
1

Vol.:(0123456789)

Scientific Reports |         (2021) 11:4992  | https://doi.org/10.1038/s41598-021-84309-3

www.nature.com/scientificreports

Automatic delineation of glacier 
grounding lines in differential 
interferometric synthetic‑aperture 
radar data using deep learning
Yara Mohajerani1,2*, Seongsu Jeong1, Bernd Scheuchl1, Isabella Velicogna1,3, Eric Rignot1,3 & 
Pietro Milillo1

Delineating the grounding line of marine-terminating glaciers—where ice starts to become afloat in 
ocean waters—is crucial for measuring and understanding ice sheet mass balance, glacier dynamics, 
and their contributions to sea level rise. This task has been previously done using time-consuming, 
mostly-manual digitizations of differential interferometric synthetic-aperture radar interferograms by 
human experts. This approach is no longer viable with a fast-growing set of satellite observations and 
the need to establish time series over entire continents with quantified uncertainties. We present a 
fully-convolutional neural network with parallel atrous convolutional layers and asymmetric encoder/
decoder components that automatically delineates grounding lines at a large scale, efficiently, and 
accompanied by uncertainty estimates. Our procedure detects grounding lines within 232 m in 100-m 
posting interferograms, which is comparable to the performance achieved by human experts. We 
also find value in the machine learning approach in situations that even challenge human experts. We 
use this approach to map the tidal-induced variability in grounding line position around Antarctica in 
22,935 interferograms from year 2018. Along the Getz Ice Shelf, in West Antarctica, we demonstrate 
that grounding zones are one order magnitude (13.3 ± 3.9) wider than expected from hydrostatic 
equilibrium, which justifies the need to map grounding lines repeatedly and comprehensively to 
inform numerical models.

The grounding line is the transition boundary where land ice meets with ocean waters along the periphery of 
Greenland and Antarctica1,2. Upstream of the grounding line, ice rests on land and is resisted by bedrock and 
sediments and along valley walls. Downstream of the grounding line, ice is no longer grounded; it floats in the 
ocean waters and melts in contact with these waters. This boundary is fundamental to the study of ice sheets for 
many reasons. First, it is the boundary where we measure ice mass fluxes into the ocean3. Second, ice experi-
ences a fundamental change in force balance at that boundary, transitioning from basal friction at the bed to 
frictionless motion on seawater at sea4, so it is essential to inform ice sheet numerical models about the location 
of the grounding line. At the grounding line, ice traverses hydrostatic equilibrium but bending stresses maintain 
ice below hydrostatic equilibrium over considerable distances seaward (10 km) until ice reaches full hydrostatic 
equilibrium in seawater5, which is important to consider when interpreting data from altimetry missions. Third, 
the surface slope is typically 1% at the grounding line, so a 1-m change in ice thickness translates into a 100-m 
horizontal migration of hydrostatic equilibrium1, therefore the grounding line position is a sensitive indicator 
of glacier thinning. Fourth, the grounding line is challenging to detect from above, it leaves little evidence in 
optical imagery6, it is elusive from the ground, and historically has been misplaced with errors ranging from 
kilometers to 100 km1,5,7–9.

Grounding lines are detected in several ways using remote sensing data1, but the most efficient and precise 
method is satellite interferometric synthetic-aperture radar (InSAR). InSAR documents the motion of ice in 
the line of sight of the radar illumination with millimeter precision. Provided enough crossing tracks of InSAR 
data, this technique maps ice motion in vector form10. By differencing two consecutive radar interferograms 
spanning the same interval, it measures the short term variability in ice motion associated to processes such as 
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glacier subsidence in response to subglacial lake drainage or tidal motion in response to changes in ocean tide. 
Because differential InSAR (DInSAR) combines four epochs to “image” the grounding line, it mixes four different 
tidal displacements, but the data provide a snapshot of grounding line positions over considerable distances, i.e. 
hundreds of km, anywhere around the continent, and repeatedly over time.

At the grounding line, the DInSAR data reveals a step in vertical motion that is characteristic of the visco-
elastic bending of ice afloat in ocean waters across the flexure zone (Fig. 1). The inner limit of the DInSAR signal, 
or inner interferometric fringe, marks the grounding line position. The outer limit marks the limit of the flexure 
zone where the glacier adapts to flotation. Here, we are most interested in the grounding line position.

