor.
By alternately using the mentioned equations, an estimate
of the state and noise statistics can be calculated. The initial
conditions of Q and R can take the values of equations (15)
and (17).

On the surface, under the unknown system noise var-
iance matrix Q and the measurement noise variance
matrix R, Q and R can be estimated simultaneously by
the above process, which has been extensively investigated.
As a matter of fact, the Sage-Husa method cannot estimate

Q and R under the two unknown matrices. Filtering diver-
gence is prone to occur under the high order of the sys-
tem, and Qk and Rk are suggested to lose positive
semidefiniteness and positive definiteness when filtering
divergence. Thus, (19) is replaced with (21) only to itera-
tively update Q and fix R.

In brief, the following sEMG denoising method is pro-
posed based on the AR-AKF model.

According to Figure 1, the optimal order n ∗ of the
system is first determined by the information inspection
criterion. Next, the autoregressive (AR) model is employed
to express the sEMG signal fluctuation sequence, and the
corresponding AR model group is built. Subsequently,
the AR model group in the previous step is transformed

into the state space model required for optimal estimation.
Lastly, the AKF adaptive noise estimator is employed to
adaptively estimate the statistical characteristics of the
observed signal, and the optimal state estimator is adopted
to optimally estimate the observed signal. To be specific,
the state space model is the combination of AR and
AKF, which also underpins AKF to perform filtering
estimation.
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Figure 4: Signal denoising error comparison chart.

Table 3: Nonnoise effect data statistics table.

AR-RTS AR-SHKF AR-STKF AR-STSHKF

RMSE 29.7808 33.1007 32.7497 32.5449

SNR 8.3347 7.4167 7.5093 7.5638

Q kð Þ = 1 − dkð ÞQ k − 1ð Þ + dk K k − 1ð ÞV kð ÞV kð ÞT + A k, k − 1ð ÞP k − 1ð ÞA k, k − 1ð ÞT
h i

R kð Þ = R 0ð Þ

9=
;: ð21Þ
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3. Experiment Analysis

In the experiment here, the Trigno Wireless System of
DELSYS is employed to collect EMG signals, and healthy
men are taken as the experimental subjects. The collection
frequency reaches 1000Hz. The sEMG signals of the super-
ficial flexor muscles of the fingers are collected to determine
discrete sEMG sampling values. On the whole, 40 sets of
wrist upturning are collected. There are 2000 data points
per group. The Trigno sensor integrates a 20-450Hz band-
pass filter, so the frequency of the collected sEMG signal
largely ranges from 20 to 450Hz.

To verify the effectiveness of the denoising model pro-
posed here, in the experiment, the standard sEMG signal is
added with a SNR of 5dB, 10dB, 15dB, 20dB, 25dB, and
30dB band-limited Gaussian white noise, and the root mean
square error (RMSE) and Mean Absolute Percentage Error
(MAPE) are introduced, and also SNR is presented as an eval-
uation index. In addition to these evaluation indexes, a local
similarity metric [18] is used for quantitative experimental
results; it can reflect the signal leakage which refers to those
lost coherent signal energy in the removed noise section. To
compare the denoising effect of the denoising method pro-
posed and the classic denoising method, simulation compari-
son experiments based on four denoising methods, i.e., AR-
AKF, wavelet-sym8, LMS, and EMD, are designed.

Figure 2 illustrates a comparison diagram of the signal
denoising effects exerted by the four methods (i.e., AR-

AKF, wavelet-sym8, LMS, and EMD) under 5 dB of noisy
signal. Figure 3 shows the signal denoising error curve.
Obviously, the sym8 wavelet method exerts a more signifi-
cant denoising effect on low-amplitude signals, whereas it
loses part of the real information in high-amplitude signals.
According to Figure 2, the denoising result of EMD is sug-
gested to be more effective than that of AR-AKF. However,
as revealed by the data in Table 1, neither the mean RMSE
nor the mean SNR is as good as AR-AKF. Through the com-
bination of Figure 3, though most of the denoising error
results of EMD are good, there is a period of very unsatisfac-
tory results, and the final result is not as good as AR-AKF.

Table 1 presents the evaluated denoising effect of the
four methods under a range of noise signals. Specific to
low polluted signals, AR-AKF has the highest SNR and other
methods have much lower SNR than the undenoised signal.
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Figure 5: Different order information check criterion function value graph.

