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Abstract

Cancer driving genes have been identified as recurrently affected by variants that alter pro-

tein-coding sequences. However, a majority of cancer variants arise in noncoding regions,

and some of them are thought to play a critical role through transcriptional perturbation.

Here we identified putative transcriptional driver genes based on combinatorial variant

recurrence in cis-regulatory regions. The identified genes showed high connectivity in the

cancer type-specific transcription regulatory network, with high outdegree and many down-

stream genes, highlighting their causative role during tumorigenesis. In the protein interac-

tome, the identified transcriptional drivers were not as highly connected as coding driver

genes but appeared to form a network module centered on the coding drivers. The coding

and regulatory variants associated via these interactions between the coding and transcrip-

tional drivers showed exclusive and complementary occurrence patterns across tumor

samples. Transcriptional cancer drivers may act through an extensive perturbation of the

regulatory network and by altering protein network modules through interactions with coding

driver genes.

Author summary

Identifying driver variants is a current challenge facing cancer genomics. A well-estab-

lished and robust method for this is to find recurrence in large cohorts of samples.

Recurrence patterns of amino acid-changing variants can reveal oncogenes and tumor

suppressor genes. However, such single-gene approaches have limitations because of rare

variants. Therefore, recurrently affected protein complexes, network modules, or signal-

ing pathways have been identified based on network-level recurrence. Here we dissect

chromatin interactome to identify cis-regulatory variants that show high gene-level recur-

rence. We then employ the gene regulatory network and protein interactome to character-

ize putative cancer genes with cis-regulatory variant recurrence. These genes were located

at critical positions in the regulatory network. By contrast, they are at the circumference

in the protein interactome; instead, they form a network module with coding cancer

genes located at hub positions. Furthermore, the coding and regulatory variants associated

via these interactions showed exclusive and complementary occurrence patterns across
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tumor samples. Therefore, we suggest that transcriptional cancer drivers may act through

an extensive perturbation of the regulatory network and by altering protein network mod-

ules through interactions with coding driver genes.

Introduction

Recent efforts to understand noncoding variation through epigenomic annotation have shown

that disease-associated variation is frequently located in regulatory DNA marked by DNase I

hypersensitive sites (DHSs) or particular histone modifications [1–4]. Noncoding somatic

variants in cancer have been a focus of interest since the recent discovery of TERT promoter

variants [5,6], which was followed by efforts to systematically analyze the whole noncoding

genome [7–9]. Epigenomic dissection of cancer genomes revealed that chromatin accessibility

and histone modifications in corresponding cell types shape the noncoding variant landscape

[10]. DNA repair activity was found to be a determinant of variant density within DHSs

[11–13].

Identifying driver variants is one of the greatest challenges currently facing cancer geno-

mics. Probably the most robust way to find driver variants is by leveraging large cohorts of

samples and using recurrence as an indicator of selection [14]. Efforts to identify recurrent var-

iants in cancer have focused on protein-coding sequences. However, a sizeable fraction of

tumor samples lack variants in highly recurrent genes, indicating that the single gene-based

approach may miss a large number of true driver genes [14]. In this light, protein interaction

networks or signaling pathways were dissected to identify drive modules or driver pathways

based on a combinatorial recurrence of coding variants [15–19].

Inferring the driver status of noncoding variants can be more complicated than coding vari-

ants. Noncoding recurrence was previously examined within single promoters or at the same

sites. However, a majority of variants reside in distal enhancers, which scatter across a long dis-

tance while converging on the same target transcript. Therefore, target gene identification is

crucial for estimating regulatory variant recurrence. To this end, it is essential to determine

three-dimensional chromatin structure [20]. For example, a novel metabolic regulator was dis-

covered by surveying long-range interactions that engage an obesity-associated variant [21].

