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Air pollution is a major environmental threat and each year about 7 million people
reported to die as a result of air pollution. Consequently, exposure to air pollution is
linked to increased morbidity and mortality world-wide. Diesel automotive engines are a
major source of urban air pollution in the western societies encompassing particulate
matter and diesel exhaust particles (DEP). Air pollution is envisioned as primary cause for
cardiovascular dysfunction, such as ischemic heart disease, cardiac dysrhythmias, heart
failure, cerebrovascular disease and stroke. Air pollution also causes lung dysfunction,
such as chronic obstructive pulmonary disease (COPD), asthma, idiopathic pulmonary
fibrosis (IPF), and specifically exacerbations of these diseases. DEP induces inflammation
and reactive oxygen species production ultimately leading to mitochondrial dysfunction.
DEP impair structural cell function and initiate the epithelial-to-mesenchymal transition, a
process leading to dysfunction in endothelial as well as epithelial barrier, hamper tissue
repair and eventually leading to fibrosis. Targeting cyclic adenosine monophosphate
(cAMP) has been implicated to alleviate cardiopulmonary dysfunction, even more intri-
guingly cAMP seems to emerge as a potent regulator of mitochondrial metabolism. We
propose that targeting of the mitochondrial cAMP nanodomain bear the therapeutic
potential to diminish air pollutant — particularly DEP — induced decline in cardiopulmon-
ary function.

Introduction
Air pollution is related to several cardiopulmonary disorders, such as ischemic heart disease, cardiac dys-
rhythmias, heart failure, cerebrovascular disease, stroke, asthma, chronic obstructive pulmonary disease
(COPD), idiopathic pulmonary fibrosis (IPF), lung cancer and also acute respiratory infections [1]. Air
pollution is clearly linked to industry and transport typical characteristics of societal development. For
this reason, most countries exceed recommended air pollution levels and thereby risk global health pro-
blems [1,2]. One of the main components of air pollution is particulate matter (PM), which is composed
of carbonaceous and inorganic particles (metal, metal oxides) or produced from precursor gases such as
sulfur oxides and nitrogen oxides. Diesel exhaust particles (DEP) result from automotive engines and
are a major source of urban air pollution linked to cardiopulmonary dysfunction [3,4] (Figure 1).
The main trigger to air pollution — thus DEP — related cardiopulmonary dysfunction is most

likely related to the induction of inflammation. For example, intranasal instillation of mice with DEP
collected from a light medium duty Euro 1 diesel engine, with a size between 0.03 and 0.2 mm dia-
meters containing polycyclic aromatic hydrocarbons (PAHs) elevated macrophages and neutrophils in
bronchoalveolar lavage (BAL) measured 6 and 24 h after exposure to DEP [5]. In addition, rats
exposed 5 h per day, 5 days per week for 12 weeks to a diesel exhaust engine of four cylinders contain-
ing concentrations of carbon monoxide, nitrogen dioxide and sulfur dioxide (15.32 ± 1.91, 3.28 ± 0.35,
and 1.32 ± 0.15 ppm, respectively) demonstrated reduced levels of anti-inflammatory proteins, such as
clara cell secretory protein and pulmonary surfactant protein D in both BAL and serum [6].
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Moreover, chronic exposure of rats to diesel exhaust engine elevated pro-inflammatory markers, including
interleukin (IL)-8, IL-6, and tumor necrosis factor (TNF)-α in BAL, serum and lung homogenates [6].
Moreover, exposure of both rats and mice to diesel engine exhausts and to DEP, respectively, increased the
total number of inflammatory cells, neutrophils, eosinophils and lymphocytes in BAL [6,7] (Table 1).
Next to the induction of inflammation, air pollution — thus DEP — provokes oxidative stress. It is generally