To digitize the grounding lines, Rignot et al. (1998)11 fit the data with an elastic model, which was general-
ized in two dimensions12. The modeling identified the limit of tidal flexing, which is a proxy for the grounding 
line. While this approach worked well for smooth grounding line delineations, it failed in the presence of noise, 
required information on ice flow direction, and could not be automated or scaled to large areas. Instead, human 
experts have resorted to the practice of performing the work by hand, in part to resolve complex topological 
problems appearing in certain situations. For instance, interferometric fringes may be missing due to a loss of 
phase coherence, stretch out significantly along deep, narrow valleys, under-sampled, or not well resolved. While 
the manual approach has been acceptable for a few DInSAR pairs of Greenland and Antarctic glaciers, it has 
become cumbersome as more data become available from more SAR satellites. Furthermore, interpretation may 
vary among human experts and errors are not documented.

The European Space Agency launched the Sentinel-1a/b constellation in 2014 and 2016, respectively, as part 
of the European Union’s Copernicus Earth Observation program to provide InSAR data over the ice sheets sys-
tematically for the first time and for decades to come with a 6-day repeat cycle (for the constellation) or a 12-day 
repeat cycle (for a single satellite)13,14. This situation contrasts with the ERS-1/2 mission which provided only a 
handful of DInSAR data to analyze. Digitizing Sentinel-1a/b DInSAR data is impractical by hand on a large scale.

Here, we present a novel approach to the automated delineation of grounding line which uses a machine 
learning (ML) algorithm. After introducing the training and evaluation data sets, we discuss the ML architecture 
employed to capture the grounding line, the evaluation of the results and estimation of errors, and demonstrate 
its use at the large scale around Antarctica with thousands of interferograms.

Results
DInSAR data.  We employ DInSAR observations from the Sentinel-1a/b satellite captured in year 2018. The 
radar operates at the C-band (radar wavelength is 5.6 cm) and each interferometric fringe or 360 degree varia-
tion in phase corresponds to a 28 mm motion of the icy surface along the line of sight of the radar. Each inter-
ferogram is 250 km by 300 km in size, geocoded at 100 m spacing. Each sector of the grounding line is covered 
by several repeat tracks. The geocoded DInSAR data are first manually interpreted to serve as training and 
evaluation datasets, as outlined below. In total, we analyze 252 DInSAR-delineation pairs on the Getz Ice Shelf 
for training. To train the neural network, we use both the phase and coherence of the signal. Furthermore, we 
analyze 19,510 DInSAR interferograms with 6-day repeat between the pairs acquired from 22 Sentinel -1a/b 
tracks, and 3425 DInSAR interferograms with 12-day repeat between the pairs acquired from 23 Sentinel-1a/b 
tracks, totalling 22,935 interferograms over Antarctica in 2018. The 12-day tracks were trimmed to exclude in-
land tiles far from the grounding zone to reduce the processing time. However, by including all the tiles from 

Figure 1.   Schematic of the ice surface, ice bottom elevation, sea floor depth, and vertical tidal motion of the ice 
in the grounding zone versus a differential SAR interferogram on top. The grounding line (GL), represented by 
the vertical gray dashed line, is at the inner-most fringe of the grounded ice side. The differential motion in the 
tidal flexing zone produces a dense fringe pattern used by the neural network to identify grounding lines. The 
direction of horizontal migration of the GL is shown by the double-sided dark blue arrow.
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the 6-day tracks we demonstrate that the network is capable of dealing with areas without grounding lines. The 
detailed break-down of the number of interferograms and tiles is listed in Table S1.

We rasterize the manually-delineated grounding lines from the DInSAR data and split into 512× 512 pixel 
tiles (one pixel is 100× 100 m) to minimize GPU memory bottlenecks. We use overlapping staggered tiles to 
avoid artifacts at the boundaries. As a result, we have an augmentation factor of 8 (2× due to overlapping stag-
gered tiles and 4 × due to four directions) to help the neural network training. We end up with 5820 tile pairs for 
the training set on the Getz Ice Shelf and 4,507,501 around the Antarctic Ice Sheet. The outputs of the neural 
network have the same dimensions as the image tiles. To reconstruct larger scenes, we stitch the tiles back using 
a Gaussian averaging filter that places higher weight on the center of each tile, thereby avoiding edge effects.

