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Abstract

Multiple sclerosis (MS) is a chronic, immune-mediated demyelinating disease of the central

nervous system of unclear etiology, but there is some evidence that viral infections could be

responsible for triggering autoimmune mechanisms against myelin. We searched for viral

RNA and DNA in cerebrospinal fluid (CSF) of 34 MS patients and 13 controls using RT-

PCR/PCR against common neurotropic viruses. In addition, shotgun DNA- and RNA-based

metagenomics were done in 13 MS patients and 4 controls. Specific quantitative real-time

RT-PCR/PCR testing revealed the presence of viral nucleic acid in seven (20.59%) MS

patients and in one (7.69%) control patient. In MS patients the most frequently detected was

human herpesvirus type 6 (HHV-6; 3 cases; 8.82%); followed by Epstein-Barr virus (EBV; 2

cases; 5.88%), varicella zoster virus (VZV; 1 case; 2.94%) and Enterovirus (EV; 1 case;

2.94%). The single identified virus among controls was EBV (7.69%). DNA and RNA meta-

genomic assays did not identify any known eukaryotic viruses even though three of the ana-

lyzed samples were low-level positive by specific quantitative real-time PCR. In conclusion,

we detected the presence of Herpesviridae and occasionally Enteroviridae in CSF from

patients with MS but their prevalence was not significantly higher than among controls.

Metagenomic analysis seems to be less sensitive than real-time RT-PCR/PCR and it did not

detect any potential viral pathogens.

Introduction

Multiple sclerosis (MS) is a chronic, immune-mediated demyelinating disease of the central

nervous system (CNS); [1]. The Global Burden of Diseases, Injuries, and Risk Factors Study

estimated that the number of patients worldwide is close to 2.2 million which poses a major
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health and economic burden on the society [2]. In the US it is estimated that the advanced

stages of the disease result in healthcare costs ranging from $8,528 to $54,244 per patient per

year [3]. Unfortunately, despite intensive research the pathogenesis of the disease remains

unknown [4].

A number of patient factors have been suspected to play some role in MS development,

including genetic susceptibility [5], high estrogen levels [6], smoking [7] and vitamin D defi-

ciency [8], but there is also evidence for environmental influence since there is an increase in

disease risk for all individuals moving from low to high MS prevalence areas [9].

A number of epidemiological studies have linked various viruses including Epstein-Barr

virus (EBV), human herpesvirus type 6 (HHV-6), human cytomegalovirus (CMV), herpes

simplex viruses (HSV), human endogenous retrovirus (HERV), Measles virus (MeV) and even

transfusion transmitted virus (TTV) with MS but the strongest overall seems to be the associa-

tion with EBV and HHV-6 [7, 9–11]. However, previous studies used routine diagnostic

methods thus limiting the detection to the most common pathogens [12]. Next generation

sequencing (NGS) metagenomics offers an alternate approach to the identification of patho-

gens as it allows for characterization of whole microbial communities [13].

Only a few metagenomic studies were conducted so far on viral populations in MS patients

which resulted in finding of GB virus-C (GBV-C) in the brain of one MS patient [14] and a

very limited number of NGS reads mapping to EBV, CMV, and parvovirus in cerebrospinal

fluid (CSF) [15]. In our previous small study shotgun metagenomic analysis of CSF detected

VZV-DNA in a patient with Central Nervous System Idiopathic Inflammatory Demyelinating

Disorder (IIDD); [16]. This finding encouraged us to conduct a more comprehensive search

for viral agents in CSF of MS patients using both RT-PCR/PCR testing for the most common

neurotropic viruses and shotgun DNA/RNA-based metagenomics.

Methods and methods

Patients

Forty-seven patients (30 women, 17 men) aged from 17 to 71 years (median 30 years), who

were admitted to the Department of Neurology, Medical University of Warsaw in the years

2012–2016 with suspicion of MS were subjects of the study. MS was eventually confirmed in

34 patients and excluded in the remaining 13 patients, who were considered controls. Patient

and control demographical, clinical and laboratory data are shown in Table 1.

