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Abstract

Probing dynamic processes occurring within the cell
nucleus at the quantitative level has long been a
challenge in mammalian biology. Advances in bio-
imaging techniques over the past decade have enabled
us to directly visualize nuclear processes in situ with
unprecedented spatial and temporal resolution and
single-molecule sensitivity. Here, using transcription as our
primary focus, we survey recent imaging studies that
specifically emphasize the quantitative understanding of
nuclear dynamics in both time and space. These analyses
not only inform on previously hidden physical parameters
and mechanistic details, but also reveal a hierarchical
organizational landscape for coordinating a wide range of
transcriptional processes shared by mammalian systems
of varying complexity, from single cells to whole embryos.
perhaps single-molecule tracking (SMT), which relies on
The “space-time” of the cell nucleus and
techniques for its imaging
The nucleus is an organelle of central importance to the
eukaryotic cell, in which the information encoded in the
cell’s genome is stored, organized, expressed, duplicated,
and maintained. Each of these processes is highly regu-
lated, often in an interconnected fashion. While we now
have a relatively thorough understanding of the molecu-
lar machineries and mechanisms driving these
processes, our knowledge of how they are organized
spatially inside the nucleus remains inadequate. Such
a question is particularly pertinent in light of the fact
that all of these processes co-exist in the extremely
crowded nuclear space, thus suggesting that some de-
gree of functional compartmentalization is essential
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[1, 2]. Moreover, even in cases where the “geography” of
a nuclear process is known (either in Cartesian space or
sequence space), its temporal dynamics often remain
poorly characterized. Since many nuclear proteins move
rapidly and interact with various nuclear compartments
[3], these dynamic events, which can be likened to the
“historical” details of mammalian nuclear biology, pro-
vide critical insights into how these molecules search
for and reach their specific targets to carry out their re-
spective functions, all within this dense and yet ordered
nuclear “space-time”. These inadequacies in under-
standing call for novel ways of probing the nucleus by
visualizing these structures and processes in situ in sin-
gle cells, with high spatial and temporal resolutions and,
ideally, single-molecule sensitivity.
Among the imaging techniques currently available, the

most widely used as well as the most direct method is

the ability to detect the signal of individual biomolecules la-
beled with either fluorescent proteins or organic dyes [4, 5].
While those molecules undergoing rapid movement would
contribute to a diffuse fluorescence background, those that
are immobile or bound give rise to distinguishable signals
above the background, thus allowing their positions to be
localized and their dynamics tracked over a period of time
(Fig. 1a). However, the relative thickness of the mammalian
cell nucleus, its high auto-fluorescence background, and
the fact that many of the key molecular species are present
at high copy numbers [6] make single-molecule detection
in the nucleus challenging. This problem is particularly
pronounced when using wide-field epi-fluorescence micro-
scopes, which excite all molecules along the illumination
path, leading to higher background that could easily over-
whelm the signals of individual molecules. To circumvent
this difficulty, various schemes have been implemented to
reduce the excitation volume beyond that afforded by epi-
illumination and enhance sensitivity. In addition to earlier
solutions such as total internal reflection fluorescence
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Fig. 1. Optical techniques useful for imaging the mammalian cell nucleus in space and time. a Single-molecule tracking (SMT) using epi-illumination,
in which fluorescently labeled molecules within the laser focus (purple oval) are excited and their movements followed over time; a few representative
single-molecule trajectories are depicted. b Fluorescence correlation spectroscopy (FCS), which analyzes the fluctuations in fluorescence intensity as
molecules move in and out of the laser focus to obtain quantitative information on their dynamics; a representative intensity fluctuation trace (inset) and
the autocorrelation function curve calculated from the trace are shown. c Photobleaching-based imaging techniques, depicting a small region of the
nucleus (green) that has been selectively photobleached (dark green box); a typical FRAP curve is shown here (red arrowhead denotes photobleaching)
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(TIRF) and highly inclined and laminated optical sheet
(HILO) [7] microscopies, more recent efforts leverage the
superior optical sectioning capability of light-sheet micros-
copy (also termed selective plane illumination microscopy
(SPIM)) and have successfully achieved single-molecule
detection inside the cell nucleus [8–10] as well as super-
resolution imaging capable of resolving nuclear structures
beyond the diffraction limit [8, 11–13]. While fluorescent
proteins (FPs) such as GFP are still a common choice for
labeling proteins of interest, recently developed tags such as
SNAP [14], CLIP [15], and Halo [16] allow organic dyes,
which are brighter and more photostable than FPs, to be
used as fluorescent labels in live cells. In addition to
following protein molecules, labeling methods such as MS2
[17], PP7 [18], or RNA-targeting Cas9 [19] have also en-
abled live-cell detection of individual RNAs, while other
techniques such as single-molecule fluorescence in situ
hybridization (smFISH) [20], although incapable of captur-
ing dynamic information in live cells, can nonetheless probe
dynamic phenomena by providing high-resolution snap-
shots of RNA transcripts at defined time points.
Another powerful approach is fluorescence correl-

