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Integrative modelling of tumour DNA methylation
quantifies the contribution of metabolism
Mahya Mehrmohamadi1,2,3,4, Lucas K. Mentch5, Andrew G. Clark4,6 & Jason W. Locasale1,2,3

Altered DNA methylation is common in cancer and often considered an early event in

tumorigenesis. However, the sources of heterogeneity of DNA methylation among tumours

remain poorly defined. Here we capitalize on the availability of multi-platform data on

thousands of human tumours to build integrative models of DNA methylation. We quantify

the contribution of clinical and molecular factors in explaining intertumoral variability in DNA

methylation. We show that the levels of a set of metabolic genes involved in the methionine

cycle is predictive of several features of DNA methylation in tumours, including the methy-

lation of cancer genes. Finally, we demonstrate that patients whose DNA methylation can be

predicted from the methionine cycle exhibited improved survival over cases where this

regulation is disrupted. This study represents a comprehensive analysis of the determinants

of methylation and demonstrates the surprisingly large interaction between metabolism and

DNA methylation variation. Together, our results quantify links between tumour metabolism

and epigenetics and outline clinical implications.
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D
NA methylation is a major epigenetic mechanism that
determines cellular outcome by regulating gene expres-
sion and chromatin organization1 in a manner more

dynamic than previously appreciated2. Altered DNA methylation
is frequently observed in cancers compared with corresponding
normal cells3–5. For example, global DNA hypomethylation6 and
tumour suppressor silencing by DNA hypermethylation are two
of the most well-characterized cancer-associated alterations
common across many human malignancies7. In addition to
hypo- and hypermethylation, cancer cells exhibit increased
variability in DNA methylation across large portions of the
genome compared with their corresponding normal tissues8,9.
Previous studies have shown that for several cancer types,
variation in methylation levels among tumour samples is
significantly higher than normal samples of the same tissue of
origin3,9, possibly indicating that deregulated epigenetics provides
tumour cells with potential adaptive advantages5. While inter-
tissue variability in DNA methylation is mainly explained by
differentiation and tissue-specific regulatory mechanisms10,11,
very little is known about the functions and determinants of the
high inter-individual variation among tumours of the same tissue
type. Notably, a recent twin study on the determinants of inter-
individual variability in DNA methylation reported that genetic
difference among individuals account for only 20% of total
variance with the remaining variance explained by environmental
and stochastic factors that are yet to be identified12.

The source of the methyl group for methylation is
S-adenosylmethionine (SAM), which is generated from the
methionine (met) cycle and is coupled to serine, glycine, one-
carbon (SGOC) metabolism13. A large body of evidence indicates
numerous roles for one-carbon metabolism in proliferation and
survival of tumour cells through its roles in biosynthesis and
redox metabolism13–16. The met cycle also mediates histone
and DNA methylation in physiological conditions and provides a
link between intermediary metabolism and epigenetics17–19.
Although the network contributes methyl units to DNA,
whether and to what extent this interaction is apparent in
tumours and may contribute to cancer biology is unknown.

We set out to comprehensively quantify the contribution of
various factors in explaining variation in DNA methylation. The
advent of standardized genomics and other high-dimensional
multi-platform ‘omics’ data through The Cancer Genome
Atlas (TCGA) allows for systematic assessments of molecular
features across cancers20. With combined statistical analysis,
computational modelling and machine-learning approaches, we
directly evaluated the quantitative contributions of molecular and
clinical variables that lead to DNA methylation. We found a
surprisingly large contribution for the expression of the
methionine cycle and related SGOC network genes in
explaining DNA methylation and identified numerous contexts,
where this interaction may contribute to cancer pathology.

Results
Quantification of the determinants of DNA methylation. It has
been previously proposed that factors normally regulating
the epigenome are disrupted in cancer, leading to increased
variability of the cancer epigenome5. However, the nature and
contributions of such factors are largely unknown. On analysis of
global and local DNA methylation in tumours as measured by the
Illumina Infinium HumanMethylation450K BeadChip arrays, we
indeed found higher variation among tumours from the same
tissue versus between different tissue types (Supplementary Note
1 and Supplementary Fig. 1a–d; Methods). Arrays were used over
bisulfite sequencing because of the higher availability of these data
in a standardized format allowing for an integrative analysis.

To establish quantitative relationships between DNA methylation
and molecular and clinical features of tumours, we developed an
integrative statistical modelling and machine-learning approach
with the goal of identifying the relative contributions to within-
cancer DNA methylation variation (Methods). We incorporated
hundreds of variables into comprehensive statistical models of
DNA methylation (Fig. 1a). Factors with a known role in DNA
methylation machinery (chromatin remodelling enzymes and
transcription factors), as well as factors with a potential
biochemical link to DNA methylation (SAM metabolizing
enzymes, met cycle enzymes and other SGOC enzymes that are
connected to the met cycle21) were together considered (Fig. 1a).
We also curated available clinical information such as age, gender
and cancer stage in the calculations, where appropriate.
Furthermore, since mutations are known to affect the cancer
methylome22, we included all recurrent genetic lesions (somatic
mutations and copy number alterations) for each cancer type in
our models. Together, over 200 variables were collectively
analysed for each cancer type (Supplementary Data 1). Our
models are therefore not completely agnostic as we pre-select
classes of biological variables that are known to affect DNA
methylation to avoid loss of statistical power by including too
many features (for example, expression of all genes in the
genome). Therefore, to test for potential bias, we also considered
the expression levels of sets of random genes with functions
non-related to DNA methylation as additional variables in our
models (see Methods). Subsequently, we incorporated all
variables into unbiased selection algorithms suitable for dealing
with large numbers of prediction variables. For this task, we
considered two independent approaches: a generalized linear
model (Elastic Net23) and a machine-learning algorithm
(Random Forest24). A distinct computation was carried out for
each 10 kb genomic region with variable methylation (s.d.40.2)
in each cancer type. Samples of each cancer type were divided
into three independent test subsets and three training subsets, and
separate models were generated using each subset. The models
were then combined resulting in a single final model for each
10 kb region of DNA methylation in each cancer. Model
performance was evaluated by measuring mean squared
prediction error of test samples from Elastic Net and Random
Forest separately (Methods).

We observed that our models predicted test set DNA
methylation with small mean squared error (MSEo0.04) in
many regions across the genome (Fig. 1b). Comparison of the
performances of the two methods showed that Random Forest
and Elastic Net algorithms were able to predict DNA methylation
with comparable MSEs on average (Fig. 1c and Supplementary
Fig. 2a). In general, predictability of local DNA methylation was
largely dependent on cancer type as well as chromatin region in
each model. For example, we observed that local DNA
methylation was most predictable in prostate and lung cancers
and least predictable in liver and bladder cancers (Fig. 1c and
Supplementary Fig. 2a). Together with the high variation in
local DNA methylation levels seen in liver and bladder cancers
(Supplementary Fig. 1d), these results suggest a higher
stochasticity in the epigenetic signatures for these two cancer
types compared with others in this study. On annotating genomic
regions, where local DNA methylation could be predicted with a
low error (MSEo0.04) in each cancer, we found that the majority
of the predictable regions lie within 20 kb of the transcriptional
start site (TSS) of a gene (Supplementary Fig. 2b), suggesting that
regulation of DNA methylation by the factors included in our
models is stronger at genic regions.