Table 4: Data table of denoising effect under different orders.

n
RMSE

AR-RTS AR-STSHKF

n = 2 25.9384 26.8722

n = 3 25.5518 26.8495

n = 4 25.2164 26.8683

n = 5 25.8643 26.8719

n = 6 25.9564 26.8689
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For highly polluted signals, though the AR-AKF method
does not make significant improvement compared to other
methods, there are still more glitches in the denoised signal.
The four methods are not extremely effective in denoising
signals with low SNR ideally, and the advantage of AR-
AKF indicates that it is capable of adaptively filtering and
estimating the noise signal, so relatively ideal denoising
results can be achieved in different noise levels. Table 2 pre-
sents the local similarity metric of the four methods in differ-
ent noise levels. In the original paper, the index of the local
similarity metric is a map which has detailed information
about the similarity between the original signal and denoised
signal; for simplicity in this experiment, the local similarity
metric is assigned the mean of all elements. Table 2 indicates
that AR-AKF has the best performance for low polluted sig-
nals which means that the lost coherent signal energy in the
removed noise section is least; for highly polluted signals,
AR-AKF is not the best but not badly performed compared
to others. Generally speaking, the results of Table 2 are basi-
cally consistent with those of Table 1.

Overall, the AR-AKF method, as compared with other
methods, is subject to a smaller root mean square error
and a larger SNR, which also shows that the method based
on the AR-AKF model exhibits a stronger denoising ability.

To more specifically study the effect of the AKF type in
the overall model on the denoising effect, the four methods
(i.e., AR-RTS, AR-SHKF, AR-STKF, and AR-STSHKF) are
compared longitudinally. To be specific, RTS, SHKF, STKF,
and STSHKF refer to a volumetric Kalman smoother, a
Sage-Husa adaptive Kalman filter, a strong tracking adaptive
filter, and a strong tracking adaptive filter based on Sage-
Husa.

Figure 4 plots the signal denoising effect error curves of
the four methods of AR-RTS, AR-SHKF, AR-STKF, and
AR-STSHKF. Table 3 lists the denoising evaluation results
of the four methods. Obviously, the denoising effect
achieved by different AKFs is different. To be specific, the
optimal denoising effects are AR-STSHKF and AR-RTS.
The average RMSE and SNR of AR-RTS are significantly
better than those of other methods. AR-STSHKF is second
only to AR-RTS. However, AR-RTS is primarily applied in
offline scenarios, and AR-STSHKF can be exploited to
achieve real-time online prediction. As a result, AR-
STSHKF is more often employed in practice. Nevertheless,
under weak real-time performance, the effect of the filter
using the RTS smoother is more significant.

Moreover, the denoising effects under different orders
are compared to determine the impact of the AR order on
the denoising effect. Figure 5 presents the size of the infor-
mation criterion under different orders n. Table 4 lists the
AR-AKF denoising effect data table under different AR
orders. To be specific in Figure 6, the AR-RTS denoising
effect is optimal when n = 4, and the optimal denoising of
the AR-STSHKF method is n = 3, basically consistent with
the estimation of the information criterion.

4. Conclusion

In brief, a denoising method is developed in this study by
employing the AR-AKF model based on the characteristics
of the EMG signal. First, the optimal order n of the AR
model is determined by abiding by the FPE, AIC, and BIC
criteria of the Akaike information test. Subsequently, the
AR model of this order is adopted to express the EMG signal
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sequence. Thus, n 1 to n orders are determined. The AR
model equation set is used to build the state space model
and the observation model by applying n AR model equa-
tion sets. Next, the adaptive Kalman filter method is adopted
to obtain the optimal estimation of the original sEMG signal.
As demonstrated from the experimental results, the model is
capable of effectively removing the noise in the sEMG signal
since the denoising effect of AKF complies with the accurate
modeling of the target object. Accordingly, this study uses
the AR model to build the precise mathematical model
required for filtering the EMG signal sequence. Moreover,
this mathematical model can describe the regular EMG sig-
nal and filter most irregular noises, so the model can be
compared with reality. The signal data are fitted. Lastly, the
dynamic modeling capabilities of AR and the characteristics
of AKF’s adaptive noise estimation are integrated, and the
model parameters are regulated with the time-varying noise
estimator to achieve a stable denoising effect, having strong
adaptive capabilities and tracking performance.

In the experiment, the denoising effect of this model is
compared with those of some classic methods, and the dif-
ferent effects exerted by different adaptive filters are ana-
lyzed in depth. As revealed from the experimental results,
for the random noise of sEMG, the denoising effect of this
model is significantly enhanced. Furthermore, the impact
of different AR orders on the denoising results is experimen-
tally analyzed, and the validity of the AR optimal order esti-
mation criteria is verified.
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