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Abstract

Summary: Because of their high abundance, easy accessibility in peripheral blood, and relative stability ex vivo,
antibodies serve as excellent records of environmental exposures and immune responses. Phage Immuno-
Precipitation Sequencing (PhIP-Seq) is the most efficient technique available for assessing antibody binding to
hundreds of thousands of peptides at a cohort scale. PhIP-Seq is a high-throughput approach for assessing antibody
reactivity to hundreds of thousands of candidate epitopes. Accurate detection of weakly reactive peptides is particu-
larly important for characterizing the development and decline of antibody responses. Here, we present BEER
(Bayesian Enrichment Estimation in R), a software package specifically developed for the quantification of peptide
reactivity from PhIP-Seq experiments. BEER implements a hierarchical model and produces posterior probabilities
for peptide reactivity and a fold change estimate to quantify the magnitude. BEER also offers functionality to infer
peptide reactivity based on the edgeR package, though the improvement in speed is offset by slightly lower sensitiv-
ity compared to the Bayesian approach, specifically for weakly reactive peptides.

Availability and implementation: BEER is implemented in R and freely available from the Bioconductor repository at
https://bioconductor.org/packages/release/bioc/html/beer.html.

Contact: ingo@jhu.edu

1 Introduction

Understanding interactions between the immune system and
antigens is important to advance our understanding of the disease,
disease progression and for the development of therapeutics. Phage-
ImmunoPrecipitation sequencing (PhIP-Seq) is a high-throughput
technique to characterize antibody responses to extensive antigen
libraries (Larman et al., 2011). Normalized sera are mixed with bac-
teriophages expressing the target peptides of interest, forming anti-
body–phage complexes (Fig. 1, left). These complexes are
precipitated with magnetic beads, polymerase chain reaction (PCR)
amplified and barcoded for multiplexing. The resulting product is
sequenced and a matrix containing the number of sequencing reads
with alignment to each peptide in the library for each sample is gen-
erated. Any alignment tool suitable for DNA or RNA short-read
sequencing such as Bowtie (Langmead, 2010) or exact matching via
grep can be used to align sequencing reads to the peptides in the li-
brary, and fastq files are then converted to read count matrices (for
a detailed bioinformatics workflow including recommendations for
demultiplexing and read alignment to the reference sequence data-
base, see Mohan et al., 2018). PhIP-Seq libraries include VirScan

(Xu et al., 2015), quantifying antibody binding to around 100 000
peptides spanning the genomes of more than 200 viruses that infect

humans, among others. The primary objective is to identify antibody
reactive peptides and to quantify the strength of antibody binding.
PhIP-Seq experiments require the use of negative controls (so-called

‘beads-only’ or ‘mock immunoprecipitations’ lacking antibody in-
put), which are included as 4–8 wells of a 96-well plate, and are

compared to the read counts from each individual serum sample on
the plate. We recently developed and implemented BEER, a
Bayesian framework for identifying reactive peptides (Chen et al.,
2022, preprint available at https://www.biorxiv.org/content/10.
1101/2022.01.19.476926v1).

2 Features

PhIP-Seq experimental data are coordinated with sample and pep-

tide metadata using the S4 class PhIPData (Chen et al., 2021).
PhIPData extends SummarizedExperiment, enabling users to
conveniently subset the data while preserving metadata information

(Morgan et al., 2021). Peptide metadata can be added to a
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PhIPData object from a database of peptide libraries. Additionally,
PhIPData supports peptide subsetting using user-defined aliases for
viruses (Fig. 1, center).

2.1 Detecting reactive peptides
In the Bayesian approach for detecting peptide reactivity, we model
the observed read counts as a Binomial distribution, with a Binomial
sample size equal to the total number of reads in the sample, and
varying Binomial ‘success probabilities’ (i.e. the probability of pull-
ing a read) for different samples and peptides. These probabilities
depend on whether a sample is a serum sample or a beads-only
(mock IP) control. We model the overall distributions for the pepti-
des in a beads-only sample using Beta distributions with peptide-
specific shape parameters, borrowing strength across peptides. The
fold changes are modeled as shifted Gamma distributions for the
enriched peptides, and the enrichment status is modeled as
Bernoulli. Both the proportion of peptides expected to be enriched
and the attenuation constant are modeled as Beta distributions
(Chen et al., 2022). The model was implemented using the Just
Another Gibbs Sampler (JAGS) infrastructure and was executed in
the statistical environment R using the interface implemented in the
add-on package rjags (Plummer, 2019). The Markov chain Monte
Carlo (MCMC) samplers can conveniently be run in parallel, for ex-
ample, for all peptides on the virus level.