Four control patients were diagnosed with peripheral neuropathy, three had peripheral ver-

tigo and two suffered from retinopathy, while the remaining four patients remained undiag-

nosed. MS was diagnosed according to the revised (2010) McDonald criteria [17], which were

in use at the time of the study, but all our patients met the revised McDonald criteria intro-

duced in 2017 [18]. All MS patients had Relapsing-Remitting MS (RRMS) and CSF was col-

lected within 1–4 weeks from the onset of symptoms. After the initial hospitalization for 7–10

days during which the SM diagnosis was made, patients were followed up at the outpatient

clinic for at least 2 years.

All patients gave a written informed consent and all research was performed in accordance

with the relevant guidelines and regulations. The study was approved by the Internal Review

Board of the Medical University of Warsaw (approval number: KB/8/2015).

Nucleic acids extraction

CSF samples were centrifuged at 1,200 rpm for 20 min at 4˚C, aliquoted and kept frozen at

-80˚C until analysis. For RT-PCR/PCR assays total RNA and DNA were extracted from 200μl

of CSF using TRIzol LS (Thermo Fisher Scientific, USA) and NucleoSpin Plasma XS
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(Macherey-Nagel, Germany), respectively, whereas for metagenomic analysis nucleic acids

were extracted from 500μl of CSF. Extracted RNA/DNA were suspended in 20μl of water.

Virus-specific RT-PCR/PCR

CSF samples were analyzed using in-house quantitative real-time RT-PCR/PCR described pre-

viously [19–22]. These assays detected the following viruses: herpes simplex virus types 1 and 2

(HSV-1 and HSV-2, respectively), varicella zoster virus (VZV), EBV, CMV, HHV-6, human

herpes virus type 7 (HHV-7), human adenoviruses (HAdVs) and enteroviruses (EV; Coxsackie

A9, A16, B2, B3, B4, B5; ECHO 5, 6, 9, 11, 18, 30 and enterovirus 71). Limits of detection

(LOD) for quantitative PCRs were as follows: for HSV-1–253 viral copies/ml, HSV-2–369 viral

copies/ml, VZV—150 viral copies/ml, CMV– 403 viral copies/ml, EBV—226 viral copies/ml,

HHV-6–111 viral copies/ml, HHV-7–153 viral copies/ml, HAdV—102 viral copies/ml and EV

—240 viral copies/ml.

DNA/RNA preamplification and NGS library preparation

Due to the expected low amounts of DNA/RNA in CSF a preamplification step was introduced

to enable the construction of NGS libraries for sequencing [23]. RNA was reversely transcribed

Table 1. Clinical data and RT-PCR/PCR results of multiple sclerosis (MS) patients and controls.

MS Controls

n = 34 n = 13

Age (years; mean ± SD) 38.38 ± 13.85 31.23 ± 8.92

Gender:

Male, n (%) 14 (41.17) 3 (23.07)

Female, n (%) 20 (58.82) 10 (76.9)

At admission:

Visual symptoms, n (%) 5 (14.71) 3 (23.07)

Brainstem symptoms, n (%) 3 (8.82) 1 (7.69)

Sensory symptoms, n (%) 8 (23.53) 4 (30.76)

Gait and equilibrium disturbances, n (%) 3 (8.82) 2 (15.38)

Retrobulbar optic neuritis, n (%) 3 (8.82) 0 (0)

Brainstem syndrome, n (%) 3 (8.82) 4 (30.76)

Cerebellar syndrome, n (%) 2 (5.88) 1 (7.69)

Paresis, n (%) 10 (29.41) 0 (0)

MRI findings:

Demyelinating lesions in MRI brain, n (%) 25 (73.53) 0 (0)

Demyelinating lesions in cervical spine MRI, n (%) 25 (73.53) 1 (7.69)

Demyelinating lesions in thoracic spine MRI, n (%) 11 (32.35) 0 (0)

CSF analysis:

Cytosis (in 1μl), mean ± SD 5.73 ± 5.32 2.70 ± 1.97

% of lymphocytes, mean ± SD 59.43 ± 24.24 43.38 ± 23.66

% of monocytes, mean ± SD 40.48 ± 24.13 54.87 ± 24.30

Proteins (mg/dl), mean ± SD 37.78 ± 16.41 33.18 ± 12.26

Unique oligoclonal bands, n (%) 20 (58.82) 0 (0)

Detected viruses, n (copies/ml):

Human herpesvirus type 6 3 (900; 1100; 1150) 0

Epstein-Barr virus 2 (1650; 1750) 1 (1650)

Enteroviruses 1 (1500) 0

Varicella zoster virus 1 (550) 0

https://doi.org/10.1371/journal.pone.0240601.t001
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by single-primer isothermal amplification (Ribo-SPIA), using Ovation RNA-Seq V2 system

(NuGEN, San Carlos, USA) following manufacturer’s recommendation. DNA was preampli-

fied using SeqPlex Enhanced DNA Amplification protocol (Sigma-Aldrich, USA). Preampli-

fied cDNA and DNA were purified using Agencourt AMPure XP beads (Beckman Coulter,

USA) at a ratio of 0.8 (cDNA/DNA mixture volume to beads).

Libraries for NGS were prepared from one ng of cDNA/DNA using Nextera XT Kit (Illu-

mina, USA) following manufacturer’s protocol. The quality and average length of NGS library

was assessed using Bioanalyzer and DNA HS kit (Agilent Technologies, USA). Samples were

double indexed, pooled equimolarly and sequenced on Illumina MiSeq (150nt, paired-end

reads) or Illumina HiSeq (101nt, paired-end reads).

NGS data analysis

Raw reads were trimmed in a process including adaptor and artifact removal and discarding

reads with bases below quality score of Q20 (phred quality score) using Trimmomatic [24].

Reads shorter than 50 bp were excluded and the remaining reads were mapped to human ref-

erence sequence (hg19) with Stampy software [25]. Next, all unmapped sequences were com-

pared to NCBI genomic viral reference database (viral RefSeq release 96) using Bowtie2 [26].

Reads were sorted, indexed with SAMtools [27], counted and statistically analyzed with stan-

dard R packages. Non-human sequences were uploaded into Sequence Read Archive (SRA);

(BioProject ID PRJNA656949).

The criteria for positive virus detection were as follows: i) at least three reads specific for a

particular viral species, ii) reads had to be distributed over the whole genome, iii) no presence

of any of these viral reads in the control samples. Similar criteria for metagenomic virus detec-

tion were previously applied by others [28].

Results

Quantitative real-time RT-PCR/PCR

Specific quantitative real-time PCR testing revealed the presence of viral nucleic acid in seven

(20.59%) out of 34 MS patients and in one (7.69%) out of 13 control patients (not significant

by Fisher’s exact test). The most frequently detected virus in MS patients was HHV-6 (3 cases;

8.82%); followed by EBV (2 cases; 5.88%), VZV (1 case; 2.94%) and EV (1 case; 2.94%). The

single identified virus among controls was EBV (7.69%). CSF viral loads ranged from 550 to

1750 copies/ml (Table 1).

DNA/RNA metagenomics

Metagenomic analysis was conducted on CSF samples from 13 MS patients and 4 controls. In

the remaining cases either not enough CSF sample was left for analysis, or the required amount

of cDNA/DNA to generate libraries for sequencing could not be obtained. Three of these

patients were positive by real-time PCR. All 17 CSF samples underwent RNA-based metage-

nomic, while DNA workflow was limited to 16 since in one sample the amount of DNA gener-

ated was insufficient for NGS library construction.

After quality control DNA sequencing provided 211,440,331 reads (average 13,215,021

reads per sample) while the RNA approach provided 451,782,975 reads (mean 26,575,469

reads per sample). Detailed metagenomic data are shown in Table 2.

