data reports

open 👌 access

2. Experimental

2.1. Crystal data

 $C_{22}H_{28}Br_2O_2$ $M_r = 484.24$ Orthorhombic, *Pba2* a = 7.3680 (5) Å b = 22.4243 (14) Å c = 6.6148 (4) Å

2.2. Data collection

Bruker D8 VENTURE diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2014) $T_{min} = 0.630, T_{max} = 0.773$

2.3. Refinement

$$\begin{split} R[F^2 > 2\sigma(F^2)] &= 0.031 \\ wR(F^2) &= 0.065 \\ S &= 1.06 \\ 1966 \text{ reflections} \\ 123 \text{ parameters} \\ 1 \text{ restraint} \\ \text{H-atom parameters constrained} \\ \Delta\rho_{\text{max}} &= 0.48 \text{ e } \text{\AA}^{-3} \end{split}$$

 $V = 1092.91 (12) \text{ Å}^{3}$ Z = 2Mo K\alpha radiation $\mu = 3.72 \text{ mm}^{-1}$ T = 299 K0.16 \times 0.15 \times 0.10 mm

9406 measured reflections 1966 independent reflections 1615 reflections with $I > 2\sigma(I)$ $R_{int} = 0.036$

$\Delta \rho_{\rm min} = -0.21 \text{ e } \text{\AA}^{-3}$
Absolute structure: Flack x
determined using 621 quotients
$[(I^+)-(I^-)]/[(I^+)+(I^-)]$ (Parsons
et al., 2013)
Absolute structure parameter:
0.034 (9)

 Table 1

 Hydrogen-bond geometry (Å, °).

Cg is the centroid of benzene ring C3-C8.

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$O2-H2\cdots Cg^i$	0.82	2.54	3.047 (5)	122
Symmetry code: (i)	-x + 2, -y + 2,	Ζ.		

Data collection: *APEX2* (Bruker, 2014); cell refinement: *SAINT* (Bruker, 2014); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL2014* (Sheldrick, 2015); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXL2014* and *publCIF* (Westrip, 2010).

Acknowledgements

We are grateful to Nippon Soda Co. Ltd for the kind gift of 4-bromo-2-*tert*-butyl-5-methylphenol. This research was supported by grants from the Research and Education Center for Natural Sciences, Keio University (to SO), and Keio Gijuku Academic Development Funds (to RO).

Supporting information for this paper is available from the IUCr electronic archives (Reference: SU5104).

Crystal structure of 5,5'-dibromo-3,3'-ditert-butyl-6,6'-dimethylbiphenyl-2,2'-diol

Rika Obata,^a Shigeru Ohba,^a* Yasuaki Einaga^b and Shigeru Nishiyama^b

^aResearch and Education Center for Natural Sciences, Keio University, Hiyoshi 4-1-1, Kohoku-ku, Yokohama 223-8521, Japan, and ^bDepartment of Chemistry, Faculty of Science and Technology, Keio University; and JST-CREST/ACELL, Hiyoshi 3-14-1, Kohoku-ku, Yokohama 223-8522, Japan. *Correspondence e-mail: ohba@a3.keio.jp

Received 25 March 2015; accepted 28 March 2015

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland

The whole molecule of the title compound, $C_{22}H_{28}Br_2O_2$, is generated by twofold rotation symmetry. The dihedral angle of the biphenyl moiety is 85.05 (11)°. The hydroxy groups show intramolecular $O-H\cdots\pi$ interactions without any other hydrogen-bond acceptors. In the crystal, there are no other significant intermolecular interactions present.

Keywords: crystal structure; biphenyl; axial chirality; O—H \cdots π interactions.

CCDC reference: 1056738

1. Related literature

For the synthesis of the title compound using a transitionmetal catalyst, see: Kubota *et al.* (2012). For the determination of the absolute configuration of the corresponding (+)-chloro derivative, *viz. S*, see: Gutierrez *et al.* (2010). For the crystal structure of a similar compound, *i.e.* 5,5'-dimethoxy-6,6'-dimethylbiphenyl-2,2'-diol dichloromethane solvate, see: Guo *et al.* (2011).

References

- Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Guo, F., Konkol, L. C. & Thomson, R. J. (2011). J. Am. Chem. Soc. 133, 18-20.
- Gutierrez, E. G., Moorhead, E. J., Smith, E. H., Lin, V., Ackerman, L. K. G., Knezevic, C. E., Sun, V., Grant, S. & Wenzel, A. G. (2010). *Eur. J. Org. Chem.* pp. 3027–3031.

Kubota, Y., Shirakawa, S., Inoue, T. & Maruoka, K. (2012). *Tetrahedron Lett.* 53, 3739–3741.

- Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

supporting information

Acta Cryst. (2015). E71, o278-o279 [doi:10.1107/S2056989015006313]

Crystal structure of 5,5'-dibromo-3,3'-di-*tert*-butyl-6,6'-dimethylbiphenyl-2,2'diol

Rika Obata, Shigeru Ohba, Yasuaki Einaga and Shigeru Nishiyama

S1. Synthesis and crystallization

The synthesis of the title compound, (I), is described in Fig. 2. It was prepared using iodine-mediated coupling method from 4-bromo-2-*tert*-butyl-5-methylphenol. To the solution of 4-bromo-2-*tert*-butyl-5-methylphenol (0.242 g, 1 mmol) in dichloromethane (1 mL) was added *N*-iodosuccinimide (abbreviated to NIS, 0.225 g, 1 mmol) and 3% H₂O₂ (1 mL). After shaking (200 rpm) the reaction mixture for 24 h at room temperature, it was poured into saturated Na₂S₂O₃ solution, and extracted with chloroform. The organic layer was washed with saturated NaCl and dried over anhydrous Na₂SO₄. The mixture was evaporated and purified by silica-gel column chromatography to give title compound (I) as white solid (yield: 0.138 g, 57%). ¹H-NMR (400 MHz, CDCl₃) 1.32 (18H, s), 1.92 (6H, s), 4.80 (2H, s), 7.47 (2H, s). Tof-MS ES(-) Anal. 481.0357, Calcd. 481.0378 for C₂₂H₂₇O₂Br₂. The crystals were grown by slow evaporation from a toluene/*n*-hexane (1/4) solution.

S2. Refinement

Crystal data, data collection and structure refinement details are summarized in the experimental table. The hydroxyl H atom was located from a difference Fourier map but was refined as riding (AFIX 147) with $U_{iso}(H) = 1.5U_{eq}(O)$. C-Bound H atoms were included in calculated positions and refined as riding: C—H = 0.93–0.96 Å with $U_{iso}(H) = 1.5U_{eq}(C)$ for methyl H atoms and $1.2U_{eq}(C)$ for other H atoms.

Figure 1

The molecular structure of the title compound, with atom labelling. Displacement ellipsoids are drawn at the 50% probability level.

Figure 2

The synthesis of the title compound, (I).

5,5'-Dibromo-3,3'-di-tert-butyl-6,6'-dimethylbiphenyl-2,2'-diol

Crystal data $C_{22}H_{28}Br_2O_2$ $M_r = 484.24$ Orthorhombic, *Pba2* a = 7.3680 (5) Å b = 22.4243 (14) Å c = 6.6148 (4) Å $V = 1092.91 (12) Å^3$ Z = 2F(000) = 492

 $D_x = 1.472 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 4121 reflections $\theta = 2.9-23.6^{\circ}$ $\mu = 3.72 \text{ mm}^{-1}$ T = 299 KPrism, colourless $0.16 \times 0.15 \times 0.10 \text{ mm}$ Data collection

Bruker D8 VENTURE diffractometer Radiation source: fine-focus sealed tube ω scans Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 2014) $T_{\min} = 0.630, T_{\max} = 0.773$ 9406 measured reflections	1966 independent reflections 1615 reflections with $I > 2\sigma(I)$ $R_{int} = 0.036$ $\theta_{max} = 25.3^{\circ}, \ \theta_{min} = 2.9^{\circ}$ $h = -8 \rightarrow 8$ $k = -26 \rightarrow 26$ $l = -7 \rightarrow 7$
Refinement	
Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.031$ $wR(F^2) = 0.065$ S = 1.06 1966 reflections 123 parameters 1 restraint Primary atom site location: structure-invariant direct methods	Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0176P)^2 + 0.3778P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.48 \text{ e } \text{Å}^{-3}$ $\Delta\rho_{min} = -0.21 \text{ e } \text{Å}^{-3}$ Absolute structure: Flack <i>x</i> determined using 621 quotients $[(I^+)-(F)]/[(I^+)+(F)]$ (Parsons <i>et al.</i> , 2013) Absolute structure parameter: 0.034 (9)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