From breast and liver cancer genomes, we first identify regulatory driver variants and their

associated genes, referred to as transcriptional drivers (TDs), based on combinatorial recur-

rence over the chromatin interactome. We then characterize the TD genes at the systems level

in comparison with coding driver (CD) genes by projecting them onto the gene regulatory net-

work and protein interactome. In particular, we utilize a Bayesian network that models causal

(directional) regulatory relationships [22], a transcription network that contains direct co-reg-

ulatory interactions [23], an integrated physical protein interaction network [24], and a proba-

bilistic functional protein association network [25].

Results/Discussion

The workflow of our analyses is summarized in S1 Fig. We first identified regulatory variants

in 119 breast and 88 liver cancer samples as illustrated in Fig 1A. In this example, four different

samples carry motif-changing variants at different positions in cis-regulatory regions, whose

convergence on a common transcriptional target is revealed by the chromatin interactome.

In this case, the combinatorial measure of variant recurrence for this gene should be four

although none of the four variants arose at the same site. For this type of recurrence analysis,

we employed enhancer-promoter maps constructed by RNA polymerase II-mediated
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Fig 1. Combinatorial cis-regulatory recurrence. (A) Illustration of our recurrence model. Four variants from different samples are scattered in

cis-regulatory regions but converge on the same gene via chromatin interactions. (B) A radar plot showing the significance of enrichment for

eight cancer-related Gene Ontology terms. The length of the plot scales with log10 (P value). The P values were derived from the hypergeometric

distribution and adjusted for multiple testing by the Bonferroni correction. (C) Relative causal score of the TDs grouped by the recurrence level

and the CDs (CGC and 20/20) in the Bayesian network of breast cancer. Causal scores were calculated as described in the Methods and

normalized by dividing by the average causal score of all genes in the network. (D) The relative degree of the TDs and CDs in the coexpression
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chromatin interaction analysis by paired-end tag (ChIA-PET) sequencing [26–28], integrated

methods for predicting enhancer targets (IM-PET) [29], DHS tag density correlations [1], and

cap analysis gene expression (CAGE)-based RNA correlations [30]. We also applied additional

filters for enhancer-promoter mapping (see Methods). The different criteria and resulting

number of chromatin interactions are described in S2 Fig. The list of genes with the resulting

recurrence level in each cancer is provided in S1 Table.

The genes recurrently mutated in this manner (i.e., TD genes) in either breast or liver can-

cer were enriched for cancer-related biological processes such as cell cycle, differentiation, and

apoptosis (Fig 1B). This enrichment was more pronounced with higher recurrence than lower

recurrence. In addition, these genes appeared to play a highly causative function in the cancer

regulatory network. When applied to the directional regulatory network in breast cancer [22],

the TDs of breast cancer exhibited a high causal score; in other words, they have a relatively

high outdegree in the network while positioned upstream of the causal path (Fig 1C; see Meth-

ods). This means that they tend to exert regulatory effects rather than be regulated by other

genes. Their causal score was so high as the known CDs that were identified based on the 20/

20 rule [14] or retrieved from the Cancer Gene Census (CGC) database [31]. This pattern was

not found when the TDs of liver cancer were projected onto the breast network (S3A Fig). We

also constructed other types of regulatory networks that show regulatory associations but not

regulatory directions [23,32,33] for each cancer. Again, a high connectivity of the TDs was

observed (Fig 1D, S3B~S3D Fig). Taken together, the TDs identified based on combinatorial

cis-regulatory variant recurrence seem to play a crucial oncogenic role through an extensive

perturbation of the regulatory network.

We performed permutation-based statistical tests on the cis-recurrence measures (Fig 1E).