We next performed a set of tests to evaluate the robustness of
our modelling approach. To this end, we compared the original
gene expression variables included in our models with a group
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of variance-matched randomly selected genes from the genome
(see Methods) in their ability to predict DNA methylation. In the
presence of both groups of gene expression variables (original and
random), both Elastic Net and Random Forest models selected
our original variables significantly more frequently than random
genes (higher rank corresponds to higher contribution;
Mann–Whitney P value¼ 0.0007 for Elastic Net and o0.0001
for Random Forest; Fig. 1d; see Methods). When the same test
was performed in the presence of five additional common gene
families (receptor tyrosine kinases (RTK), receptor serine kinases
(RSK), Toll-like receptors (TLR), MAPK signalling (MAPK)
and WNT signaling (WNT)), all but RTKs ranked significantly
lower (Mann–Whitney P value o0.0001) than the original gene
expression variables that we initially included in our models
based on biological functions (Supplementary Fig. 3; Methods).
Together, these tests provide additional validation and confirm
that the Elastic Net and Random Forest algorithms are suitable
for quantitation of variable contributions in determining DNA

methylation. Given that our models are not completely agnostic,
we do not rule out the possibility of existence of potentially highly
contributing factors other than the hundreds of variables that we
considered (for example, RTKs). As such, the results should be
interpreted in the context of relative contributions among the
variables included and the abilities of these variables in predicting
DNA methylation.

Metabolism is a major predictor of DNA methylation in cancer.
Using the results of the integrative modelling, we next quantified
the relative contribution of different functional classes of variables
in explaining DNA methylation variation within each cancer
type. For this, we measured two independent metrics, one using
the Random Forest variable importance scores, and the other
using a binary score for whether or not a variable was selected by
the Elastic Net models (non-zero coefficient). For each variable,
an overall importance score was calculated by averaging its
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Figure 1 | Integrative modelling of local DNA methylation levels. (a) Schematic summarizing the integrative approach utilized for modelling local

DNA methylations. DNA methylation at a given 10 kb region was predicted by incorporating relevant gene expression, somatic mutation, copy number

alteration (GISTIC56 values) and clinical information into integrative models (see Supplementary Data 1 for the complete list of variables included for each

cancer type). (b) An example of an Elastic Net model performance in lung cancer. The x axis shows true values of DNA methylation in each sample, and the

y axis shows the value predicted by the integrative modelling in the same sample when it was in the test subset. (c) Summary of overall model

performance. For each cancer, the MSEs of test set predictions by Elastic Net and Random Forest were averaged across all models of local DNA

methylation. (d) Comparison of original gene expression variables with randomly selected variance-matched genes. The y axis shows the average rank of

each gene expression category based on average variable usage score across all Elastic Net models (left) and average variable importance score across all

Random Forest models (right) of local DNA methylation in brain cancer (boxes extend from 25th to 75th percentiles, centre lines represent the median and

whiskers show the minimum and maximum value in each group). P values associated with the Mann–Whitney test between the ranks across all models are

shown (a higher rank corresponds to higher contribution; see Methods).
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relative importance across all models of 10 kb DNA methylations,
and an overall usage score was calculated by measuring the
fraction of 10 kb regions in which Elastic Net models selected
the variable (Methods). To estimate the contribution of each
functional class of variables in explaining total variation in DNA
methylation, we pooled all variables in the same functional
category and averaged across their importance and usage scores
separately (Supplementary Fig. 4a,b).

Results from both Random Forest and Elastic Net algorithms
identified a considerable contribution from the variables within
the SGOC metabolic network relative to other classes of variables
(‘other SGOC enzymes’ was the second highest scoring among all
classes, closely following ‘transcription factors’ according to both
methods. ‘methionine cycle enzymes’ was the third and fourth
according to Random Forest and Elastic Net, respectively)
(Fig. 2a,b). Previous studies have shown that transcription factor
abundance and occupancy strongly mediate dynamic DNA
methylation turnover in regulatory regions25,26. Consistent with
this observation, our results confirm the ‘transcription factors’
class has the highest contribution to predicting DNA methylation
levels across human tumours. Notably, even in the presence of
most if not all known variables that are thought to mediate the
status of DNA methylation, metabolic factors still uniquely
explained a large part of the variability in methylation (Fig. 2a,b).

Given the contribution of the methionine cycle and its
biochemical link to DNA methylation, we further explored the
variables within the met cycle class compared with all other

variables in their ability to predict DNA methylation (Fig. 2c).
Within the met cycle class, methionine adenosyltransferase 2
beta (MAT2B) and betaine-homocysteine S-methyltransferase
2 (BHMT2) exhibited higher predictive values than methionine
synthase (MTR) and adenosylhomocysteinase (AHCY) on
average (Supplementary Fig. 4c,d). Notably, in the presence of
the nearly 200 other variables in the computations, the met
cycle—especially MAT2B—still contributed substantially to DNA
methylation prediction (MAT2B was ranked among the top 5% of
highly selected variables in prostate, breast, liver, lung and brain
cancers; Fig. 2d). We observed that the levels of MAT2B
contribute to DNA methylation in nearly half of the variable
regions across the genome even after accounting for various
factors related to DNA methylation (MAT2B was selected by
42% of all Elastic Net models with MSEo0.04 on average;
Supplementary Fig. 4c). Together, our results confirm that
metabolism contributes to DNA methylation in many cases
of human cancer, and the association between metabolism
and DNA methylation is stronger in some genomic regions than
others.

Functional annotation of metabolically regulated regions.
Results of the integrative modelling across cancers indicate that
defined regulation of DNA methylation happens in regions where
gene expression may be affected, thereby suggesting that this
regulation could drive essential cancer biology. We next set out to
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Figure 2 | Contribution of different functional classes of variables to DNA methylation variation. (a,b)Relative contributions of the variable classes

according to Random Forest average variable importance (a) and Elastic Net average variable usage (b) are shown averaged across all cancers (Methods).

The y axis shows the average rank of each class across cancers (with higher values corresponding to higher contribution). (Boxes extend from 25th to 75th

percentiles, centre lines represent the median and whiskers show the minimum and maximum values in each class with the exception of individual outliers

shown). (c) Diagram summarizing the steps taken towards calculating overall contribution of each of the met cycle variables relative to other variables in

explaining variability in local DNA methylations. (d) Ranking all variables according to their overall selection rate (usage) across all models of local DNA

methylation in each cancer. The y axis shows the per cent of variables that ranked lower than each of the met cycle variables (that is, made less contribution

to DNA methylation) in each cancer (BHMT2 was removed from the models of colon and bladder cancers due to low expression).
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characterize all regions across the genome where the association
between DNA methylation and the met cycle activity is particu-
larly strong. To identify such regions, we designed a scanning
algorithm to locate genomic regions spanning multiple CpGs
with significant peaks of correlation of methylation with expres-
sion of met cycle enzymes (Fig. 3a; Methods). We performed this
analysis on each of the eight cancer types separately and identified
distinct peak sets across the genome (Supplementary Data 2). To
assess potential bias towards highly methylated regions and
regions where there is higher probe density, we analysed the
relationship between average absolute methylation of individual
CpGs and their correlation with met cycle expression, and found
no significant association (P value of correlation¼ 0.62), con-
firming that the identified peaks are distinct from highly
methylated regions (Fig. 3b; Methods).

Density plots of peak distributions relative to the TSS of the
nearest gene were concentrated around the TSS in all cancers
(Supplementary Fig. 5a), as expected given the higher density of
probes in gene regulatory regions in the Illumina arrays
(Supplementary Fig. 5b). However, by further visualizing the
distribution of the peaks immediately surrounding the TSS, we
observed that peak distributions are more diffuse around the TSS

(Supplementary Fig. 5c) compared with the probe density
distribution control (Supplementary Fig. 5d). This suggests
potential enrichment in areas of the genome overlapping with
gene body regions and CpG island shores, where dysregulated
DNA methylation has previously been observed in human
cancers5. The peak distribution density plots extended up to a
few hundred kilobases in distance from the nearest TSS,
suggesting that DNA methylation at inter-genic parts of the
genome may also be affected by the activity of met cycle.