X	у	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
1.18668 (8)	0.81211 (2)	0.48288 (15)	0.0681 (2)
0.7528 (4)	0.98204 (13)	0.9897 (9)	0.0576 (8)
0.7777	1.0166	0.9607	0.086*
0.9856 (6)	0.96676 (17)	0.7429 (7)	0.0352 (10)
1.0903 (6)	0.9290 (2)	0.6223 (7)	0.0388 (11)
1.0536 (6)	0.8689 (2)	0.6397 (7)	0.0399 (11)
0.9212 (6)	0.84644 (19)	0.7649 (7)	0.0394 (11)
0.9023	0.8054	0.7685	0.047*
0.8150 (6)	0.88292 (19)	0.8859 (7)	0.0360 (10)
0.8518 (6)	0.94415 (19)	0.8707 (7)	0.0370 (11)
1.2322 (7)	0.9538 (2)	0.4852 (15)	0.0650 (14)
1.1993	0.9460	0.3473	0.098*
1.3467	0.9353	0.5143	0.098*
1.2417	0.9960	0.5058	0.098*
0.6668 (5)	0.8582 (2)	1.0234 (8)	0.0428 (15)
0.6564 (7)	0.7905 (2)	1.0111 (14)	0.074 (2)
0.6243	0.7789	0.8761	0.111*
0.5661	0.7762	1.1039	0.111*
0.7722	0.7737	1.0456	0.111*
	x 1.18668 (8) 0.7528 (4) 0.7777 0.9856 (6) 1.0903 (6) 1.0536 (6) 0.9212 (6) 0.9023 0.8150 (6) 1.2322 (7) 1.1993 1.3467 1.2417 0.6668 (5) 0.6564 (7) 0.5661 0.7722	x y 1.18668 (8) 0.81211 (2) 0.7528 (4) 0.98204 (13) 0.7777 1.0166 0.9856 (6) 0.96676 (17) 1.0903 (6) 0.9290 (2) 1.0536 (6) 0.8689 (2) 0.9212 (6) 0.84644 (19) 0.9023 0.8054 0.8150 (6) 0.98292 (19) 0.8518 (6) 0.94415 (19) 1.2322 (7) 0.9538 (2) 1.1993 0.9460 1.3467 0.9353 1.2417 0.9960 0.6668 (5) 0.8582 (2) 0.6564 (7) 0.7762 0.7722 0.7737	x y z 1.18668 (8) $0.81211 (2)$ $0.48288 (15)$ $0.7528 (4)$ $0.98204 (13)$ $0.9897 (9)$ 0.7777 1.0166 0.9607 $0.9856 (6)$ $0.96676 (17)$ $0.7429 (7)$ $1.0903 (6)$ $0.9290 (2)$ $0.6223 (7)$ $1.0536 (6)$ $0.8689 (2)$ $0.6397 (7)$ $0.9212 (6)$ $0.84644 (19)$ $0.7649 (7)$ 0.9023 0.8054 0.7685 $0.8150 (6)$ $0.94415 (19)$ $0.8707 (7)$ $1.2322 (7)$ $0.9538 (2)$ $0.4852 (15)$ 1.1993 0.9460 0.3473 1.3467 0.9353 0.5143 1.2417 0.9960 0.5058 $0.6668 (5)$ $0.8582 (2)$ $1.0234 (8)$ $0.6564 (7)$ 0.7762 1.1039 0.7722 0.7737 1.0456

C12	0.7053 (8)	0.8746 (3)	1.2449 (9)	0.0756 (18)	
H12A	0.8260	0.8623	1.2802	0.113*	
H12B	0.6195	0.8548	1.3311	0.113*	
H12C	0.6944	0.9170	1.2619	0.113*	
C13	0.4827 (6)	0.8829 (2)	0.9625 (15)	0.0760 (17)	
H13A	0.4791	0.9249	0.9894	0.114*	
H13B	0.3893	0.8632	1.0387	0.114*	
H13C	0.4634	0.8760	0.8208	0.114*	

Atomic displacement parameter	s (Ų)
-------------------------------	-------

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Br1	0.0866 (4)	0.0458 (3)	0.0718 (4)	0.0118 (2)	0.0311 (4)	-0.0118 (4)
O2	0.0646 (19)	0.0366 (16)	0.072 (2)	0.0049 (14)	0.018 (3)	-0.009 (3)
C3	0.040 (3)	0.030 (2)	0.036 (3)	0.0016 (19)	-0.004 (2)	0.001 (2)
C4	0.048 (3)	0.033 (3)	0.035 (3)	0.003 (2)	0.002 (2)	0.000 (2)
C5	0.048 (3)	0.035 (3)	0.037 (3)	0.009 (2)	0.003 (2)	-0.003 (2)
C6	0.046 (3)	0.028 (2)	0.045 (3)	0.002 (2)	-0.002(2)	-0.002 (2)
C7	0.036 (3)	0.034 (2)	0.038 (2)	0.008 (2)	-0.005 (2)	-0.002 (2)
C8	0.042 (3)	0.031 (3)	0.038 (2)	0.006 (2)	0.000(2)	-0.005 (2)
C9	0.084 (3)	0.048 (3)	0.063 (3)	0.003 (2)	0.033 (5)	-0.003 (5)
C10	0.035 (3)	0.045 (3)	0.048 (4)	-0.0010 (19)	0.008 (3)	0.003 (2)
C11	0.070 (3)	0.048 (3)	0.104 (6)	-0.013 (2)	0.036 (5)	0.008 (4)
C12	0.078 (4)	0.099 (5)	0.049 (4)	-0.021 (4)	0.010 (3)	0.002 (3)
C13	0.039 (3)	0.086 (4)	0.103 (5)	0.005 (2)	0.012 (4)	0.020 (5)