First, two types of variant simulations were performed. We first randomly generated the same

number of variants while maintaining the distribution of per-sample variant counts (in silico

simulation). We also performed a clinical simulation in which the same number of variants

was retrieved from the control set of variants derived from samples of other cancer types. In

both breast cancer and liver cancer, and from both simulations, the observed level of recur-

rence was significantly higher than that expected by chance (S4 Fig). Selected examples of

individual genes are provided in S5 Fig. Next, we mapped variants to an irrelevant chromatin

interactome with comparable data types and size (“Other epigenome” in Fig 1E). Based on

K562 data, we generated control epigenomic datasets against MCF7 and HepG2. In contrast

to non-recurrent genes, recurrently mutated genes were 2~3 times more frequently detected

when using the matched epigenome (S6 Fig), implying the tissue specificity of the recurrent

cis-regulatory variants. Together, these results suggest the combinatorial recurrence patterns

we identified were of biological relevance rather than from technical artifacts.

The 20/20 and CGC CDs also showed high connectivity in the transcription network

despite some exceptions (S3B Fig), meaning that they may be able to act through transcrip-

tional perturbation as well as through protein malfunction. By contrast, in the protein-protein

interaction network [24] and functional association network [25], the TDs were not so highly

connected as the CDs (S7 Fig). These suggest that unlike the CDs, the oncogenic effects of the

TDs may be confined to the transcription network. However, disease proteins are not scattered

randomly in biological networks, but tend to interact with each other and form network mod-

ules [34]. Therefore, we tested whether the TDs frequently interact with the CDs in the protein

interactome. Indeed, we observed a positive correlation between the recurrence level of the

network in breast cancer. The degree was divided by the network average. (E) Schematic illustration of genomic simulation (in silico or clinical) in

which variants are randomized, and epigenomic simulation in which K562 chromatin interactome is used in place of MCF-7 and HepG2.

https://doi.org/10.1371/journal.pcbi.1005449.g001
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TDs and their agglomeration with the CD genes (Fig 2 and S8 Fig). In other words, genes with

a high recurrence of regulatory variants tend to interact frequently with genes with a high

recurrence of coding variants.

This finding, in concert with the high degree of the CDs in the protein interactome, led us

to test whether the CDs have modular relationships with the TDs (Fig 3A). For a given gene

and all its neighbors in the network, we computed the combinatorial chromatin-based mea-

sure of cis-recurrence as described above. Then, we examined the degree to which the cis-

recurrence levels of the given gene itself and all its neighbors can predict the coding driver sta-

tus of the given gene (see Methods). The CDs themselves had a higher level of cis-recurrence

than other genes as indicated by the gray receiver operating characteristic (ROC) curves in Fig

3B. This is consistent with the high connectivity of the CDs in the regulatory network. How-

ever, the modular extension of the recurrence levels considerably improved the performance

of CD prediction (colored ROC curves in Fig 3B). The TP53 network module is illustrated

in Fig 3C with the coding recurrence levels in breast and liver cancer (yellow and blue bars

at the center) and regulatory recurrence levels in each cancer (violet and green bars at the

circumferences).

It is notable that this approach performs better for the prediction of the CDs than for the

prediction of all known cancer genes (S9 Fig). For example, compare the CGC CDs identified

by point variants (Fig 3B) with all CGC genes (S9 Fig). This implies evolutionary interactions

between protein-coding and cis-regulatory point variants during cancer development. We

examined complementary recurrence patterns of interacting coding and regulatory variants.

We computed variant complementarity as described in Fig 4A for each pair of genes. As

shown in Fig 4B, this measure was significantly higher for the interacting CD-TD pairs (red

boxplots) than all CD-TD pairs (blue boxplots) and all background coding-regulatory variant

pairs (gray boxplots). Complementary variant patterns between coding variants of TP53 and

regulatory variants of its interacting genes with the greatest degrees of variant complementar-

ity are illustrated in Fig 4C. In the given breast cancer samples, MYC, CEBPB, CCND1, and

TFAP2C regulatory variants showed clear mutual exclusivity between themselves as well as

with TP53 coding variants. Mutual exclusivity of the coding variants of proteins on the same

signaling pathways has been a focus of interest. However, such relationships between coding

and regulatory variants have never been investigated before.