We next tested the met cycle specificity of the identified peaks
by correlating them with expression of randomly selected genes in
the genome (Methods; Supplementary Fig. 6a). For the majority
(483%) of the identified peaks, the met cycle’s correlation with
DNA methylation was significantly non-random (P value o0.05;
Supplementary Fig. 6b). These results show that our approach
was able to identify genomic regions where DNA methylation
levels are specifically affected by the met cycle activity.

We next set out to identify genes that overlap with the identified
peaks in each cancer type. Functional annotation of genes
overlapping these peaks by means of pathway enrichment analyses
across a comprehensive collection of more than 70 gene-set
libraries27 showed enrichment of epigenetic features in these
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regions consistently across all cancers. Strikingly, many of our
peaks overlapped with peaks of histone-3 lysine-27 tri-methylation
(H3K27me3) (Fig. 3c–f and Supplementary Fig. 7a–d) as reported
by both the encyclopedia of DNA elements (ENCODE) human
project28 and the RoadMap epigenomics project29. In cancers of
the lung and bladder, histone-3 lysine-9 tri-methylation
(H3K9me3) peaks were also significantly enriched (Fig. 3f and
Supplementary Fig. 7c). H3K27me3 and H3K9me3 are both
associated with repression of gene expression30. Our findings
therefore suggest that variation in the met cycle’s activity may
contribute to aberrant expression from normally silenced loci and
heterochromatin instability in cancer.

In addition to histone marks, tissue-specific and cell identity
gene sets were also enriched in relevant cancer types, including
‘breast and ovarian cancer genes’ in breast cancer (Supplementary
Fig. 7a); ‘abnormal nervous system’ and ‘abnormal neuron
morphology’ in brain cancer (Fig. 3d); ‘asthma’ and ‘lung
carcinoma’ gene sets in lung cancer (Fig. 3f); ‘kidney-specific’
gene set in kidney cancer (Supplementary Fig. 7b); and ‘large
intestinal genes’, ‘inflammatory bowel disease’ and ‘colorectal
carcinoma’ gene sets in colon cancer (Fig. 3e). Finally, a number of
developmental and signalling pathways were among the enriched
pathways, including ‘transforming growth factor-beta signalling’ in
kidney (Supplementary Fig. 7b), ‘cell communication’ pathway in
liver (Fig. 3c) and ‘G-protein coupled signalling’ in bladder cancer
(Supplementary Fig. 7c). Organ and embryonic morphogenesis
pathways were enriched in breast (Supplementary Fig. 7a), bladder
(Supplementary Fig. 7c) and prostate (Supplementary Fig. 7d), all
of which are hormonally driven cancers. Interestingly, a previous
study in breast cancer showed that embryonic developmental genes
are enriched in regions of DNA hypomethylation compared with
normal breast31. Together, these results illustrate the functional
importance of the relationship between met cycle and DNA
methylation across cancers.

Contribution of metabolism to DNA methylation at cancer genes.
So far, we have shown that there is a surprising enrichment of
peak regions of metabolically regulated DNA methylation at loci
that link to essential aspects of cell identity and chromatin
structure. We next questioned whether cancer-specific loci may
also exhibit this interaction. We chose 19 well-characterized
cancer-related genes such as tumour protein p53 (TP53),
phosphatase and tensin homologue (PTEN) and oestrogen
receptor 1 (ESR1), as well as 4 genes frequently differentially
methylated in cancer, such as APC-WNT signaling
pathway regulator adenomatous polyposis coli (APC), RAS
association domain family member 1 (RASSF1), glutathione
S-transferase pi 1 (GSTP1) and O-6-methylguanine-DNA
methyltransferase (MGMT)(see Methods). A recent study showed
that DNA methylation for any given gene has two major principal
components: one representing the promoter region and the other
representing the coding sequence32. Furthermore, CpG
methylation at promoter regions of genes is typically associated
with repression, while gene body methylation is thought to
increase expression33. We therefore applied our integrative
modelling to DNA methylation at promoter and gene body
regions of each cancer gene separately. In addition to the
integrative approach, we also generated models using only the
met cycle genes as prediction variables to quantify the predictive
ability of met cycle in the absence of other factors. Thus, each
cancer gene locus was analysed once using the integrative
approach and once using met cycle alone and threefold cross-
validation was performed in each case as previously described
(Methods). Model performance was evaluated by calculating the
error of prediction of test set methylation, as shown for two

examples in Fig. 4: oestrogen receptor 1 (ESR1) promoter in
breast cancer (MSE¼ 0.004; Fig. 4a); and androgen receptor (AR)
promoter in prostate cancer (MSE¼ 0.001; Fig. 4b). ESR1
promoter methylation in breast cancer and AR promoter
methylation in prostate cancer are two examples of events that
are known to contribute to the pathogenesis and prognosis of the
corresponding tumour types34–36. We further assessed the
integrative models of promoter methylation at these two loci,
and found many SGOC (including met cycle) variables among
the top predictive variables of promoter methylation according to
the variable importance measures (Fig. 4c,d; Methods).

Notably, the models across all cancers in the study were able to
predict cancer gene methylation with high accuracy even using
the met cycle variables in the absence of all other variables
(85% of the predictions were made with MSEo0.01;
Supplementary Fig. 8a,b). As in the case of local methylation,
cancer gene methylation was also more strongly explained by the
expression of MAT2B compared with other met cycle variables
on average (selected by 24% of all integrative models;
Supplementary Fig. 8c), consistent with the function of this
enzyme that directly affects SAM levels. Relative variable class
comparisons confirmed considerable contribution from the
‘methionine cycle enzymes’ and ‘other SGOC enzymes’ among
other classes of variables (highest after ‘transcription factors’ and
‘mutations’; Supplementary Fig. 8d,e).

We independently evaluated these findings by applying the same
models to both permuted cancer gene methylation values and also
randomly generated methylation values (Supplementary Fig. 9a).
In all tests, met cycle contribution was significantly
(P value o10e–16) higher when applied to cancer gene
methylation versus permutations or random numbers (Methods;
Supplementary Fig. 9b), confirming the specificity of signals
contained in the true DNA methylation values at cancer loci.
Furthermore, we tested the performance of the machine-learning
algorithm using randomly generated variables for prediction of
cancer gene methylation (Methods) and found in each of the cases
tested that the predictions made with the original variables are
uniformly more accurate than what is made using simulated
random variables (original model MSE smaller by 1.4- to 2-fold
than random model MSE on average; Supplementary Fig. 10a–d).
We also simulated a data set where prediction variables and the
response are related via linear relationships and compared the
accuracy of predictions in this simulated linear data set with
our original dataset (Methods). We saw in all cases that the
improvement in MSE from our data set (MSE 1.4- to 2-fold
smaller than random MSE) is even more than what we observed
with data of the same dimension that have a linear relationship
(MSE 1.3-fold smaller than random MSE; Supplementary
Fig. 10e,f). These independent tests confirm that machine learning
using the Random Forest algorithm is able to identify non-random
signals in the data, and also that it can detect nonlinear
relationships between prediction variables and the response.