ation spectroscopy (FCS), which consists of a com-
pendium of related techniques [21–27] based on the
analysis of intensity fluctuations produced when
fluorescent molecules move in and out of a small
observation volume (Fig. 1b). Instead of tracking
individual molecules, these fluctuation traces are
subjected to autocorrelation analysis, a mathematical
algorithm capable of detecting patterns in temporal
signals, allowing quantitative information on the dy-
namics of the molecules to be extracted. The tem-
poral window of the fluctuations depends on the
photophysics of the fluorescent molecules as well as
their mobility, and can thus span timescales from
microseconds to seconds. As such, FCS is capable of
probing a wide range of dynamic processes in living
systems, including diffusion, transport, and binding
interactions [28, 29], and the analysis can be comple-
mented with Monte Carlo simulations to uncover
the dynamics of even more complex processes [30,
31]. FCS can be combined with photoactivation
(paFCS) to fine-tune the number of fluorescent mol-
ecules detected by selectively activating only a de-
sired fraction of the molecules [32], thereby
enhancing the signal-to-noise ratio and making it
suitable for systems with high fluorescence back-
ground. Integrating SPIM with FCS has also enabled
massively parallelized (instead of point-by-point) data
acquisition schemes [33, 34], leading to higher im-
aging speed and spatially resolved mobility and bind-
ing maps. Other related fluctuation-based techniques,
such as photon counting histogram (PCH) [35] and
number and brightness (N&B) analysis [36], are
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particularly suited for probing the concentration and
oligomerization state of biomolecules.
A third group of imaging approaches consists of

photobleaching-based techniques such as fluorescence
recovery after photobleaching (FRAP), fluorescence loss
in photobleaching (FLIP), and fluorescence localization
after photobleaching (FLAP) [37–39]. While all three in-
volve photobleaching fluorescent molecules in a local-
ized region of the cell using intense laser illumination,
FRAP monitors the replenishing of these molecules into
the region after a single photobleaching (Fig. 1c), FLIP
tracks how the loss of fluorescence propagates through
the cell upon repeated photobleaching, and in FLAP two
different colocalizing fluorophores are present in the re-
gion and photobleaching is performed on only one of
them. Owing to the complexity of the processes at work,
intense efforts have also been made regarding the rigorous
analysis of these datasets using various versions of the
reaction-diffusion model in order to extract dynamic in-
formation more accurately [40–43]. In addition, related
techniques such as pixel-wise photobleaching profile evo-
lution analysis (3PEA) can extend the temporal resolution
of FRAP to the millisecond regime, making it suitable for
monitoring fast and transient events in the cell [44].
Each of these techniques has its respective pros and cons.