In summary, we search the chromatin interactome and protein interactome for combinato-

rial regulatory variant recurrence with aim to prioritize cancer-driving genes. Candidate

transcriptional driver genes, ones that are recurrently affected by cis-regulatory variants via

chromatin interactions, showed functional and network features that could be shared with

cancer-driving genes. The gene transcription network, especially the Bayesian causal regula-

tory network, exhibited the potential effects of these genes on extensive network perturbation.

Genes with recurrent coding variants also stood out in the regulatory network. For example,

tumor suppressors and oncogenes can perturb the regulatory network through transcriptional

silencing or activation. In fact, these genes were high in cis-regulatory recurrence, indicating

that they may be recurrent for both coding and regulatory variants.

For the first time, we systematically investigated interactions between genes associated

with coding variants and those with regulatory variants. The regulatory recurrent genes are

not hubs per se in the protein interactome but frequently interact with genes of high coding

variant recurrence. The variant occurrence patterns support the complementary evolution

of the coding and interacting regulatory variants during cancer development. Therefore, the

recurrent regulatory variants may act not only through an extensive perturbation of the regu-

latory network but also by altering the protein network through interactions with coding

variants.
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Fig 2. Overrepresentation of interactions between coding drivers and transcriptional drivers in the protein interactome. The

significance of enrichment was estimated as the observed-to-expected ratio of the number of interactions for each TD category grouped

by the recurrence level as combined for breast and liver cancer. The expected number was obtained by permuting the links or nodes of

the network. The permutation was repeated 1,000 times. (A) Enrichment of interactions between the TDs and CGC CDs. (B) Enrichment

of interactions between the TDs and 20/20 CDs.

https://doi.org/10.1371/journal.pcbi.1005449.g002
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Fig 3. Network module of coding drivers and transcriptional drivers. (A) Schematic view of a network module consisting of the central

CD and its partner TDs. (B) ROC graphs for the prediction of the 20/20 CD (left) and CGC CD (right) based on the modular recurrence level.

The gray curves are results when the cis-regulatory recurrence level of the CD alone was used. The colored curves are resulted from a

modular extension of recurrence based on the average, sum, or maximum of the neighbor TDs (see Methods for detail). (C) Network-level

recurrence patterns of the TP53 module. The yellow and blue bars at the center indicate the coding recurrence levels of TP53 in breast cancer

and liver cancer, respectively. The violet and green bars at the circumferences represent the regulatory recurrence levels of TP53-interacting

genes in the functional network in breast cancer and liver cancer, respectively.

https://doi.org/10.1371/journal.pcbi.1005449.g003
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Fig 4. Complementary recurrence of variants of coding drivers and interacting transcriptional drivers. (A)

Schematic illustration and description of the variant complementarity measure between the interacting CD and TD. (B)

Variant complementarity of interacting CD-TD pairs (red boxplots), all CD-TD pairs (blue boxplots), and all pairs (inclusive

of non-recurrent genes) with background coding-regulatory variants (gray boxplots). (C) Complementary recurrence

patterns between coding variants of TP53 and regulatory variants of top 5 genes with highest complementarity in breast

cancer and top 5 genes with highest complementarity in liver cancer. Each column indicates each breast or liver cancer

sample. Regarding variant types, the same color-coding as in Fig 3C was used.

https://doi.org/10.1371/journal.pcbi.1005449.g004
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To directly estimate the effect of a cis-regulatory variant, the regulatory network of the

sample that carries the given variant should be interrogated. For example, a personalized

characterization of regulatory variants can be conducted by using sample-specific networks

[35]. This approach will be useful when one is interested in a specific driver gene and would

like to know which particular genes are affected by the variants of this driver gene. For this,

we need a large number of whole-genome sequenced samples from which TDs can be identi-

fied reliably and matched gene expression data based on which sample-specific networks can

be constructed.