Geometric parameters (Å, °)

Br1—C5	1.913 (4)	С9—Н9В	0.9600	
O2—C8	1.369 (6)	С9—Н9С	0.9600	
O2—H2	0.8200	C10—C13	1.520 (7)	
С3—С8	1.394 (6)	C10—C11	1.521 (7)	
C3—C4	1.396 (6)	C10—C12	1.537 (8)	
C3—C3 ⁱ	1.506 (8)	C11—H11A	0.9600	
C4—C5	1.379 (6)	C11—H11B	0.9600	
С4—С9	1.491 (8)	C11—H11C	0.9600	
С5—С6	1.375 (6)	C12—H12A	0.9600	
С6—С7	1.386 (6)	C12—H12B	0.9600	
С6—Н6	0.9300	C12—H12C	0.9600	
С7—С8	1.403 (6)	C13—H13A	0.9600	
C7—C10	1.526 (6)	C13—H13B	0.9600	
С9—Н9А	0.9600	C13—H13C	0.9600	
С8—О2—Н2	109.5	C13—C10—C11	107.7 (4)	
C8—C3—C4	121.1 (4)	C13—C10—C7	110.4 (5)	
C8—C3—C3 ⁱ	117.3 (4)	C11—C10—C7	111.5 (4)	
C4—C3—C3 ⁱ	121.6 (4)	C13—C10—C12	109.3 (5)	
C5—C4—C3	115.9 (4)	C11—C10—C12	107.4 (5)	

C5—C4—C9	123.5 (4)	C7—C10—C12	110.5 (4)
C3—C4—C9	120.5 (4)	C10-C11-H11A	109.5
C6—C5—C4	123.2 (4)	C10-C11-H11B	109.5
C6—C5—Br1	116.5 (3)	H11A—C11—H11B	109.5
C4—C5—Br1	120.3 (3)	C10-C11-H11C	109.5
C5—C6—C7	122.2 (4)	H11A—C11—H11C	109.5
С5—С6—Н6	118.9	H11B—C11—H11C	109.5
С7—С6—Н6	118.9	C10-C12-H12A	109.5
C6—C7—C8	115.3 (4)	C10-C12-H12B	109.5
C6—C7—C10	122.2 (4)	H12A—C12—H12B	109.5
C8—C7—C10	122.5 (4)	C10-C12-H12C	109.5
O2—C8—C3	120.0 (4)	H12A—C12—H12C	109.5
O2—C8—C7	117.6 (4)	H12B—C12—H12C	109.5
C3—C8—C7	122.4 (4)	C10-C13-H13A	109.5
С4—С9—Н9А	109.5	С10—С13—Н13В	109.5
C4—C9—H9B	109.5	H13A—C13—H13B	109.5
H9A—C9—H9B	109.5	C10—C13—H13C	109.5
С4—С9—Н9С	109.5	H13A—C13—H13C	109.5
Н9А—С9—Н9С	109.5	H13B—C13—H13C	109.5
H9B—C9—H9C	109.5		
C8—C3—C4—C5	-0.5 (6)	C3 ⁱ —C3—C8—O2	0.0 (6)
C3 ⁱ —C3—C4—C5	178.5 (4)	C4—C3—C8—C7	0.1 (7)
C8—C3—C4—C9	179.6 (5)	C3 ⁱ —C3—C8—C7	-179.0 (4)
C3 ⁱ —C3—C4—C9	-1.4 (7)	C6—C7—C8—O2	-178.9 (4)
C3—C4—C5—C6	0.9 (7)	C10—C7—C8—O2	1.9 (6)
C9—C4—C5—C6	-179.3 (6)	C6—C7—C8—C3	0.1 (6)
C3—C4—C5—Br1	179.9 (3)	C10—C7—C8—C3	-179.1 (4)
C9—C4—C5—Br1	-0.2 (7)	C6—C7—C10—C13	-118.6 (5)
C4—C5—C6—C7	-0.8 (7)	C8—C7—C10—C13	60.5 (6)
Br1C5C7	-179.8 (3)	C6-C7-C10-C11	1.0 (6)
C5—C6—C7—C8	0.3 (7)	C8—C7—C10—C11	-179.8 (5)
C5—C6—C7—C10	179.4 (4)	C6-C7-C10-C12	120.4 (5)
C4—C3—C8—O2	179.0 (4)	C8—C7—C10—C12	-60.5 (6)

Symmetry code: (i) -x+2, -y+2, z.

Hydrogen-bond geometry (Å, °)

Cg is the centroid of benzene ring C3–C8.

D—H···A	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
O2—H2···Cg ⁱ	0.82	2.54	3.047 (5)	122

Symmetry code: (i) -x+2, -y+2, z.