SMT has the advantage of allowing dynamics to be visual-
ized directly without the need for additional calibrations and
corrections commonly associated with the other techniques
[45]; however, the relatively short trajectories that can be
captured (especially when using fluorescent proteins) could
limit its scope and utility. The photobleaching-based tech-
niques, on the other hand, are capable of probing dynamics
at longer timescales. However, given that such probing in-
volves a population (or ensemble) of molecules, these tech-
niques are prone to masking the intrinsic heterogeneities
among individual molecules; after all, many of the nuclear
processes (such as transcription or replication) involve only
one or two DNA molecules and a small number of enzyme
or regulatory molecules per event [46]. FCS has perhaps the
widest span in temporal coverage and uses less laser power,
thus reducing potential photodamage to the sample com-
pared to photobleaching-based methods. On the other hand,
the requirement of nanomolar concentrations of fluorescent
probes inevitably introduces some perturbation to the sys-
tem under study. Lastly, in the spatial realm, the fact that
the positions of individual molecules could be pinpointed
with nanometer precision potentially allows SMT and
smFISH to achieve resolutions beyond the diffraction limit
[47–49], giving it another competitive edge over the other
techniques, which remain diffraction-limited.
In this review, we survey some of the key recent studies

on imaging mammalian nuclear dynamics in both time and
space using these emerging approaches as well as some of
the more conventional techniques (such as confocal
microscopy). To that end, we focus on processes related to
transcription, not only because of the tremendous progress
made in recent years in understanding its quantitative dy-
namics in living systems [50–54], but also for the fact that
its organization encompasses a wide variety of spatio-
temporal modes commonly employed to regulate many
other nuclear processes.

Temporal organization of transcriptional
dynamics
Eukaryotic transcription is regulated first and foremost
through the binding and unbinding of a variety of transcrip-
tion factors (TFs), as well as their interactions with compo-
nents of the transcriptional machinery, chief among them
RNA polymerases, during transcription initiation. Mamma-
lian TFs have long been known to interact with DNA in a
highly dynamic manner [55]. Concurrent with the rapid pro-
gress in mapping the genomic binding sites of a large num-
ber of these factors using chromatin immunoprecipitation
(ChIP) and high-throughput sequencing technologies [56],
quantitative imaging using SMT, FCS, or photobleaching-
based approaches have recently shed light on how such
binding events occur in time.
A variety of TF dynamics have so far been investigated,

including their interactions with genomic DNA, co-
activators, and heterodimeric binding partners. Specifically,
distinct modes of TF–DNA binding have been resolved,
and diffusion constants, on/off rates, DNA residence times,
and bound and free fractions have been measured for a
diverse range of TFs, including, for example, the gluco-
corticoid receptor (GR) [9, 40, 42, 57–62], estrogen receptor
(ER) [9, 61, 63], Sox2 and Oct4 [32, 64–66], p53 [42, 59, 67,
68], c-Myc [69], positive transcription elongation factor (P-
TEFb) [69], cAMP response element-binding protein
(CREB) [70], signal transducer and activator of transcription
1 (STAT1) [71], retinoic acid receptor (RAR) [72], vitello-
genin binding protein (VBP) [73], and heat shock factor 1
(HSF1) [74]. For most TFs, specific and nonspecific binding
exhibit a clear separation of timescale, with the residence
time for the shorter-lived nonspecific binding falling in the
range of tens to hundreds of milliseconds, and that for the
longer-lived specific binding in the range of hundreds of
milliseconds to a few seconds [9, 40, 42, 59–61, 64, 66, 67,
70, 71]. Of special note is the fact that, after years of
improvement in analysis procedures, consistent values of
residence times and bound fractions have been reached for
both GR and p53 using SMT, FCS, and FRAP [60, 67, 75],
suggesting that we are at last in possession of a set of self-
consistent and complementary techniques for probing the
dynamics of TFs and other nuclear proteins.
Using the dynamic parameters uncovered, models for