ML implementation.  We use a fully-convolutional architecture for the semantic segmentation of ground-
ing lines. Given the noisy and varied nature of the DInSAR data, we aim to directly segment the grounding 
lines, as opposed to classifying the various surfaces in each tile. The goal is to derive the probability of each pixel 
belonging to a grounding line or no grounding line. We use a 40-layer neural network with 966,119 trainable 
parameters, to perform the segmentation (see “Methods”). The larger size and complexity of this neural network 
attests to the noisier nature of the DInSAR data with features at multiple spatial scales compared to the simpler 
convolutional network previously used to delineate glacier calving fronts from optical imagery15. The neural 
network is trained on 5320 tiles. Each training epoch takes under 10 min on the Google Colab GPU accelera-
tor, which is currently a Tesla P100-PCIe with 16 GB of memory. Using batch size of 30, the training is stopped 
after 9 epochs to avoid overfitting based on a minimum improvement threshold of 0.0001 in the value of the loss 
function applied to the randomly selected validation data in each epoch.

The fully-trained network is then tested on 500 new tiles. The neural network provides the probability of each 
pixel belonging to a grounding line. The original input data, the human-made training labels, and the output of 
the neural network are shown in Fig. 2. The gray mask indicates portions of the scene not used during training 
but used for evaluation. All delineated grounding lines belong to the test data set. The mask differentiates how 
the training and test data are selected randomly from the set of 5820 tiles.

To vectorize the results and extract grounding line positions, we set a threshold of 30% in the probability dis-
tribution around each grounding line to form a closed contour representing the uncertainty of the output (Fig. 2). 
By vectorizing the results, we introduce a deeper semantic understanding of the objects identified by the neural 
network. The contours are converted into polygons (See “Methods”), which may contain more polygons in the 
presence of pinning points, i.e. where the ice shelf is locally grounded due to a local rise in the sea floor16. We use 
the length of the perimeter of polygons to filter out noisy outputs. We use a threshold of 6 km to eliminate small 
features introduced by the network. The 6-km threshold is chosen to minimize the detection of spurious ground-
ing lines, while avoiding the exclusion of real features. Residual errors remain, e.g. on Carlson and Evans glaciers 
feeding into the Ronne Ice Shelf where segments of both sides of the flexure zone are included in the grounding 
line detection. In other areas, e.g. Pine Island Glacier, we find short spurious line segments downstream of the 
grounding line. These errors, which comprise a small fraction of the total, are manually removed from the final 
product. The uncertainty estimates allow us to pinpoint the grounding line by drawing a centerline through the 
polygons (see “Methods”). These vectorized segments are the final output product, which we compare with the 
hand-drawn grounding lines (Fig. 2).

Performance evaluation.  In the analyzed areas, the ML-derived grounding lines are within the uncer-
tainty bars of the hand-drawn grounding lines. To quantify the confidence in the performance of the ML pipe-
line, we use manual delineations not used during the training of the network. We calculate the mean difference 
between the neural-network and hand-drawn grounding lines by identifying an enclosing box around each 
delineated grounding line and finding the corresponding hand-drawn line. The distance to the opposite line is 
found by using the closest point on the opposite side. To avoid duplicates, we do not consider points that extend 
beyond the range of the reference line and map to the same end-point on the reference line. We find that the 
mean difference between the neural-network and hand-drawn grounding lines is 232 m, or 2.3 pixels, with a 
median absolute deviation (MAD) of 101 m, and an interquartile range (IQR) of 131 m.

In a few areas, the ML approach is inferior to the human interpretation, e.g. in the presence of pinning 
points16 which comprise narrow (in pixel size equivalent) and tide-dependent connections to the continent. In 
other areas, however, the ML interpretation is superior a posteriori to the human interpretation, for instance 
in areas of high noise where a conservative human interpreter would not identify a grounding line but would 
subsequently agree with the ML delineation (Fig. 2e). Human interpreters may apply various degrees of risk in 
drawing grounding lines, which creates inconsistencies in the data set, whereas the ML algorithm performs the 
identification objectively. We note that the manual delineation is often conservative. Other human experts may 
draw grounding lines in areas that are currently missing (e.g. blue boxes in Fig. 2e). We apply the same degree of 
caution to all manual delineations, including in the training data set. Yet, the ML algorithm correctly delineates 
GLs in these noisy areas despite the conservative training data.