Next, we ranked all of the variables based on their overall usage
according to the integrative models of cancer gene promoter and
body methylations (Fig. 4e). Notably, many SGOC (including
met cycle) enzymes were among the most frequently selected
variables in all cancers (Fig. 4f,g and Supplementary Fig. 11a–f).
Importantly, our models highly ranked many clinical and
molecular factors previously shown to be associated with DNA
methylation in the existing literature (green arrows in Fig. 4f,g and
Supplementary Fig. 11a–f). Examples of such positive controls
include DNA methyltransferase (DNMT3A or DNMT3B)
enzymes37 that were consistently among the top variables in all
cancers (Fig. 4f,g and Supplementary Fig. 11a–f), and patient’s age
(or age at diagnosis)12,38 that was highly ranked in prostate, colon,
breast, kidney and brain (Fig. 4f,g and Supplementary Fig. 11a–f).
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We also observed oestrogen receptor (ER) status to be one of the
most important contributors to DNA methylation variation in
breast cancer consistent with previous publications39

(Supplementary Fig. 11b). Furthermore, we found the mutational
status of the histone methyltransferase SET-domain containing-2
(SETD-2) as a significant contributor in kidney (Supplementary
Fig. 11c), smoking in bladder and lung (Supplementary Fig. 11d,f),
and isocitrate dehydrogenase 1 (IDH1) mutational status in brain
cancers (Fig. 4g). Each of these findings are in agreement with the

current knowledge about determinants of DNA methylation12,40–

42. These results further validate our models and also emphasize
the importance of the contribution observed for the SGOC
variables (including the met cycle).

Previous work has shown that expression of enzymes across
different regions of the SGOC network is predictive of metabolic
flux through the network21. Notably, we observed that several
SGOC genes are consistently among the highly ranked variables
by both Random Forest and Elastic Net models in multiple cancer
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Figure 4 | Contribution of metabolism to DNA methylation at cancer loci. (a) Prediction of ESR1 promoter methylation in test samples of breast cancer.

The x axis shows the methylation value at ESR1 promoter, while the y axis shows the corresponding predicted values by Elastic Net. (b) Prediction of AR

promoter methylation in test samples in prostate cancer. The axes are similar to a. (c,d) Top 20 variables as ranked based on the variable importance score

from Random Forest model of ESR1 promoter methylation in breast cancer (c) and AR promoter methylation in prostate cancer (d). Variables in the SGOC

network (including the met cycle enzymes and other SGOC enzymes) are shown in red and all other variables are shown in black. (e) Schematic depicting

the ranking of all variables based on combined results of promoter and gene body methylation at cancer loci. (f,g) Variables that were most predictive of

cancer gene methylation on average (top 15%) are ranked in order of increasing contribution (variable score¼ per cent usage by Elastic Net). Green arrows

point to previously published factors associated with variations in DNA methylation (positive controls). (Variable names: official gene symbols are used to

show gene expression variables (‘methionine cycle enzymes’, ‘other SGOC enzymes’, ‘transcription factors’, ‘chromatin remodelling factors’ and ‘ SAM

metabolizing enzymes’), while ‘_mut’ and ‘_cn’ suffixes following gene symbols denote ‘mutations’ and ‘copy number variations’, respectively. For ‘clinical

factors’, variable names match the descriptors used in the TCGA data files.) See Supplementary Fig. 11 for additional cancer types. (h) Sub-network of

SGOC genes contributing to DNA methylation in multiple cancer types (at least four and three cancers based on Elastic Net and Random Forests models,

respectively). Red and white nodes represent genes and metabolite, respectively. Solid edges denote direct biochemical links and dashed edges denote

indirect biochemical links through enzymatic reactions not shown. Node sizes for the gene nodes correspond to the number of cancer types wherein each

enzyme contributed significantly to cancer gene methylation. (Phosphoglycerate dehydrogenase (PHGDH)¼6, MAT (MAT2B and MAT2A)¼ 5, glycine

amidinotransferase (GATM)¼ 5, serine hydroxymethyltransferase 1 and 2 (SHMT1 and SHMT2)¼4, sarcosine dehydrogenase (SARDH)¼4, alanyl

aminopeptidase (ANPEP)¼4, L-amino acid oxidase (IL4I1)¼4 and gamma-glutamyl hydrolase (GGH)¼4.)
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types. Therefore, to understand which features of SGOC
metabolism contribute to the interaction with methylation, we
defined a sub-network that was commonly highly ranked by the
models in multiple cancer types (Fig. 4h; Methods). This SGOC
sub-network comprises the MAT enzymes in the met cycle
(MAT2B and MAT2A), as well as enzymes within serine–glycine
metabolism such as phosphoglycerate dehydrogenase (PHGDH)
and glycine amidinotransferase (GATM) (Fig. 4h). We generally
observed negative associations between DNA methylation and
expression of PHGDH and GATM, but positive associations with
expression of MAT enzymes. A cautionary note however is that
in many disease states, levels of particular metabolites in the
methionine cycle substantially deviate from physiological ranges,
thus activating compensatory mechanism and leading to
correlation with DNA methylation in directions opposite of
what would be expected from the biochemistry of the reactions43.
Therefore, when interpreting the direction of correlations
between metabolic enzyme levels and DNA methylation, it is
important to note that they not only depend on the stoichiometry
of the corresponding enzymatic reactions but also on endogenous
abundance of the related metabolites. Together, our results
suggest that a particular flux configuration through the SGOC
metabolic network—which previous studies have shown to be
predictable from gene expression patterns21—may be important
for regulation of DNA methylation.

Cancer pathogenesis of metabolically regulated DNA methylation.
Involvement of the met cycle in promoter and gene body
methylation at cancer genes suggests a potential implication for
this metabolic pathway in explaining part of the variability in
cancer pathogenesis and patient outcome. To further assess this
relationship, we divided patients in each cancer type into two
groups based on overall predictability of their cancer loci
methylation by the met cycle (see Methods). We then compared
survival rates between the two groups (‘predictable’ by met cycle
versus ‘not predictable’ by met cycle) in each cancer type using
the Kaplan–Meier estimator44 (Fig. 5a–h). An improved overall
survival for the ‘predictable’ group was observed, although the
magnitude of this trend varied depending on cancer type with
brain, kidney, liver and colon cancers showing statistically
significant differences (log-rank test P values: brain¼ 3.92e–05;
liver¼ 0.0048; kidney¼ 0.0085; and colon¼ 0.04; Fig. 5a–d).
The difference in survival between the predictable and non-
predictable groups was not significant in the rest of the cancers
studied here (Fig. 5e–h), possibly explained by limited power due
to data censoring at later time points. The overall patterns
however suggest that the regulation of DNA methylation by the
met cycle may be important in maintaining a normal epigenome,
and disruption of this relationship in specific subtypes of tumours
can lead to high epigenetic stochasticity in those tumours that
correspond to poor clinical outcomes. This is consistent with a
previous study that showed DNA methylation stochasticity
increased across samples with increasing malignancy (from
normal to adenoma to carcinoma)5.

To validate the results of our survival analyses, we applied
multivariate Cox regression models to account for covariates such
as mutations and clinical factors that are known to be associated
with survival rates (Methods). We performed this test in the cases
of brain, liver and kidney cancers, where the univariate analyses
found highly significant differences between the predictable and
non-predictable groups (Fig. 5a–c). The models including
covariates still showed a significant difference (Po0.05) between
the predictable and non-predictable groups of patients even after
taking mutational and clinical factors into account (see Methods
for the list of covariates considered in each cancer), suggesting

that a unique part of variation in survival may be explained by
epigenetic regulation. We next tried to further validate our results
through comparison with independent analyses of the TCGA
data by the cBioPortal for Cancer Genomics (cBioPortal)45 and
Prediction of Clinical Outcome from Genomic profiles
(PRECOG)46. These analyses found lower survival in prostate
cancer patients harbouring tumours with deep deletions in the
met cycle genes (Supplementary Fig. 12a), and higher survival in
kidney cancer patients where the met cycle enzymes are
overexpressed (Supplementary Fig. 12b). These results confirm
a relationship between met cycle and survival in the same
direction as predicted by our hypothesis.