how mammalian TFs search for their specific targets within
the nuclear space have been constructed. In consensus with
the target search mechanism in bacteria [76], mammalian
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Fig. 2. Temporal modes of organizing mammalian transcriptional dynamics. a Modulating transcription through TF binding and target search, in
which a TF molecule undergoes “facilitated diffusion” by partitioning its movement between free 3D diffusion (purple) and transient 1D sliding
along the DNA (blue) until the specific target sites are located and to which the TF stays bound for a long time (red). b An example of the
physiological consequence of TF binding dynamics, in which the long-lived bound fraction of Sox2 in a blastomere of a four-cell embryo predicts
the bias with which this blastomere will contribute to the inner mass of the embryo subsequently. c Modulating transcription through pulsatile
production or “bursts” of mRNAs, as a consequence of stochastic switching of the gene between the “on” and ”off” states. d Widely different
Nanog expression among a population of mouse ES cells as revealed by smFISH. In contrast to the sparse Nanog molecules present in the two
lower cells, multiple spots where bursts of Nanog transcription took place (indicated by red arrowheads) are discernible in the top cell. Dotted lines
delineate nuclear boundaries. Adapted from [66] (a, b) with modifications
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TFs also scan the genome by undergoing transient 1D
sliding along nonspecific DNA sites interspersed with 3D
diffusion steps between different regions of the genome, be-
fore reaching their specific targets (Fig. 2a). Such “facilitated
diffusion” [77] enhances the efficiency of the search process
and is exhibited by TFs such as Sox2 [64, 65] and STAT1
[71]. Similar mechanisms have also been found for non-
endogenous DNA-binding proteins such as Tet repressor
[78] and CRISPR-associated Cas9 [79], suggesting a con-
served approach to target search in the mammalian nucleus
shared by a wide range of genome interactors, both
eukaryotic and prokaryotic in origin.
While the above approaches have been successful mainly

in cultured cell systems, much less work has been done in
more in vivo contexts. Recently, the nuclear dynamics of
two TFs critical for early mammalian development, Oct4
and Sox2, were probed inside intact mouse embryos [32, 66,
80]. Similar to the case in cultured cells, in the embryo these
TFs display both fast Brownian diffusion and slower anom-
alous diffusion [32], with the latter arising from both short-
and long-lived DNA interactions. Remarkably, the longer-
lived bound fraction of Sox2 in each blastomere of the four-
cell embryo directly correlates with the number of pluripo-
tent progeny that cell will later contribute to the inner mass
of the embryo (Fig. 2b) [66]. These findings demonstrate the
dynamic repartitioning of TFs between distinct DNA sites
in vivo, and show that quantitative changes in TF–DNA in-
teractions could have physiological consequences directing
embryonic cell fate at a very early stage of development.
Aside from TF binding, the process of transcription itself is

also temporally heterogeneous, manifested primarily in the
form of “transcriptional bursts” (the production of nascent
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mRNAs in a pulsatile fashion), in which each pulse consists
of a burst of transcript molecules and is separated from the
next by a period of inactivity (Fig. 2c). Such Poisson-like
bursts often occur on a timescale ranging from minutes to
hours, and have been observed in a variety of mammalian
systems [81–89]. In fact, “bursty” transcription has been
found to be the predominant form of expression for 8000 dif-
ferent loci in the human genome [88]. More recently, tran-
scriptional bursts have also been detected in intact
mammalian tissues such as liver [90], suggesting that this
mode of temporal organization might indeed be at work
in vivo.
The dynamics of transcriptional bursts are often gene-