Regardless of the applied metagenomic workflow, the vast majority of NGS reads mapped

to human genome (mean: 96.21%). DNA sequencing protocol provided from 42 to 10,174

(0.0003–0.0886%, mean: 0.0132%) viral reads, whereas RNA metagenomics provided from
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2,609 to 69,061 (0.0075–0.2443%; mean: 0.0491%) reads mapping to viral database. The vast

majority of identified viruses were bacteriophages, whereas the remaining viral reads either

did not fulfil the criteria for positivity or were contaminants and artifacts (not shown). Apply-

ing the initially established criteria, no eukaryotic viruses were detected in MS patients or

controls.

Discussion

Viral infections are likely to play an important role in the pathogenesis and exacerbation of

MS as evidenced by epidemiological studies and a number of reports on the potential of viruses

Table 2. Results of next-generation sequencing (NGS) metagenomic analysis of cerebrospinal fluid samples from 13 patients with multiple sclerosis (MS) and 4 con-

trols. Reads were compared to the NCBI genomic viral RefSeq database (release 96).

Pt.ID. DNA metagenomics RNA metagenomics PCR results (copies/

ml)Reads after

trimming

Human reads Viral reads Reads after

trimming

Human reads Viral reads

% % % %

Patients with multiple

sclerosis

Pt.1 11,259,882 11,102,501 543 28,346,849 27,576,271 2,609 _

98.6023% 0.0048% 97.2816% 0.0092%

Pt.2 11,652,912 11,585,099 151 35,374,714 34,774,984 2,650 _

99.4181% 13% 98.3046% 0.0075%

Pt.3 9,452,381 9,425,323 42 28,264,498 27,371,137 69,061 EBV

99.7137% 0.0004% 96.8393% 0.2443% 1650

Pt.4 10,199,344 10,110,897 112 32,157,586 30,886,056 3,649 _

99.1328% 0.0011% 96.0459% 0.0113%

Pt.5 - - - - - - 30,341,514 27,908,574 8,134 _

91.9815% 0.0268%

Pt.6 11,450,725 11,290,934 152 24,362,412 21,334,870 14,492 HHV-6

98.6045% 0.0013% 87.5726% 0.0595% 900

Pt.7 12,497,288 12,296,580 206 34,597,626 30,625,349 10,965 _

98.3940% 0.0016% 88.5186% 0.0317%

Pt.8 9,683,936 9,661,702 27 27,863,972 25,171,399 17,415 _

99.7704% 0.0003% 95.0061% 0.0625%

Pt.9 11,356,129 11,286,777 89 29,526,092 28,051,587 3,859 _

99.3893% 0.0008% 92.045% 0.0131%

Pt.10 14,047,954 13,841,856 142 32,263,205 30,998,982 2,647 _

98.5329% 0.0010% 96.0815% 0.0082%

Pt.11 17,996,325 17,970,847 3,847 16,143,084 15,556,034 5,190 _

99.8584% 0.0214% 96.3635% 0.0321%

Pt.12 17,316,819 17,243,319 1,812 15,986,092 15,665,630 3,520 VZV

99.5756% 0.0105% 97.9954% 0.0220% 550

Pt.13 18,198,157 17,928,811 4,596 14,837,915 14,524,058 3,926 _

98.5199% 0.0253% 97.8848% 0.0265%

Controls C1 11,477,569 11,455,335 10,174 37,763,528 35,475,114 15,440 _

99.8063% 0.0886% 93.9401% 0.0409%

C2 16,844,204 16,574,858 2,074 15,670,873 15,357,016 5,691 _

98.4010% 0.0123% 97.9900% 0.0363%

C3 17,059,233 15,133,657 6,352 15,423,599 14,487,706 5,923 _

88.7124% 0.0372% 93.9321% 0.0384%

C4 10,947,473 10,715,422 346 32,859,416 27,789,872 54,254 _

97.8803% 0.0032% 84.5720% 0.1651%

https://doi.org/10.1371/journal.pone.0240601.t002
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to trigger autoimmune responses to such mechanisms as myelin by molecular mimicry, epi-

tope spreading and bystander effect [10, 12, 29, 30]. Virus caused demyelination is a known

phenomenon and has been previously described for Progressive Multifocal Leukoencephalo-

pathy in which JC virus infects and ultimately kills myelin-producing oligodendrocytes [31]. A

similar mechanism could be operational for canine distemper virus (CDV) infection in the

white matter of dogs [32]. However, as Herpesviridae cause chronic infection it cannot be

excluded that their presence in CSF from MS patients is the result of their reactivation [33, 34].