Another advantage of the ML approach is to provide uncertainty bounds. Uncertainties are essential for 
modelers who need grounding line constraints in ice sheet models20–22. The uncertainty quantifies data noise. 
The uncertainty estimate is here provided by the width of the vectorized contours described previously. Consid-
ering the same test data from which the mean difference with manual delineations was derived, we find a mean 
uncertainty of 451 m, or 4.5 pixels, or twice the level of precision of the method. The manual delineation falls 
within the uncertainty bound of the ML results. The uncertainty varies with noise from 151 m in the best case 
to 1427 m in higher noise cases. Given a MAD of 110 m and an IQR of 155 m, most uncertainties are close to 
the minimum value.
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Antarctic grounding line delineation.  We perform a delineation of 22,935 DInSAR interferograms 
around the Antarctic Ice Sheet (Fig. 3), which represents all 6-day and 12-day interval DInSAR interferograms 
acquired in year 2018 from Sentinel1-a/b. Running the 512 × 512 tiles through the pre-trained neural network 
takes about 17 ms per tile on average on the Google Colab GPU accelerator, accumulating to a total of ∼ 21 h 
for 4,507,501 tiles. Running the tiles on AMD 2.3 GHz CPUs takes on average 4 s per tile, accumulating to a 
total of 5000 CPU hours, which can be significantly sped up when run in parallel depending on the availability 
of the computational resources. For comparison, it would take a human interpreter up to 20 min to delineate a 
single interferogram, depending on the complexity of the scene, multiplied by 22,935 DinSAR interferograms, 
which adds up to 7600 h of continuous, labor-intensive, manual work. The complete grounding line and uncer-
tainty data for the year 2018 is provided as Shapefiles for the 6-day and 12-day tracks at https​://doi.org/10.7280/
D1VD6​G23.

Discussion
Performance.  The performance of the ML algorithm is comparable to that of a human expert, but human 
interpretation is inherently more variable. For instance, human interpreters may place the grounding line closer 
to the last interferometric fringe or farther away depending on their own threshold of detection; or map a ground-
ing line across an area of noise or refrain from doing it. Even an individual investigator will be hard-pressed to 
reproduce his/her own delineations repeatedly over time. The ML approach provides a more consistent and 
objective approach. To quantify the mean error introduced as a result of human delineation, we extracted the 

Figure 2.   Different steps of the pipeline for (a) a sample interferogram with hand-drawn grounding line in 
white; (b) output of the neural network in raster format with a variable width that is a measure of uncertainty of 
the output. The gray mask in the background represents training (white) and testing (gray) sites; (c) Vectorized 
output and uncertainty contours; (d) zoomed-in region highlighted by the maroon box in panel (c) showing 
both manual and ML results and uncertainty bars; (e) Comparison of the manual and ML performances in the 
area outlined in blue in panel (c). The interferograms are obtained from Sentinel-1a/b data in 201813,14, and are 
plotted with Python 3.7.417 using Rasterio version 1.0.2118 and Matplotlib version 3.3.219.

https://doi.org/10.7280/D1VD6G
https://doi.org/10.7280/D1VD6G
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grounding line manually multiple times. We find a mean difference of 268 m. While the mean error is higher 
than that of the neural network, the spread is lower, with a MAD of 52 m and an IQR of 64 m. On the other hand, 
repeated delineations by the neural network will lead to consistent and repeatable results.

In many cases, the network performs an a-posteriori judicious mapping in places where a conservative human 
interpreter may be more cautious and yet subsequently agree with the ML result, as shown in Fig. 2e. There are 
comparatively fewer cases where the neural network misses portions of the grounding line delineated by human 
interpreters, except where the grounded area is only a few image pixels in size (Fig. 2), in which case the neural 
network may omit part of the boundaries or miss the ice rise entirely during post-processing, noise-removal 
procedures. The limitations of the ML approach in the presence of small branches and islands could be alleviated 
by processing the data at a finer sample spacing. Overall, the ML technique identifies more grounding line seg-
ments than the human interpreter can because the loss function of the neural network penalizes false negatives 
(no grounding line) more severely than than false positives (grounding line) and because human interpreters 
are often conservative.