specific, and can be regulated at many levels. Single-cell lu-
minescence measurements on a diverse range of mamma-
lian genes have revealed distinct temporal patterns of
mRNA synthesis, manifested in both the on/off rates of
transcription and the mean numbers of mRNA molecules
produced per burst (or burst size) [87]. In the human
genome, weaker expression loci have been found to
primarily modulate their burst frequency, while stronger
expression loci modulate their burst size [88]. In other
cases such as steroid receptor-mediated transcription, gene
activation through ligand-binding alters neither the burst
size nor the duration of each burst, but only the duration
of the refractory periods between bursts. Such “frequency
modulation” at the single-cell level could give rise to dose-
dependent responses in a population of cells [82]. Mechan-
istically, transcriptional bursts are produced as a conse-
quence of the stochastic switching of the promoter
between transcriptionally active (“on”) and inactive (”off”)
states [91], a process that is contingent upon TF binding/
unbinding and modulated by a variety of other factors in-
cluding promoter architecture [87], different physiological
stimuli (such as serum, growth factors, and so on) [83],
and strength of the TF’s transactivation domain [85].
The physiological consequences of transcriptional bursts

are profound. They are known to cause cell-to-cell vari-
ability in gene expression (“noise”), which could in turn
generate opportunities for an otherwise isogenic popula-
tion of cells to explore different phenotypes or lineage
fates [91, 92]. For example, in mouse embryonic stem (ES)
cells, pulsatile transcription of Nanog has been shown to
result in widespread stochastic fluctuations inherent to
the pluripotent state (Fig. 2d). More importantly, cells
with low Nanog levels are more prone to enter differenti-
ation due to the expression of lineage marker genes [93].
Such fate-determining capability, together with its diverse
forms of modulation, makes pulsatile dynamics a perva-
sive temporal mode for organizing transcription.

Spatial organization of transcriptional dynamics
Similar to their temporal heterogeneity, transcriptional pro-
cesses are also unevenly distributed in the nuclear space,
and such spatial organization plays an important role in
their regulation. A prime example is transcription mediated
by RNA polymerase II (RNAP II). Based on earlier observa-
tions that nascent mRNA transcripts tend to localize to
discrete foci inside the nucleus, the hypothesis of “transcrip-
tion factories” (Fig. 3a), nuclear sub-structures consisting of
multiple clustered RNAP II molecules that carry out the co-
ordinated transcription of multiple genes, was conceived
[94, 95]. Recent super-resolution studies in live cells have
observed transient dynamic assembly of RNAP II into
short-lived clusters, which correlate with nascent mRNA
production [96, 97]. These clusters, with a lifetime on the
order of seconds, have been found to assemble and disas-
semble “on demand” in an asynchronous fashion [97, 98].
Such findings are in line with a similar study performed in
fixed cells using a global molecular counting approach,
which found that a small fraction of all RNAP II molecules
in the nucleus colocalize with each other at any given mo-
ment, while the rest exist in an unclustered form [12]. These
two perspectives represent two complementary manifesta-
tions of the “ergodic principle”, which suggests the equiva-
lence between time-averaging and ensemble-averaging, as
applied in the context of intranuclear RNAP II clustering.
Moreover, live-cell imaging of cyclin-dependent kinases as-
sociated with different phosphorylation forms of RNAP II
further suggest that the initiation and elongation of mRNA
transcripts may also take place in mutually exclusive nuclear
compartments, and that elongating RNAP II, upon
phosphorylation at the Ser2 position, moves out of those
“factories” where Ser5-phosphorylated RNAP II carries out
transcriptional initiation [99].
RNAP II is by no means the only molecule whose intra-

nuclear localization is regulated. Sox2 binding sites in ES
cells, for example, also form 3D clusters in nuclear regions
that are segregated from heterochromatin but enriched in
RNAP II. Such heterogeneous distribution impacts Sox2’s
target search strategy by reducing the global search
efficiency while allowing for flexible local adjustments
[65]. Along the same line, P-TEFb has been found to
sample the nuclear space during its target search in a
position-dependent fashion, constrained by its interactions
with the hierarchical structures in the crowded nuclear
environment; c-Myc, on the other hand, explores the nu-
clear space more freely and has an equal probability of
reaching any target regardless of its location (Fig. 3b) [69].
The abundance of patterns such as these suggests that
spatial localization dynamics, whether evanescent or long-
lived, constitute a general regulatory mechanism of gene
expression via higher-order nuclear architecture.
Another mode of spatial organization of TF activity