envisioned that oxidative stress is caused by a severe imbalance between oxidants and antioxidants due to a cel-
lular excess of oxidants and a depletion of antioxidants, subsequently leading to overproduction of reactive
oxygen species (ROS), a process linked to mitochondrial dysfunction [8]. As a consequence of such mechan-
isms, DEP seems to impair structural cell function and initiate epithelial-to-mesenchymal transition (EMT), a
process leading to dysfunction in endothelial as well as epithelial barrier, hamper tissue repair and eventually
leading to fibrosis [9,10]. Important to note that the DEP driven processes are hallmarks of cardiopulmonary
disorders diverse as cardiac dysrhythmias, heart failure, asthma, COPD acute and respiratory infections [9,10].
Pharmacological targeting of cyclic adenosine monophosphate (cAMP) seems to profoundly alleviate cardiopul-
monary dysfunction [11–15]. Importantly, cAMP has recently emerged as a potent regulator of mitochondrial
metabolism. The mitochondrial matrix holds a unique cellular cAMP nanodomain independent of the cytosol
[16,17], and its targeting has been even implicated in the preservation of cardiomyocyte function [18].
Mitochondrial cAMP nanodomains seem to embrace a unique subset of members of the adenylyl cyclase (AC)

Figure 1. Particulate matter — known as coarse particles — has the size less than 10 mm and has the ability to deposit

in the upper respiratory tract.

Fine particles are less than 2.5 mm and are able to penetrate into the lower respiratory tract. Ultrafine particles are less than

0.1 mm and are able to penetrate into alveoli region and may even reach the vascular system [35,36]. Diesel exhaust particles

(DEP) induces inflammation, oxidative stress, production of reactive oxygen species (ROS) and mitochondria dysfunction

potentially leading to cardiopulmonary dysfunction. See text for further details.
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family — the soluble AC (sAC) [16,19] — and the phosphodiesterase (PDE) family — the dual-specific PDE2,
the latter has been linked to both cardiac and lung injury models [20,21]. Next to sAC and PDE2, the exchange
protein directly activated by cAMP (Epac)1 [19,22], and the A-kinase anchoring family member AKAP1 also
maintain mitochondrial function [23] (Figure 2). Several lines of evidence indicate that mitochondrial cAMP
nanodomains exhibit a high level of subcellular organization — which might be repressed under cardiopulmon-
ary disease pressure as shown for the signaling properties of several cAMP-producing G protein-coupled recep-
tors such as those for β2-agonists and prostaglandin E2 (PGE2) [15,24–27].
In the current review, we propose that targeting of the mitochondrial cAMP nanodomain bear the thera-

peutic potential to diminish air pollutant — particularly DEP — induced decline in cardiopulmonary function.

Table 1. Effects of air pollution on proteins, transcription factors and cells

Air pollution type Type of study

Proteins,
transcription factors,
cells

Tissue/
localization Effect Reference

DEP collected from a light medium
duty Euro 1 diesel engine, with a
size between 0.03 and 0.2 mm
diameters containing polycyclic
aromatic hydrocarbons (PAHs)

Mice intranasal
instillation

Macrophages and
neutrophils

BAL Elevation [5]

Diesel exhaust engine of 4
cylinders containing concentrations
of carbon monoxide, nitrogen
dioxide and sulfur dioxide (15.32 ±
1.91, 3.28 ± 0.35, and 1.32 ±
0.15 ppm, respectively)

Rats exposure by
inhalation

Clara cell secretory
protein (CC16) and
pulmonary surfactant
protein D

Serum and
BAL

Reduction [6]

IL-8, IL-6, and TNF-α Serum and
BAL

Elevation

Total cells number,
neutrophil, eosinophil,
and lymphocyte

BAL Elevation

Diesel exhaust particles Mice intratracheal
instillation

IL-8, IL-6, and TNF-α
protein expression

BAL and lung
homogenates

Elevation [7]

Total cells number and
neutrophil

BAL Elevation

Diesel exhaust 18 blinded atopic
volunteers

IL-5, IL-8, MCP-1 BAL Elevation [45]

Diesel exhaust particles generated
and collected from a three-cylinder,
3.8 l tractor engine

Primary bronchial
epithelial cells

CXCL8, TNF-α, NF-κB,
HMOX1 and glutathione
peroxidase gene
expression

— Elevation [82]