Discussion
In this study, we conducted a pan-cancer TCGA analysis of the
molecular and clinical contributions to within-cancer (inter-
individual) variation in DNA methylation. Through several lines
of integrated analysis, we found the overall expression of both the
methionine cycle and SGOC network to be strong predictors of
multiple aspects of DNA methylation and consistently ranked as
one of the highest contributing factors to cancer-associated DNA
methylation such as methylation of numerous cancer genes.
Within the methionine cycle, we consistently observed a more
significant contribution from MAT2B and BHMT2, suggesting
that the regulation may be occurring at these enzymatic steps.
MAT2B is the enzyme that converts methionine to SAM,
therefore it is expected that this enzyme affects SAM levels more
directly than other metabolic enzymes. The significance of
BHMT2 but not MTR suggests that metabolism of choline and
betaine may be more prevalent than folates in cases where
one-carbon metabolism fuels DNA methylation. It is important
to note that given the nature of our calculations, the results do
not prove causal relationships. As such, they should not be
interpreted as direct evidence for regulation of DNA methylation
by the model variables, but rather as predictive associations.

We introduced a novel approach to identify chromatin
regions with strong correlations between DNA methylation and
metabolic enzyme levels. The identified regions for the met cycle
enzymes significantly overlapped with histone modifications,
consistent with enzymatic cross-talk between the two epigenetic
processes30. The enrichment of gene signatures of repressing
histone marks such as H3K27me3 in all cancers points to a
possible role for the met cycle in maintenance of DNA
methylation at silenced loci. Previous studies have reported
aberrant methylation of transcriptionally repressed genes in
cancer47. In fact, heterochromatin instability arising from
increased variability in DNA methylation is a phenomenon
observed in many cancers and is thought to contribute to
epigenetic plasticity and tumour progression3,9,48. Our results
provide evidence for this model of dysregulated cancer
epigenome and further suggest that disruption of the regulation
of DNA methylation by the met cycle—which can be a cause or
consequence of tumorigenesis—may be one of the sources of
methylation stochasticity leading to higher malignancy. Survival
analyses confirm that tumours with a weaker association between
their cancer gene methylation and the met cycle expression are
more malignant in comparison with tumours wherein this
relationship is closer to normal. In addition to epigenetic
overlaps, genes with important tissue-specific functions and
disease states were also found to fall under the metabolism–DNA
methylation peaks. DNA methylation at cell-type-related disease
and lineage-specific genes has previously been shown to be
dynamic and functionally important11. Our results further
strengthen the idea that met cycle regulation of methylation is
strongly associated with normal tissue function.
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Application of the integrative modelling to cancer genes
revealed a major role for MAT enzymes (MAT2B and MAT2A),
as well as PHGDH and GATM—enzymes involved in serine and
glycine metabolism, respectively. Importantly, MAT2B and
MAT2A have been shown to co-localize in nuclei and bind
DNA through complex formation with chromatin binding
proteins providing direct evidence for the role of these enzymes
in regulation of transcription via methylation49. Our results
illustrate that higher levels of MAT2B are associated with more
‘regulated’ methylation and higher survival, suggesting potentials
for genetic or dietary interventions with methionine cycle
intermediates in cancer patients. PHGDH diverts the glycolytic
flux into the de novo serine synthesis pathway that allows
glycolysis to provide methyl units. GATM diverts glycine into the
creatine synthesis pathway in which SAM is consumed to
produce creatine50. Creatine synthesis is therefore in competition
with the methionine cycle over cellular pools of SAM, explaining
why enzymes within the serine–glycine metabolism generally
tend to be negatively correlated with the met cycle and DNA
methylation.

Overall, this study provides the first comprehensive quantifica-
tion of the determinants of inter-individual DNA methylation
variation in human cancers. The activity of the methionine cycle
that emerges in these findings could be either sensed directly by
the DNA, or indirectly through interplay with dynamic histone
methylation, which itself is tightly regulated by the status of
methionine metabolism18. Owing to limitation in the coverage of
the DNA methylation arrays, it remains to be determined if our

findings are generalizable to methylation across the entire
genome, including all non-CpG methylation sites as well as
hydroxy-methylation sites. Nevertheless these findings altogether
identify metabolism as a major determinant of DNA methylation
status in human cancer. It is important to note that the current
TCGA data set contains one sample per individual tumour and
therefore our conclusions do not necessarily explain the variation
in clonal populations within a given tumour. Future studies
using multiple samples per tumour or single-cell epigenomics
are therefore required to characterize the determinants of
intratumour epigenetic heterogeneity. Finally, our study
identifies an association between altered tumour metabolism
and DNA methylation, while the sources of alterations in
metabolism itself remain to be elucidated but can be addressed
using similar approaches.

Methods
Data curation. Publically available genome-wide mRNA expression and DNA
methylation data were downloaded from TCGA portal (https://tcga-data.nci.
nih.gov/tcga/). To increase consistency and minimize unwanted variations, only
samples processed using RNASEQ-V2 with level 3 gene-normalized RNA-seq by
expectation maximization values for gene expression, and level 3 beta values from
Illumina Infinium HumanMethylation450K BeadChip data for DNA methylation
were included in the study. We selected the following eight cancer types wherein
the number of available samples analysed on both platforms was sufficiently large
for machine-learning calculations: 770 samples of breast invasive carcinoma
(BRCA); 450 samples of lung adenocarcinoma; 374 samples of liver hepatocellular
carcinoma; 534 samples of brain lower-grade glioma; 408 samples of bladder
urothelial carcinoma; 316 samples of kidney renal clear cell carcinoma; 424 samples
of prostate adenocarcinoma; and 198 samples of colon adenocarcinoma. Somatic
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Figure 5 | Implication of metabolic regulation of methylation in patient survival. (a–d) Kaplan–Meier curves are depicted comparing groups of patients

wherein cancer gene methylation was predictable (red) or not predictable (black) by the met cycle variables (see Methods). Overall survival in days is

plotted in each case and censored subjects are shown by vertical tick marks (Methods). Log-rank test P value between the two groups is reported. Survival

analysis results and log-rank test P values are shown for brain, liver, kidney and colon cancers, respectively. (e–h) Survival analysis results as described

above are reported for bladder, breast, lung and prostate cancers, respectively. Log-rank test P values showed no significant difference between the

‘predictable’ and ‘not predictable’ groups. NS, not significant. Sample sizes: breast¼ 770; lung¼450; liver¼ 374; brain¼ 534; bladder¼408; kidney¼ 316;

prostate¼424; and colon¼ 198.
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mutations with a frequency of 5% or higher, and Genomic Identification of
Significant Targets in Cancer (GISTIC) values for copy number alterations with a
frequency of 15% or higher according to the cBioPortal45 were obtained and
included in the models. Clinical and follow-up data were downloaded via the
TCGA-Assembler51.

Assessment of batch effects. We used the TCGA Batch Effects online tool
(http://bioinformatics.mdanderson.org/tcgabatcheffects) to check for the existence
of batch effects in the data used in our study. For each cancer types in our
study, both the DNA methylation and the RNA-seq batch effects were negligible
(dispersion separability criterion score o0.5 for all sample batches included in the
study).