takes place in the form of nucleo-cytoplasmic transloca-
tion, as exemplified by NF-κB, a key nuclear regulator of
cellular stress responses. Upon activation, NF-κB exhibits
periodic oscillations of nuclear import from the cytoplasm
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Fig. 3. Spatial modes of organizing mammalian transcriptional dynamics. a A super-resolution map of RNAP II distribution inside a mammalian cell
nucleus. Inset shows a zoom-in area illustrating the co-existence of both isolated RNAP II molecules (left) as well as transient clusters (“transcription factories”,
right) that coordinate the expression of spatially disparate genes. b When the angles between successive translocation steps of TF molecules during target
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negative asymmetry coefficient), indicating a propensity to “back-stepping” due to spatial constraints of the search process. In contrast, c-Myc (orange)
explores the nuclear space more or less unhindered with no preferred directionality (evidenced by the near-zero asymmetry coefficient). c Modulating
transcription through oscillatory nucleo-cytoplasmic translocation of NF-κB; single-cell snapshots of nuclear NF-κB level at representative time points are
depicted in insets. Adapted from [12] (a), [69] (b), and [101] (c) with modifications
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(Fig. 3c), which in turn controls the transcription of IκB-α
via a negative feedback loop [100]. Such oscillations
resonate in some way with the transcriptional pulses
aforementioned, although they differ markedly in their
timescales, synchronicity, periodicity (or lack thereof), and
mode of operation. Like transcriptional pulsing, many of
the parameters of NF-κB translocation, including ampli-
tude, response time, and number of oscillations, can be
regulated. Among the variety of regulatory factors are
both the frequency and strength of the stimulation signal
[101–103] as well as mechanical features such as cell
shape and microenvironment [104]. Importantly, changing
the translocation dynamics could impact the expression
profiles of NF-κB target genes in both cultured cells as
well as live animals [101, 102, 105], pointing to functional
roles of such oscillatory nuclear translocation.
Similar translocation phenomena have been observed for

other TFs as well. Oct4, for example, undergoes facilitated
nucleo-cytoplasmic transport in early developing embryos.
However, fluorescence decay after photoactivation (FDAP)
measurements revealed two sub-populations of cells within
the embryo that exhibit distinct rates of nuclear export and
import as well as an immobile fraction of Oct4; cells with
slower Oct4 kinetics are more likely to give rise to the pluri-
potent cell lineage later on, while those with faster kinetics
contribute mostly to the extra-embryonic lineage [80]. For
the transcription factor NFAT, nuclear translocation is
manifested in two different ways for its two isoforms: the
NFAT1 translocation pulses are synchronized and
amplitude-modulated, whereas those of NFAT4 are unsyn-
chronized and frequency-modulated [106]. Such comple-
mentary strategies for spatial translocation dynamics allow
the TF isoforms to broaden the modality range of mamma-
lian cells to respond to external signals.
Spatial organization is also not restricted only to the pro-