ML behavior.  To better understand the behavior of the neural network, we examine the activation maps pro-
duced by the layers of the network (Fig. 4). These layers refer to the output produced once convolutional kernels 
are applied to a given layer. By studying what features are picked up by the network, we gain a better understand-
ing of the information used by the algorithm for the delineation of grounding lines.

The first row shows the two input channels (real and imaginary components of the interferogram). The 
activation maps in the second row correspond to the fifth layer of the network (Panels C–F). For each row, we 
divide the channels into quarters and showcase four activation maps at equally spaced intervals. At layer 5, the 
network picks up large scale features that are not necessarily relevant to the grounding line, and artifacts, e.g. 
faint diagonal feature across the interferogram on the floating ice tongue. This highlights the need for a deep 
network capable of encapsulating the many features of the data, hence the relatively large depth of the neural 
network. Panels G–J show the activation maps of layer 16, which is the convolutional layer with dimensions 

Figure 3.   Complete grounding line delineation around the Antarctic Ice Sheet in the year 2018 superimposed 
on ice velocity; Location of all used Sentinel1-a/b tracks are shown in lower right with 6-day tracks in blue and 
12-day tracks in dark orange. The insets show magnified GLs and three representative uncertainties separated 
by half a year for regions 1, 2 and 3 corresponding to the red boxes in the Peninsula, West Antarctica, and East 
Antarctica, respectively. The background ice velocity is obtained from the MEaSUREs data product24–26 and 
plotted with Rasterio version 1.0.2118 in Python 3.7.417. The grounding lines and basin outlines in the insets are 
plotted with Matplotlib version 3.3.219 in Python 3.7.417. The basins are divided according to the Rignot drainage 
basin divisions1,27–30. The track information is plotted using Geopandas version 0.6.131 in Python 3.7.417.
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64× 64× 128 before the parallel atrous layers. While the grounding line is starting to emerge at this stage and 
the noise is diminished, the network is not able to detect both the large-scale features and the fine details neces-
sary for detecting grounding lines. In addition, each activation map at this stage only exhibits certain aspects 
of the grounding line, but not the entire line in all spacial orientations. The multi-scale problem is resolved by 
the use of a series of parallel atrous convolutions with dilation rates of 1 to 5 (layers 17–21 in Table S2). Each of 
the dilated kernels picks up desired features at different spatial scales without additional computational costs. 
To further reduce the number of parameters, we use depthwise-separable convolutions32. The activation maps 
for the concatenated results of the atrous convolutions, given by layer 22 with dimensions 64× 64× 640 , show 
grounding lines without the additional undesired features from the previous layers (Panels K–N). This layer is 
the densest representation of the features, from which the full-scale image is reconsidered through a series of 
upsampling and convolutional layers.

Figure 4.   Activation Maps for the 1st (input), 5th, 16th, and 22nd layers. Note that magnitude of values in 
the intermediary layers before the final sigmoid layer depend on the choice of the activation function and do 
not have physical meaning. The numbers of channels represented are indicated on top of each plot. Note the 
decreasing image size as evident by the number of pixels shown on the axes. The location of the image is show 
on the upper left corner for text. The scalebar for the input is given on the upper right corner. The dilation rates 
for Layer 22 are 1, 2, 3, 4 for channels 22, 164, 322, and 482, respectively. The activation maps and the labels 
on the inset of Antarctica are plotted using Matplotlib version 3.3.219. The Antarctic map is created using the 
default low resolution Earth map in Geopandas version 0.6.131 and plotted in Antarctic polar stereographic 
(EPSG:3031) projection. All libraries are used with Python 3.7.417.
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The network distinguishes two sides of the grounding zone, represented by asymmetric bands in the activation 
maps at the boundaries of the grounding zone (Fig. 4). The network picks up the correct side of the grounding 
zone as the grounding line, without the need for information on flow direction which could be problematic in 
areas of very slow motion. Panels from K to N correspond to increasingly dilated convolutional kernels. Panel 
K, with a dilation rate of 1, shows high spatial details with relatively more noise. Panel N, with a dilation rate 
of 4, picks up the large-scale features with a large field of view. While Panel N does not contain as much spatial 
detail, it retrieves the most generic features with less noise. By combining these multi-scale views and putting 
them through additional convolutional and upsampling layers, we generate an image of grounding lines only.