DNA methylation. The Illumina Infinium Human Methylation450K BeadChip
consists of more than 450,000 probes across the genome covering CpG sites within
and outside of CpG islands as well as non-CpG methylation sites identified in
embryonic stem cells (http://www.illumina.com/products/methylation_450_
beadchip_kits.html). We first filtered all probes with more than 80% missing values
across each cancer type. Global DNA methylation was then defined as the average
beta value across all remaining probes for each sample (Supplementary Fig. 1a).
Sex chromosomes were also excluded from all subsequent analyses of DNA
methylation. To assess local DNA methylation, we divided the genome into 10 kb
intervals and calculated the average beta value across all probes within each bin.
We then filtered regions where variation in methylation was modest (s.d.o0.2
across each data set). The average beta value across all remaining 10 kb regions was
then calculated for each sample individually and plotted in Supplementary Fig. 1c.
To study DNA methylation at cancer loci, probes that mapped to each gene
according to Illumina annotations were identified. Promoter DNA methylation was
then defined as the average beta value across all probes mapping to a given gene
and falling within one of the following positional categories based on Illumina chip
annotation information: ‘TSS1500’; ‘TSS200’; or ‘50UTR’. Gene body methylation
for each gene was defined as the average beta value across all probes mapping to a
given gene and falling in ‘1st exon’, ‘Body’ or ‘30UTR’ based on the annotation.
Promoter and gene body methylation were separately modelled for each of the
cancer genes in the study (Fig. 4).

Gene expression. Log-transformed gene-normalized RNA-seq by expectation
maximization values were used as expression levels, and low-expression genes in
each data set were defined as having o70% of the samples with a count value larger
than 3. Such genes were removed from further analysis.

Gene expression variables included in the integrative models. In addition to
the major enzymes in the met cycle (MAT2B, MTR, BHMT2 and AHCY), four
classes of expression variables with potential links to DNA methylation were also
included in the integrative models (see Supplementary Data 1 for the complete list
of variables). The four classes are described in the following sections.

Other SGOC enzymes. SGOC metabolic genes from our previous network
reconstruction were included21. To separately assess the effect of the met cycle
from the rest of the network, we excluded the met cycle enzymes from this class
and treated them as a separate class (methionine cycle enzymes).

Chromatin remodellers. A list of human chromatin remodellers and DNA
methylation machinery was constructed by combining the Gene Ontology (GO)
chromatin modifiers list, GO chromatin remodellers list52, and methylated
DNA-binding proteins and de-methylases53.

Transcription factors. For each cancer type, transcription factors important in
the pathogenesis or subtype specification based on previous literature were
included54.

SAM metabolizing enzymes. DNA methyltransferases and other SAM-
consuming enzymes (except for MAT enzymes already included in the class
‘methionine cycle enzymes’) according to Human Cyc55 were included in this class.

Mutations included in the integrative models. For each cancer type, genes with
frequent somatic mutations (minimum frequency of 5%) among the TCGA cohort
according to the cBioPortal45 summary table (TCGA, Provisional) were obtained.
The transposed matrix of individual barcodes and mutations in the selected genes
was downloaded from the cBioPortal for each of the eight cancers in this study. See
Supplementary Data 1 for a complete list of somatic mutations considered in each
cancer type.

Copy number alterations included in the integrative models. For each cancer
type, genes with frequent copy number alterations (minimum frequency of 15%)
among the TCGA cohort according to the cBioPortal45 summary table (TCGA,
Provisional) were obtained. The transposed matrix of individual barcodes and
putative copy number alteration calls by GISTIC56 for the selected genes was
downloaded from the cBioPortal for each of the eight cancers in this study (values
of putative copy number calls determined using GISTIC 2.0: � 2¼ homozygous
deletion; � 1¼ hemizygous deletion; 0¼ neutral/no change; 1¼ gain;

2¼ high-level amplification). See Supplementary Data 1 for a complete list of copy
number alterations considered in each cancer type.

Clinical factors included in the integrative models. For each cancer type, clinical
information was downloaded through the TCGA-Assembler51. All clinical
attributes were included for each cancer type with the exception of the ones filtered
out due to missing data for all samples or factors with the same level across all
samples. See Supplementary Data 1 for a complete list of clinical attributes
considered in each cancer type.

Variable ranking using the Random Forest algorithm. The Random Forest is a
machine-learning algorithm that generates predictions by averaging over a
collection of randomized decision trees. Since successive trees are built with
bootstrap samples, the algorithm is robust to over-fitting, and also those samples
that are left out (the out-of-bag samples) can be used to quantify the contribution
that prediction variables make to the overall response. The Random Forest method
is designed to accommodate nonlinearities between the response and prediction
variables, as well as unknown interactions among the variables57,58. We used the R
package ‘randomForest’59 and performed threefold cross-validation by manually
dividing the samples in each cancer type into three training and test subsets.
To build each forest, tree size was set to 500 and the ‘importance’ parameter was set
to ‘TRUE’ in the R function ‘randomForest’ so as to provide estimates for the
importance of prediction variables. Missing data were imputed using the
‘na.roughfix’ function in the ‘randomForest’ package. We obtained separate
measures of importance for each variable from each Random Forest run. These
importance scores are calculated as the per cent increase in the mean squared
prediction error on the out-of-bag samples when a given variable is permutated.
Variables were ranked based on average importance scores across all cross-
validation folds. Prediction errors were calculated as the mean squared difference
between the predicted versus the observed methylation values for the test set
samples. The square root of the MSE has the same scale as the response (DNA
methylation beta values in this case), and is therefore a direct measure of the
accuracy with which predictions were made. (Fig. 1c and Supplementary Fig. 8a,b).

Variable selection using the Elastic Net algorithm. Elastic Net is a penalized
regression approach for variable selection and quantitative inference that identifies
linear combinations of unique variables that contribute to a response variable
such as the amount of DNA methylation. The algorithm was developed and
benchmarked to avoid over-fitting in statistical modelling of high-dimensional data
containing collinearity60. We applied the Elastic Net algorithm using the R package
‘glmnet’61. Elastic Net performs variable selection by minimizing a regularized cost
function using the following equation

minb0;b
1
N

XN

i¼1

wi l yib0þ bT xi
� �

þ l ð1� aÞ jj b jj22 =2þ a jj b jj1
� �

where l is the tuning parameter and a is the Elastic Net penalty term. For each
cancer type, the samples were divided into three independent test subsets (threefold
cross-validation), and separate models were generated using each training subset.
Using a grid of different tuning parameter values, we found the l that minimized
the MSE using fivefold cross-validation within each training set for each model
separately. The value of a was set to 0.5 to handle potential correlated variables.
Finally, for each variable, average coefficient across the three independent models
was calculated for each region and each cancer type. Owing to the existence of
categorical factors among our variables (for which scaling is not appropriate), we
also calculated the selection rate as an alternative measure of variable importance
referred to as ‘variable usage’ in the manuscript. Variable usage was measured as
the fraction of times across all cross-validation folds that a variable was selected by
the Elastic Net to be included in the final model (Supplementary Figs 8c and 11a–f
and Fig. 4f,g). Finally, prediction errors were calculated as the squared difference
(MSE) between the predicted and measured DNA methylation values for the test
sets (Fig. 1c and Supplementary Fig. 8a,b).