In the current study we identified four different viral species in CSF from patients with MS

and the most frequently detected was HHV-6 as it was found in 3 patients (8.82%). Several ear-

lier studies reported on the increased prevalence of HHV-6-DNA and anti-HHV-6 IgG/IgM

in CSF of MS patients [35–38]. It has been proposed that HHV-6 might trigger demyelination

by molecular mimicry of the virus-encoded U24 protein to myelin basic protein (MBP), which

is a putative MS-associated autoantigen [39]. However, it should be noted that correlation

between HHV-6 infection and MS was not confirmed in some other studies but the numbers

of patients and controls were small [40–42].

A number of studies showed positive correlation between mononucleosis and MS [43–45]

and thus detection of EBV DNA in two of our patients was not unexpected. It was calculated

that mononucleosis increases the risk of MS development 2.3 times and in case of HLA-DR2-

positive patients the risk is even 7 times higher [44].

VZV, another Herpesviridae was detected in one MS patient. VZV DNA was reported to be

commonly present in CSF during MS relapses [46] and in our previous study we detected it in

a patient with clinically isolated syndrome (CIS) which is considered to represent the earliest

stage of MS demyelination [16, 47].

Enteroviral RNA was detected in one out of 34 MS patients. While Enteroviruses are typi-

cally associated with encephalitis, some enteroviral infections result in acute disseminated

encephalomyelitis (ADEM), and hallmark of this syndrome is the presence of demyelination

lesions in the brain and spinal cord [48, 49]. The patient was a 20 years-old male hospitalized

because of sensory symptoms, but he admitted to having a short episode of diplopia 4 months

earlier. A month after the current hospitalization the patient was readmitted because of retro-

bulbar optic neuritis. His symptoms were not preceded by any infection, he did not have fever,

encephalopathy or headache. His MRI showed a symmetric pattern of T2-weighted hyperin-

tense lesions in brain and spine including periventricular location. His CSF showed the pres-

ence of unique oligoclonal bands while pleocytosis and protein concentration were normal.

The relapsing-remitting course, presence of unique oligoclonal bands in CSF and character of

MRI changes strongly suggest that the patient had SM and not ADEM. Nevertheless, it cannot

be excluded that the presence of enteroviral RNA in this case was coincidental and did not

have any relationship to MS.

NGS-based metagenomic analysis offers a universal pathogen detection and has already

been used to identify viruses in neuroinfections [50, 51]. However, despite our two-pronged

RNA and DNA approach with a preamplication step no eukaryotic viruses were detected even

though three of the analyzed samples were positive for Herpesviruses by specific real-time

PCR. This discrepancy could be due to the fact that metagenomic workflows are less sensitive

than specific real time RT-PCR/PCR assays and thus may fail in analysis of low viral-copy CSF

samples [52]. Using serial dilutions of HIV and HSV positive sera in negative CSF, we have

previously found that the limit of detection was 102 and 103 copies per reaction, respectively,

while in the current study viral load in metagenomics-negative real-time PCR-positive samples

ranged from 550 to 1650 copies/ml [53].

Although CSF is considered to be free of microbial DNA, we detected numerous reads

mapping to various viral reference genomes but not fulfilling the initially established criteria of
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positivity. These mostly represented phage species and artifact sequences, which are particu-

larly common for samples with a low DNA and RNA loads [54, 55]. Moreover, the reagents

themselves could be the source of contaminating foreign sequences and may affect the inter-

pretation of metagenomic results [53, 56].

Conclusions

In conclusion, we detected the presence of Herpesviridae and occasionally Enteroviridae in

CSF from MS patients but their prevalence was not significantly higher than among controls.

Metagenomic analysis seems to be less sensitive than real-time RT-PCR/PCR and it did not

detect any additional potential viral pathogens.
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