Grounding zone width.  By analyzing delineations across the entire ice sheet, we find that the ground-
ing zone, which is the area over which a grounding line moves back and forth with changes in oceanic tides, is 
several km in width. In the case of interaction of solid ice on a hard bed, the level of migration of the grounding 
line with tide is dictated by hydrostatic equilibrium, which depends on both surface and bed slopes33,34. With 
slopes of the order of 1% and tides in the range of 1 m, we expect migrations of the order of 100 m. Instead, we 
detect migrations of several kilometers, well beyond the uncertainty in slopes. To quantify this discrepancy, we 
calculate the grounding zone width based on hydrostatic equilibrium as in Tsai and Gudmundsson35 along the 
Getz Ice Shelf, in West Antarctica, where we have continuous and high-quality delineations with dense coverage 
of 6-day interferograms (Fig. 3). The expected grounding zone width, referred to as the HE (Hydrostatic Equi-
librium) grounding zone, is calculated as

where �h is the tide height, β is the bed slope, α is the surface slope, and ρi and ρ are the density of ice and 
seawater, respectively35. Note that the downstream migration distance is 9 times smaller than the upstream 
distance. Here, we use the upper case as a conservative estimate of the grounding zone width. In addition, we 
assume a uniform 2 m tide height to get an upper bound of the HE grounding zone. We calculate β and α along 
the direction of flow indicated by ice velocity vectors from MEaSUREs24–26 using the surface and bed topography 
from BedMachine v136, over a spatial scale of 3 km, which is several times the mean ice thickness. We compare 
the result with the observed width of the grounding zone measured along the same ice flow direction. A set of 
comparison points are shown in Fig. 5.

We find that the observed grounding zone width is one order of magnitude larger than the width expected 
from HE. Berry Glacier is an exception with a grounding zone width two orders of magnitudes wider than 
expected. The inset (Fig. 5b) shows the distribution of expected widths, which indicates a consistent pattern. The 
results are skewed towards larger widths. The width from HE is typically less than 1 km. The delineated (ML) is 
on average 13.3 ± 3.9 larger than the width from HE, or one order magnitude.

Broader grounding zones are predicted when ice interacts with a deformable bed38 instead of a hard bed, or 
if un-grounding of ice is interpreted as the propagation of an elastic crack at the grounding line35. Our broader 
mapping exercise indicates that Getz Ice Shelf is not an isolated case but the norm in Antarctica, i.e. grounding 
zones are typically several km wide and are not well represented from hydrostatic equilibrium on a hard bed39–41. 
This result has implications for ice sheet models who treat grounding lines with hydrostatic equilibrium.

Implications.  A consequence of wider grounding zones is that seawater must intrude over considerably 
longer distances beneath grounded ice at high tide than expected. Water intrusions in turn imply that ice prob-
ably melts at tidal frequencies in these broad regions. This information is relevant to ice sheet models because 
wider grounding zones and the possibility of high ice melt rates within the grounding zone will make the model 
more sensitive to ocean thermal forcing and the glaciers retreat faster in warming scenarios42. Conversely, in 
areas of steep slopes or abrupt transition boundary where the grounding zone is narrow and seawater intrusion 
is likely to be limited, a treatment with hydrostatic equilibrium and no melt at the grounding line is probably 
satisfactory.

The application of the ML method to the entire Antarctic Ice Sheet provides a unique and novel data set for 
the scientific community. The results confirm that wide grounding zones are the norm. Due to the uneven and 
sparse temporal sampling of the data, we cannot analyze changes within a tidal cycle, or from month to month, 
and only examine aggregated changes over an entire year at present. The ML approach detects the grounding 
line with a precision of 200 m and the width of the grounding zone over a tidal cycle. This precision is sufficient 
for large scale ice sheet numerical models. We also find that the approach is scalable to pan-Antarctica without 
retraining the network, at high speeds of computation compared to manual interventions. Visual inspection of 
the results in other areas, e.g. Pope, Kohler, and Smith (Fig. 3), confirms that the ML approach is reliable over 
the remainder of the ice sheet periphery.