Variable class contributions to DNA methylation. Variables were functionally
categorized into the following eight classes: ‘methionine cycle enzymes’; ‘other
SGOC enzymes’; ‘chromatin remodelling factors’; ‘transcription factors’; ‘SAM
metabolizing enzymes’; ‘clinical factors’, ‘copy number variations’; and ‘mutations’.
Results of the integrative modelling were summarized and reported in terms of the
average contribution from each of the above functional classes in explaining DNA
methylation variation. Variable importance scores from Random Forest models
were averaged across all variables within a given class, and an overall class
importance score was calculated. In the case of Elastic Net models, variable usage as
described in the previous section, was averaged across variables in each class and an
average percentage showing selection rate was calculated. Finally, classes were
ranked in each cancer type according to their average contribution and the overall
class ranks were plotted in Fig. 2a,b and Supplementary Figs 4a,b and 8d,e.

Comparison with gene expression controls. A set of 100 randomly selected
genes from the genome with similar cross-sample variation in expression as our
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original gene expression variables (transcription factors (TFs), SGOC, MET-C,
SAM and chromatin remodelling factors (RMs)) were considered. We performed
this test on local DNA methylations (all variable 10 kb regions) in brain cancer
(lower-grade glioma) as an example and repeated the integrative modelling using
this set of randomly selected genes in addition to all other variables present in the
original models. All gene expression variables were then ranked using a similar
approach as described above. To compare our original gene expression variables
with the variance-matched random genes, the ranks across all models were
averaged (Fig. 1d), and P values were obtained from one-tailed Mann–Whitney
non-parametric test between the two groups from Elastic Net and Random Forest.
To further test our gene expression variables against other gene families, five
popular gene sets were considered: RTK, RSK, TLR, MAPK signalling and WNT
signalling families. The list of genes in these families were obtained from the
HUGO Gene Nomenclature Committee (http://www.genenames.org/cgi-bin/
genefamilies/). The same approach as described above for randomly selected genes
was used to compare these gene sets with our original gene expression variables
(Supplementary Fig. 3).

Distance to nearest gene TSS. Selected 10 kb regions were converted to genomic
range objects using the R package ‘GenomicRanges’62. The distance to single
nearest gene’s TSS was found using Genomic Regions Enrichment of Annotations
Tools (GREAT)63. Genomic regions are associated with nearby genes by first
assigning a regulatory domain to every gene in the genome, and then finding genes
whose regulatory domains overlap with a given genomic region. We set the
association rule parameter in GREAT to ‘single nearest gene’ with a maximum
extension of 1,000 kb for definition of regulatory domains. Density plots of distance
to TSS are depicted in Supplementary Fig. 2b. The same approach was used for
annotating peaks obtained from Fig. 3 (density plots shown in Supplementary
Fig. 5a,c). To obtain the distribution of Illumina probe densities around the TSS, we
randomly selected 10,000 probes across the arrays and applied the above-described
approach to measure the distance to nearest gene’s TSS for each probe. Density
plots were obtained for the purpose of comparison with the distribution of
metabolically regulated peaks (Supplementary Fig. 5b,d).

Identification of metabolically regulated genomic regions. To find peaks of
strong association between the met cycle and DNA methylation, we designed a
novel scanning method by applying the idea of Manhattan plots from expression
quantitative trait loci analyses to DNA methylation data. In each cancer type,
we first selected one of the major enzymes in the met cycle with the highest overall
Spearman correlation with global and local DNA methylations (BHMT2 in brain,
breast, prostate and liver; MAT2B in lung and bladder; and AHCY in colon and
kidney cancers), and calculated the Spearman correlation between its expression
and the beta value of each individual probe across the genome. We then sorted the
probes according to genomic coordinates and aligned the � log10 of the P values
obtained from the Spearman correlations along the chromosomes. Next, we applied
a sliding window scan for regions of strong association across the genome
separately in each cancer type (Fig. 3a). For this, probes with the highest
correlations (top 10% across the genome) were located and a 6 kb window
(þ 3 and � 3 kb) flanking the genomic coordinate of the original probe was
scanned. A region was reported as a ‘peak’ if the following criteria were met:
(1) region included at least three probes with a correlation in the same direction as
the original probe (positive or negative); (2) at least 80% of all probes within the
region had a significant (Po0.00001) correlations with met cycle expression. After
applying these filters, the selected regions were annotated and genes overlapping
with each of the peaks were used for subsequent pathway enrichment analyses.
Given the window size and the above criteria, the majority of the identified peaks
only overlapped with one unique gene (see Supplementary Data 2 for a complete
list of all identified peaks).

To assess potential bias towards highly methylated regions in the identified
regions where correlation of methylation with met cycle expression peaks, we
tested 2,000 randomly selected probes across the genome. We then evaluated the
association between methylation of each probe with the value of its Spearman
correlation rho with met cycle expression—we used AHCY in colon cancer as an
example in this test (Fig. 3b).

Finally, an additional filter was applied to rank the identified peaks according to
peak shape. For this, the aligned correlation coefficients in each region were
assessed with respect to whether they formed a peak according to an information
theory score calculated by the R function ‘turnpoints’ (refer to R package
‘pastecs’64). This function finds all turning points (peaks and pits) in a series of
points (in this case, aligned correlation coefficients), and calculates the information
quantity of each turning point using Kendall’s information theory. Finally, it
measures a P value against a random distribution of the turning points in a given
series, with smaller P values corresponding to less random shape and a higher
probability of a turning point corresponding to a real peak or pit. We selected
regions containing turning points with the most significant P values (lowest 20%)
in each cancer type and subsequently tested them for specificity for the met cycle as
described in the following section.

Test of specificity of peaks for the met cycle. Each of the selected peaks was
tested for specificity of their correlations with the met cycle expression (versus gene
expression in general). For this, 500 genes were randomly selected from the
genome in each cancer type, and the Spearman correlation coefficient was
measured between their expression and the methylation of every probe within a
given peak. The fraction of significant correlations was calculated for all of the
500 genes as well as for the met cycle gene. A randomization q-value was calculated
for the met cycle gene by comparing it with the distribution of the correlations
calculated for the 500 random genes. This procedure was repeated separately for
each peak in each cancer type and the results are summarized in Supplementary
Fig. 8a,b.

Pathway enrichment analyses. Peaks were annotated according to Illumina
information and UCSC Ref gene names for genes overlapping with the identified
peaks were extracted. Pathway enrichment analysis was performed on the resulting
gene list for each cancer type using Enrichr27. Combined scores from Enrichr were
used to rank pathways. The combined score ‘c’ is defined as c¼ log(p)� z, where p
refers to the P value from the Fisher’s exact test and z is the z-score indicating the
deviation from the expected rank. Enrichr first calculates Fisher’s exact P values for
many random gene sets to generate a distribution of expected P values for each
pathway in their pathway library. The z-score for deviation from this expected rank
is therefore an alternative ranking score and the combined score is considered a
corrected form of the enrichment score and P value, which we used to sort
pathways in Fig. 3c–f and Supplementary Fig. 7a–d. All gene sets in Fig. 3c–f and
Supplementary Fig. 7 had Fisher’s exact P values o0.05, and the most highly
enriched sets are shown ranked by the combined enrichment scores. Gene set
names used in Fig. 3c–f and Supplementary Fig. 7 follow the convention used and
described by Enrichr (http://amp.pharm.mssm.edu/Enrichr/#stats). Briefly, GO
sets are shown by GO numbers in parenthesis following their name, epigenetic
modifications from the ENCODE histone modifications 2015 project are shown by
‘-hg19’ following gene set names to be distinguished from those from the
Epigenomics Roadmap project, gene sets from the Cancer Cell line Encyclopedia
are shown by cell line names following cancer type in upper case, disease signatures
from the gene expression omnibus are shown in upper case followed by GSE
accession numbers, KEGG 2015 and the Human Gene Atlas gene sets are shown in
lower case. Refer to Enrichr for a complete list of all gene sets included in more
than 70 libraries.