It should be noted that recurrence is not an absolute indicator of cancer-driving variants.

For example, harmfulness of amino acid substitutions can be directly measured [36]. Cancer-

related genes identified in this fashion showed high connectivity in protein interaction net-

works [36] as the CDs identified on the basis of recurrence. However, there is currently no

such method for noncoding regulatory variants. In conclusion, our results illustrate that vari-

ous types of biological networks can deepen our understanding of the cancer genome and pro-

mote the discovery of novel cancer genes.

Material and methods

Sequencing data acquisition and processing

We downloaded variant calls for whole genome sequences of 507 cancer samples across 10

different cancer types from ftp://ftp.sanger.ac.uk/pub/cancer/AlexandrovEtAl/somatic_

mutation_data [37]. The variants detected by the filters of the Sanger pipeline were excluded

from our analysis. In total, we used 647,695 point variants in 119 breast cancer samples and

899,449 point variants in 88 liver cancer samples. Variants of other tumor types were used for

our clinical simulation, in which the same number of variants as in breast or liver cancer were

retrieved and subjected to the computation of combinatorial recurrence. To single out func-

tional variants, we applied the position weight matrix of transcription factor binding to the

variant sites. The transcription factor binding information was obtained from the human

CIS-BP (Catalog of Inferred Sequence Binding Preferences) database [38] and TRANSFAC

[39]. The screening of transcription factor binding sites was performed by the FIMO tool [40].

Gain or loss of the binding sites by variants was evaluated based on the P value differences

from the FIMO outputs. The P value cutoff of 10–5 was used.

Chromatin interactome data

To map the target genes of the identified regulatory variants, we used four chromatin interac-

tome datasets in each cancer type: (1) ChIA-PET [26–28], (2) Distal-proximal DHS tag corre-

lation [1], (3) CAGE-based enhancer RNA-messenger RNA correlation [30] and (4) IM-PET

[29]. As for ChIA-PET, we focused on RNA polymerase II-mediated chromatin interactions

measured in MCF-7 and K562 [27]. For a filtering purpose, PET counts� 3 were used to

avoid false positive interactions. CAGE-detected enhancer RNA varied 2 ~ 2,860 bp in length,

so we defined enhancers as 100 bp upstream and downstream of the center of an enhancer

RNA. For gene annotation, we used protein coding genes from the GENCODE v19 [41]. Pro-

moters were defined as 2 kb upstream ~ 500 bp downstream of the transcription start site.

Finally, we merged all chromatin interactome data separately for each cell type (MCF-7,

HepG2, and K562) after filtering out promoter-promoter interactions. Because the DHS corre-

lation and CAGE correlation data provide a universal set of enhancer-promoter mappings, we

intersected the DHS regions of the relevant cell type to reconstruct the cell type-specific chro-

matin interactome. The cell type-specific subsets were combined with ChIA-PET and IM-PET
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in MCF7 for breast cancer analysis, IM-PET in HepG2 for liver cancer analysis, and ChIA-PET

and IM-PET in K562 for the epigenome simulation described later.

Identifying recurrent regulatory variants

We computed combinatorial cis-regulatory recurrence levels by projecting the regulatory vari-

ants in breast cancer and liver cancer onto the merged chromatin interactome. Recurrent

genes were defined as having a co-occurrence of> = 2. Furthremore, we grouped all genes

into three categories according to their combinatorial cis-recurrence levels: no recurrence for

a co-occurrence of 1, low recurrence for a co-occurrence of 2 ~ 4, and high recurrence for a

co-occurrence of> = 5. The two regions linked by chromatin interactome data per se can be

assumed to be cis-regulatory regions; the ChIA-PET, DHS correlation, CAGE correlation,

and IM-PET interactome are based on RNA polymerase II binding, chromatin accessibility,

enhancer and messenger RNA expression, and various enhancer and promoter features,

respectively. However, we applied additional filters for the detection of enhancers and promot-

ers by using histone modification (H3K27ac and H3K4me3), RNA polymerase II binding,

p300 binding, and RNA expression. The different criteria and resulting number of chromatin

interactions are shown in S2 Fig. The resulting recurrence level with each criterion for each

gene is provided in S1 Table.