The complete mapping of grounding lines around Antarctica performed by the ML algorithm provides a new 
basis for the analysis of grounding line dynamics in Antarctica that was not available previously. We expect that 
the product from year 2018 to be of considerable interest for the scientific community, in particular numerical 
ice sheet modelers and ocean modelers, and will help improve projections of ice sheet evolution and contribu-
tions to sea level rise from models. We anticipate to perform this delineation routinely with Sentinel-1a/b and 
other InSAR data, e.g. the Italian CSK-2G, the Japanese ALOS PALSAR-2, -3 and -4 and the upcoming NASA/
Indian Space Research Organization (ISRO) NISAR mission.

(1)�LHE = �h

[

β +
ρi

ρ
(α − β)

]−1
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Methods
Images are split into overlapping tiles that avoid edge effects. Partially overlapping tiles in four directions com-
bined with a staggered grid produces 8 partial coverings of every area as a form of augmentation. We generate 
5320 tile pairs for training. We use a 40-layer deep encoder-decoder convolutional neural network with parallel 
atrous convolutional layers (Atrous Spatial Pyramid Pooling43), inspired by the DeepLabv3+ architecture44. 
In order to minimize the number of trainable parameters, we use depthwise-separable convolutions32 for the 
parallel atrous layers, but we find that extending depthwise-separable convolutions to all layers degrades the 
performance of the network. We add skip connections between encoding and decoding layers to convey contex-
tual information, as in45. All convolutional layers use the Expontential Linear Unit (ELU) activation function46, 
with the exception of the last convolutional layer with a sigmoid activation function producing the predicted 
probability of the class of each pixel. In total, we have 966,119 trainable parameters in the models. Descrip-
tions of all layers are provided in Table S2. Given the large class-imbalance between non-GL to GL pixels, we 
use a weighted binary cross-entropy loss function to penalize false negatives more harshly than false positives 

Figure 5.   Comparison of the predicted width of the grounding zone from hydrostatic equilibrium (HE) 
versus the observed width from machine learning (ML) along Getz Ice Shelf, West Antarctica. (a) Sample 14 
comparison sites along the coast. Getz Basin is green shading. Ice speed24 is color-coded in blue. The 2018 
grounding lines are black. The delineated (ML) and expected (HE) widths are quoted in red letters along the 
flow direction (red line). (b) HE vs. ML GZ width less than 8 km for 500 transects along the coast. R ML:HE

mean  is the 
mean ratio of ML to HE width. The ice speed field is obtained from the MEaSUREs data product24–26 and plotted 
with Rasterio version 1.0.2118. The grounding lines, width labels, and the histogram in the inset are plotted with 
Matplotlib version 3.3.219. The Getz basin is drawn according to the Rignot drainage basin divisions1,27–30 and is 
plotted using Descartes version 1.1.037 and Matplotlib version 3.3.219. All libraries are used with Python 3.7.417.
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( L = − 1
N

∑N
i [Ryi log(ŷi)+ (1− yi) log(1− ŷi)] , where N is the number of pixels, R is the penalization ratio 

which is 727 based on the average ratio of GL vs non-GL pixels, ŷi is the prediction value for pixel i between 0 
and 1, and yi is the binary GL/non-GL “truth” label for pixel i from the human-made training dataset). The neural 
network provides raster images of the GLs, which are vectorized by drawing closed contours around GL pixels 
using a threshold of 0.3 (30% probability of pixel belonging to GL class). The width of these contours provide 
the uncertainty estimate for the neural network output. In order to draw the centerline through the contours, 
we use the label_centerlines Python package.

Data availability
The dataset generated during and analysed during the current study are available in the UC Irvine Dryad reposi-
tory, https​://doi.org/10.7280/D1VD6​G23. The algorithm described in the manuscript, model configurations, and 
the trained model are accessible on the associated Github repository found at https​://githu​b.com/yaram​ohaje​
rani/GL_learn​ing.
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