Cancer genes. A list of 12 cancer drivers common in multiple human cancers
was considered65 (TP53, PTEN, neuroblastoma RAS viral oncogene homologue
(NRAS), EGFR, IDH1, IDH2, CCCTC-binding factor (CTCF), von Hippel–Lindau
tumour suppressor, E3 ubiquitin protein ligase (VHL), catenin beta 1 (CTNNB1),
nuclear factor erythroid-2 like 2 (NFE2L2), phosphoinositide-3-kinase, regulatory
subunit 1 (PIK3R1) and ms-related tyrosine kinase 3 (FLT3)). These genes were
consistently identified as candidate cancer drivers by four independent positive
selection detection algorithms in a comprehensive pan-cancer analysis of
thousands of TCGA tumours65. We added to this list, well-known cancer
drivers not included in the above list (Kirsten rat sarcoma viral oncogene
homolog (KRAS), B-Raf proto-oncogene, serine/threonine kinase (BRAF),
phosphatidylinositol-4,5-bisphosphate 3-kinase, catalytic subunit alpha (PIK3CA),
and breast cancer 1, early onset (BRCA1)). In addition to these common cancer
drivers, we also considered a number of cancer type-specific genes, including
receptors important in specific subtypes of cancers (ESR1, AR and erb-b2 receptor
tyrosine kinase 2 (ERBB2)). Finally, cancer genes frequently aberrantly methylated
in human cancers were also considered34 (RASSF1, GSTP1, APC and MGMT),
together constructing a list of 23 cancer genes for detailed analysis of DNA
methylation shown in Fig. 4.

Evaluation of model performance using randomized responses. To test the
reliability of the variable contribution results obtained from our gene-specific DNA
methylation models, we built two different randomized data sets as control
responses, each with the same dimensions as the original response data set (that is,
the cancer gene DNA methylations). In the first case, we permuted the DNA
methylation values of each cancer gene, and repeated the modelling using the met
cycle variables. In the second case, we generated random beta values (from uniform
distribution in the range of 0–1) and used those as the response variables in the
calculations. We then compared average met cycle variable importance (Random
Forest) and variable usage (Elastic Net) from prediction of true cancer gene
methylations versus permuted methylations and randomly generated responses.
The Kolmogrov–Smirnov test P values were calculated between the distributions as
illustrated in Supplementary Fig. 9b.

Evaluation of model performance using randomized predictors. Using prostate
cancer as an example, we performed simulation tests to determine whether the
Random Forest as a methodology is able to utilize the information in the prediction
variables beyond what could be expected if the predictors were only random noise
and unrelated to the response. To investigate this, we modelled methylation in the
prostate cancer data set at three example cancer loci (GSTP1, RASSF1 and PITX2).
These genes were selected based on previous evidence indicating the critical
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importance of their aberrant methylation in prostate cancer34,66. As controls,
we generated three additional data sets. For the first data set, we copied the exact
response as the GSTP1 methylation, but randomly generated a predictor variable
set of the same dimensions as the original variable set by sampling from a standard
normal distribution. That is, each observation on each variable is a sample from a
normal distribution of unit variance and should therefore have no relationship to
the response. The other two data sets were generated in the same manner, using
RASSF1 and PITX2 methylation as responses and randomly generated variable sets
as predictors. To assess the performance of the Random Forest computations, we
compared the MSE from predictions made using the original data with those made
by the data sets consisting of random variables unrelated to the responses. For each
of the three responses, we randomly divided the data into training and test sets,
generated a total of 100 simulations consisting of 500 decision trees, and compared
the resulting MSEs of the predictions made on the test points. Results are
summarized in Supplementary Fig. 10a–d.

To quantify the improvement in the Random Forest algorithm by using the
original variables over the randomly simulated variables, we defined an
improvement metric (MSE-Imp), describing the relative improvement in
prediction accuracy:

MSE-Imp :¼ MSE-rand
MSE-orig

where MSE-rand is the average MSE calculated using the random simulated
variables and MSE-orig is the average MSE calculated using the original variables.

In this test, another simulated data set of the same dimensions as the original
data set was generated where the variables and response were linearly related via
the following equation:

Y ¼
XP

i¼1

biXi þ e

To generate this linear data set, we sampled the value of each prediction variable
Xi from a standard normal distribution and the noise e from a normal distribution
with mean 0 and s.d. 0.05. The values of the coefficients bi were selected uniformly
at random from the interval [0,1]. We then measured the MSE improvement
(MSE-Imp) for the linear data set using the same approach as MSE improvements
for the original data sets were calculated (explained in the previous paragraph).
This allowed us to compare a linearly simulated data set with our real data set.
Results are shown in Supplementary Fig. 10e,f.

Network construction. Genes in the SGOC network (including the met cycle
genes) that were among the most highly ranked variables (top 15%) in at least four
of the cancer data sets according to the Elastic Net models and at least three of the
cancer data sets according to the Random Forest models were selected. A metabolic
network consisting of these enzymes was then constructed using MetScape67,
where nodes represent genes and metabolites, and edges represent biochemical
links. We fixed the node size for metabolites but adjusted node sizes for genes to
correspond to the number of cancers in which each variable was highly ranked
(among the top 15% of all variables) (Fig. 4g). For nodes not directly connected to
the rest of the network, we manually added dashed lines where appropriate.

Survival analyses. In each cancer type, the average error of prediction of DNA
methylation at cancer loci was measured for each patient across all Elastic Net
models using only met cycle variables for prediction. Patients were then divided
into two groups based on predictability of their methylation by the met cycle
activity (‘predictable’¼ below-median prediction error; ‘not predictable’¼ above-
median prediction error). To estimate overall survival time, ‘days-to-death’ was
used with vital status information and last follow-up date used to right-censor
subjects (subjects alive at last follow-up were censored from the analysis beyond
their last follow-up date). The relationship between survival and predictability was
then analysed using the ‘survfit’ function in the R package ‘survival’68 and
visualized by Kaplan–Meier curves. Log-rank test P values were calculated by fitting
models of overall survival to patients’ ‘predictability’ group assignments using the
‘survdiff’ function in the survival package for each cancer type separately. Results
are depicted in Fig. 5.

Multivariate Cox regression. In the three cancer types (brain, liver and kidney),
where univariate analysis showed a highly significant difference in survival between
the predictable and non-predictable groups as described above, and also the sample
size allowed for sufficient power to perform multivariate analysis, we used relevant
clinical and mutational factors as covariates and repeated the survival analysis.
The following factors were individually tested as covariates in separate models of
overall survival along with ‘predictability’ status as the fixed effect: brian cancer:
all frequent somatic mutations (see Supplementary Data 1 for the complete list),
histological diagnosis, age, gender and initial weight; liver cancer: all frequent
somatic mutations (see Supplementary Data 1 for the complete list), tumour stage,
history of other malignancies and residual tumour; kidney cancer: all frequent
somatic mutations (see Supplementary Data 1 for the complete list), age and race.
In each case, the results of regression using the ‘coxph()’ function in R provided the

P value for the significance of the predictability status when modelling overall
survival in the presence of covariates.

Software. All computational and statistical analyses were done using R 3.1.2
(ref. 69). Distribution plots, box plots, scatter plots and bar plots were made in
GraphPad Prism version 6 (GraphPad Software, San Diego California USA,
www.graphpad.com). Circular plots were generated using Circos70.

Code availability. R script is available through the following Github repository
(https://github.com/mahyam/DNA-methylation-and-metabolism-R-code).

Data availability. All data used in this study were obtained from the TCGA data
portal available online at https://gdc.nci.nih.gov/.
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