tein molecules involved in transcription; the structure and
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positioning of chromatin DNA plays an equally important
role in transcriptional regulation [107, 108]. In addition to
packing the genome at the level of euchromatin/heterochro-
matin and thus modulating the accessibility of the DNA to
regulatory proteins and RNA polymerases, chromatin struc-
ture is dynamically organized at multiple levels within the
three-dimensional nuclear space. For example, long-range
contacts between the promoter and enhancer of the β-
globin gene established through chromatin looping have
been shown to impact the bursting kinetics of its transcrip-
tion [81]. On a grander scale, interphase chromosomes are
known to occupy distinct regions of the nucleus termed
“chromosome territories” [109]. Such compartmentalization
imposes spatial constraints on where transcription occurs,
as actively transcribed genes tend to be localized near the
periphery of these territories, whereas noncoding regions
are either stochastically distributed or preferentially localized
near the interior of the territories [110–112]. On the other
hand, the positioning of genes to the nuclear periphery,
where the chromatin adopts a more compact structure,
leads to repression of their transcription as a consequence
of nuclear lamina-mediated silencing [113]. More recently, it
has been shown that the entire X chromosome could be re-
cruited to the nuclear lamina by the long noncoding RNA
Xist to achieve chromosome-wide transcriptional silencing
[114]. These examples collectively demonstrate the diverse
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The oligomerization state of a TF is another factor that
may impact its mobility and function. For example, FCS mea-
surements of p53 in single cells reveal that the TF exists in a
mixture of oligomeric states; their rapid homo-
tetramerization upon DNA damage activates the transcrip-
tional targets of p53 [121]. Similar strategies have also been
observed for the activation of the Rac1 signaling pathway
[122], interaction between HP1-α and heterochromatin [123],
and DNA-binding of STAT3 upon nuclear translocation
[124] (Fig. 4b). These diverse cases not only establish the
modulation of oligomerization states as an effective mechan-
ism for regulating TF function, but also demonstrate the
unique prowess of fluctuation-based imaging techniques
(such as FCS and N&B analysis), which remain as the only
methods suitable for probing this aspect of nuclear dynamics.
Lastly, the interplay between transcriptional dynamics

and epigenetic modifications are also beginning to be
probed at the quantitative level. Recently, it has been
found in live cells that histone H3 lysine-27 acetylation
could both facilitate the target search of transcriptional
activators and promote the transition of RNAP II from
the initiation form to the elongation form [125]. H3
arginine-26 methylation, on the other hand, regulates
the long-lived DNA-binding of Sox2 in developing em-
bryos by controlling chromatin accessibility (Fig. 4c)
[66]. Moreover, by monitoring the dynamics of repres-
sive chromatin regulators associated with various DNA
and histone modifications in single cells, epigenetic si-
lencing and reactivation events were found to occur in a
stochastic fashion. These regulators exhibit distinct
timescales of epigenetic memory, and regulation is
achieved by changing the fraction of cells silenced rather
than the level of transcription [126].

Conclusion and outlook
We are now at the exciting threshold where advances in
quantitative single-cell imaging have empowered us with
the means to explore the spatio-temporal dynamics of
transcription in unprecedented detail. By generating
spatial maps and temporal trajectories at high resolu-
tions in diverse living systems, these approaches not only
furnish or revise previous biochemical models with
physical parameters and insights, but also shed new light
on the multi-faceted landscape for organizing transcrip-
tion that is shared by mammalian systems ranging from
single cells to developing embryos.
The transcription-related processes reviewed here con-

stitute only a small fraction of the functions carried out
in the mammalian cell nucleus; other equally important
and complex processes, such as RNA processing and
export, chromatin organization and remodeling, and
genome replication and maintenance, are all heavily reg-
ulated in both time and space through mechanisms just
as versatile as those outlined above. To probe these
processes both on their own and in cooperation with
each other requires the continuous pushing of the reso-
lution and sensitivity limits of imaging techniques, com-
bined with novel approaches to monitor a large number
of molecular species in the nucleus simultaneously. To
that end, the recently developed methods capable of
highly multiplexed imaging of either protein, DNA, or
RNA species offer exciting hopes [127–129]. The ability
to image chromatin DNA in vivo in a label-free manner
[130, 131] also points out new directions that obviate
the necessity of using bulky and often perturbative
fluorescent proteins or other organic probes. The more
important thing, however, is to go beyond the cultured
cell systems and apply these emerging techniques to
more physiologically relevant contexts, such as develop-
ing embryos, tissue explants, or even live animals, so as
to generate newer insights into mammalian nuclear
dynamics in vivo for many more years to come.
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