The core function of BEER is brew (Fig. 1, right). Each sample is
compared individually to all beads-only samples. brew first esti-
mates the underlying distribution of reads pulled for beads-only
samples (see Section 2.2). The remaining parameters describing the
prior distributions can be specified in the prior.params argument
in brew (defaults are offered). To improve scalability, clearly
enriched peptides [based on maximum likelihood estimates (MLEs)]
above some user-defined thresholds are excluded, and prior parame-
ters are re-estimated from the beads-only samples for the remaining
peptides. MLEs are also used to initialize the MCMC sampler in
JAGS. Parameters to specify the MCMC sampling scheme (such as
the total number of iterations, the thinning parameters, the number
of burn-in iterations, the randomization seed, etc.) are defined by
jags.params in brew. The MCMC chains are summarized as pos-
terior means for the model parameters, the key parameter being the
binary indicator denoting whether a peptide elicits an enriched anti-
body response in the serum sample (Chen et al., 2022). In addition,
estimated fold changes, the proportion of enriched peptides per sam-
ple, etc. can be added to the PhIPData object (Fig. 1, right column).
Helper functions such as getBF, which returns the estimated Bayes
factors in a new PhIPData assay, can be used to visualize the
results. The false-positive rate can be estimated using a beads-only
round robin, comparing each beads-only sample to all other beads-
only samples on the same plate by setting the argument beadsRR in
brew to TRUE.

2.2 Edger functionality
Since the output from both PhIP-Seq and RNA-Seq experiments are
read count matrices, existing software for normalization and ana-
lysis of RNA-Seq data such as edgeR (Robinson et al., 2010) can

also be applied to PhIP-Seq data. However, important differences in
the data structures, experimental design and study objectives exist

between the two approaches (Chen et al., 2022). We do recommend
using existing functionality in the edgeR package for PhIP-Seq data
to estimate the shape parameters for the Beta prior distributions for

the probabilities of peptides pulling reads. edgeR uses an empirical
Bayes approach to approximate the larger than binomial variability

observed in the read counts, which improves performance compared
to other estimation methods such as methods of moments and max-
imum likelihood estimation that do not borrow strength across pep-

tides (Chen et al., 2022).
Since edgeR does not rely on MCMC procedures and thus gener-

ates inference faster than BEER, we further investigated the perform-
ance of edgeR analyzing PhIP-Seq data in a two-group comparison

with the mock IP samples in one group and a single serum sample in
the other group (assuming equality of group variances) and found that
BEER and edgeR are equally effective in detecting moderately and

strongly reactive peptides, but BEER is needed to detect weakly react-
ive peptides (Chen et al., 2022). For user convenience, we included an
edgeR-based pipeline for PhIP-Seq data in the BEER package. The

method (classic likelihood ratio test or quasi-likelihood F-test) can be
chosen using the de.method argument in the runEdgeR function.

Two-sided edgeR P-values are converted into one-sided P-values (only
enriched read counts indicate peptide reactivity) and are added with
the estimated log fold changes to the PhIPData object via the func-

tion runEdgeR. Functionality also includes the round robin approach
described above to assess the false-positive rate, which can be exe-

cuted in runEdgeR with the argument beadsRR.

3 Conclusion

The Bioconductor package BEER provides two approaches for identi-

fying reactive peptides from PhIP-Seq data, a Bayesian approach using
an MCMC sampler, and an approach implemented in the RNA-Seq
software package edgeR. The former is more sensitive detecting weak-

ly reactive peptides, which may be particularly important when ana-
lyzing historic infections or the early stages of a developing antibody

response. The implementations of the respective main functions brew
and runEdgeR support parallelization for running multiple samples
on one plate using the package BiocParallel in R (Morgan et al.,
2022). BEER returns posterior probabilities for read count enrichment
but does not explicitly generate a list of reactive peptides. We recom-

mend to use posterior probabilities larger than 50% to delineate react-
ive peptides (Chen et al., 2022).
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Fig. 1. Pipeline for generating and analyzing data for PhIP-Seq experiments. Left:

Serum samples are mixed with bacteriophages expressing peptides from antigens of

interest, forming antibody–phage complexes. The complexes are captured using

magnetic beads and PCR amplified with barcoded primers for sample multiplexing.

The resulting product is sequenced, demuxed and transformed into a matrix of read

counts. Middle: The matrix of read counts, along with experimental, sample and

peptide metadata are stored in a PhIPData object. Right: The core function of

BEER is brew, which accepts a PhIPData object (named pd in the figure) and

returns the original PhIPData object, augmented with the results in the assays and/

or metadata containers
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