Recurrence simulation tests

We performed two types of genomic simulation and one type of epigenomic simulation

to assess the statistical significance of the observed combinatorial cis-recurrence levels.

First, random variant sets were constructed for each cancer in silico by generating the same

number of variants while maintaining the distribution of per-sample variant counts. Sec-

ond, instead of randomly generating in silico variants, the same number of variants for each

sample was retrieved from the other 506 clinical samples across various tumor types. These

two genomic simulations were repeated 1,000 times to generate a null distribution of recur-

rence levels. Third, we mapped the real variants to an irrelevant chromatin interactome.

The same number of the ChIA-PET, IM-PET, DHS correlation, CAGE correlation interac-

tions as the original data (MCF-7 and HepG2) was retrieved randomly from the matching

K562 data.

Gold-standard sets of coding drivers and other cancer genes

We generated two gold-standard sets of the CDs: one from the CGC database [31] and the

other based on the 20/20 rule [14]. From the CGC, we retained frameshift, missense, nonsense,

and splicing variants while excluding amplifications, large deletions, and translocations, in

order to focus our analysis on point variants. The 20/20 set was constructed based on the

hypothesis that > 20% variants in an oncogene should be at recurrent positions and> 20%

variants in a tumor suppressor gene need to be inactivating or truncating. We used three more

inclusive gene sets. First one was CGCAll, which included all genes in the CGC database. Sec-

ond, AllOnco is a master set of other seven cancer gene sets [42]. Third, MouseIns is a set con-

sisting of genes identified by insertional mutagenesis in mice [43,44].

Regulatory network analysis

For a directional, causal gene regulatory network, we employed our previously constructed

breast cancer Bayesian network [22]. This global network was constructed at an unprece-

dented level of biological coverage and accuracy based on precise modeling of genomic
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regulatory interactions. We computed a causal score for each gene on the basis of its outde-

gree (the number of outgoing links) in the network and relative position in the causal chain.

The causal chain was defined as the longest (or shortest) path connecting the head and tail

nodes via the gene of interest. The causal score is proportional to the relative outdegree in

the network (the number of outgoing links divided by the total number of links of the given

node) and the relative distance to the tail node of the causal path. The relative distance was

obtained by considering the length of the causal path. Choice of the longest or shortest

path did not make significant differences. For non-directional association networks, we

employed ARACNe (Algorithm for the Reconstruction of Accurate Cellular Networks)

[23] and PCA-PMI (Part Mutual Information-based PC-algorithm) [33]. We applied the

available tools (http://califano.c2b2.columbia.edu/aracne [45] and http://www.sysbio.ac.cn/

cb/chenlab/software/PCA-PMI/) for gene expression data in breast cancer and liver cancer

separately. For this analysis, we downloaded gene expression data (Illumina HiSeq-based)

for 1215 breast cancer and 423 liver cancer samples from the Cancer Genomics Browser

(https://genome-cancer.ucsc.edu/).

Protein interactome analysis

We employed two different types of the protein interactome: (1) an integrated physical interac-

tion network constructed by adding interactions from Stitch-seq mapping [46] and the HINT

database [47] to the basal data [24] consisting of the yeast-two-hybrid interaction pairs and

integrated literature-based protein-protein interactions, and (2) a probabilistic functional net-

work [25] constructed by a modified Bayesian integration of various types of data from multi-

ple organisms. Only direct links between the CDs and TDs were considered. The expected

number of interactions was estimated by generating the null distribution through 1,000 ran-

dom permutations of nodes or links of each network. The real (observed) number of interac-

tions was divided by the 1,000 randomized (expected) numbers of interactions; thus we

calculated enrichment scores as the observed-to-expected ratios.

Driver prediction by modular regulatory recurrence

We sought to examine modular relationships between the CDs and TDs. First, for a given gene

and all its neighbors in the network, we computed the combinatorial chromatin-based mea-

sure of cis-regulatory recurrence. Then, we examined the degree to which the cis-recurrence

levels of the given gene itself and its neighbors can predict the coding driver status of the given

gene. We used three metrics for recurrence combination at the modular level. Let M(v) be the

number of cases (patients) in which gene (node) v has cis-regulatory variants, in other words,

the combinatorial cis-regulatory recurrence of gene v. Let L(v) be the set of linked neighbors of

gene v and deg(v) be the number of linked neighbors of gene v. With these, the three scoring

metrics for gene v are defined as follows.

Average of the neighbor variant occurrences:

ScoreaverageðvÞ ¼ MðvÞ þ
P

u2LðvÞMðuÞ
degðvÞ

:

Weighted max of the neighbor variant occurrences:

ScoreMaxðvÞ ¼ MðvÞ þmaxfxjx ¼ MðuÞ �Wðv; uÞ; u 2 LðvÞg;

where W(v, u) is the normalized edge weights between gene v and gene u, which indicate the

degree of functional association [25].
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Degree-normalized sum of the neighbor variant occurrences:

ScoresumðvÞ ¼ MðvÞ þ
X

u2LðvÞ

MðuÞ
degðuÞ

:

Considering the edge weights did not improve the predictability of the method in the case

of the average and sum of the neighbor variant occurrences.

Supporting information

S1 Fig. Workflow of the study.

(TIF)

S2 Fig. (A) Schematic of different filters and (B) resulting number of chromatin interac-

tions. The applied filters were based on histone modification (H3K27ac and H3K4me3), RNA

polymerase II binding, p300 binding, and RNA expression.

(TIF)

S3 Fig. Characterization of the TDs in the transcription network. (A) Relative causal score

of the liver TDs grouped by the recurrence level in the breast cancer network. (B) Relative

degree of the liver cancer TDs in the liver cancer coexpression network based on ARACNe.

(C) Relative degree of the breast cancer TDs in the breast cancer association network based on

PCA-PMI. (D) Relative degree of the liver cancer TDs in the liver cancer association network

based on PCA-PMI.

(TIF)

S4 Fig. Results of the in silico and clinical simulation for (A) breast cancer and (B) liver

cancer variants. The null distribution of the number of recurrently mutated genes (upper)

and the average recurrence of all genes (lower) generated by 1,000 simulations. The red and

green lines denote the real figures.

(TIF)

S5 Fig. Examples of the TDs in (A) breast cancer and (B) liver cancer. The red and green

lines indicate the real recurrence level of each gene. The null distribution of the recurrence lev-

els was generated by the in silico or clinical simulation.

(TIF)

S6 Fig. Results of the epigenome simulation in (A) breast cancer and (B) liver cancer. The

number of non-recurrent (left) and recurrent (right) genes when the matched epigenome

(MCF-7 or HepG2) or control epigenome (K562) was used.

(TIF)

S7 Fig. Relative degree of the TDs and CDs in (A) the physical interaction network and (B)

the functional association network. The breast and liver cancer TDs were combined.

(TIF)

S8 Fig. Frequent protein interactions between the TDs and (A) CGC CDs and (B) 20/20

CDs. Link or node randomization was performed 1,000 times to obtain the distribution of

expected number of interactions. The red lines denote the observed number of interactions.

(TIF)

S9 Fig. ROC graphs for the prediction of non-CD cancer genes based on the modular

recurrence level.

(TIF)
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S1 Table. Combinatorial cis-regulatory recurrence levels measured for each gene by using

the different criteria described in S2 Fig.
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