Primary bronchial
epithelial cells and
THP-1 derived
macrophage
co-cultured

CXCL8, TNF-α, NF-κB
and HMOX1 gene
expression

— Reduction

DEP (Standard Reference Material
1650b)

BEAS-2B CYP1A1, CYP1B1, of
E-cadherin, vimentin
and N-cadherin gene
expression

— No
difference

[83]

Primary ultrafine particles (UFP)
from diesel

BEAS-2B CYP1A1, CYP1B, IL24,
IL1A, IL1B, NFE2L2,
HMOX1, TXNRD1, and
NQO1

— Elevation [85]

Ultrafine particulate matter BEAS-2B E-cadherin gene
expression

— Reduction [84]

A–smooth muscle actin
gene expression

Elevation
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Air pollution and adverse health problems
Air pollution has been identified as a major source for adverse health problems [28]. Development and progres-
sion of cardiopulmonary disorders inversely correlate with the air quality index. In several countries world-
wide, the quality of air has reduced over time due to the constant development of industry and transport.
Trucks and buses of the transport sector primarily use diesel combustion engines and are thereby substantially
responsible for the air quality reduction [4,29,30]. Combustion of diesel fuel releases a plethora of compounds
toxic for health, including black smoke known to easily dissipate in the air. Particularly, black smoke contains
small particles known as DEP eventually loaded with elemental carbon, metal and adsorbed organic com-
pounds including PAHs each of which highly toxic compounds for health [2,3,31,32]. PAH activates its recep-
tor — the aryl hydrocarbon receptor (AHR) — known to act as a transcription factor and to regulate responses
to endogenous and exogenous ligands of the xenobiotic drug metabolism. Cytochrome P450 CYP1A1 known
to metabolically activate and detoxify PAHs — is also induced by PAH, and thereby leads to fine-tuning of its
pharmacological profile [33] (Table 1).
PM is divided by size and size has been linked to its ability to invade the respiratory tract such as airways

and deeper parts as alveoli of lungs, being able even to reach the systemic circulation. The coarse size is named
PM10, with a diameter of particles less than 10 mm, fine particles PM2.5 has the diameter less than 2.5 mm and
ultrafine particles PM0.1 with a diameter less than 0.1 mm. Coarse particles are able to penetrate upper airway;
fine and ultrafine particles can penetrate small airway reaching alveoli regions and may enter into the vascular
system [34–36]. The main source of fine and ultrafine particles (PM2.5 — PM0.1) is from diesel exhaust emis-
sions known as DEP (Figure 1).

Part 1 of 2

Figure 2. Cyclic AMP Nanodomains.
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In general, PM caused by air pollution has been associated with the risk of lung cancer and to coronary
events in eleven cohorts from Finland, Sweden, Denmark, Germany and Italy [37,38]. Additionally, the recent
EAGLE and DUELS studies demonstrated an association of long-term exposure to coarse particles — PM10 —
and the risk of lung cancer and cardiovascular mortality [39–41]. Moreover, subjects acutely exposed to high
levels of PM10, demonstrated an elevation of IL-1β and IL-6 in serum [42]. In a case control study in a cohort
with miners exposed to diesel exhaust, an elevated risk of lung cancer has been reported [43]. Moreover, short-
term exposure to diesel exhaust in asthmatic subjects increased airway hyperresponsiveness [44], indicating that
air pollution mainly by diesel exhaust is able to worsen asthma symptoms in asthmatic patients. Exposure of 18

Part 2 of 2

Figure 2. Cyclic AMP Nanodomains.

(A) Cyclic AMP nanodomains in inflammatory and structural cells diverse such as eosinophils, macrophages, neutrophils,

lymphocytes, monocytes, epithelial cells, airway smooth muscle cells, fibroblasts, cardiomyocytes, endothelial cells and

myofibroblasts. (B) Cellular effects caused by diesel exhaust particles (DEP) in inflammatory cells and structural cells. DEP

induces the production of reactive oxygen species (ROS). Subsequently, ROS production induces changes in mitochondrial

membrane potential leading to mitochondria dysfunction and mitochondria damage. Mitochondrial cAMP is generated from

ATP by soluble adenylyl cyclase (sAC) present in the mitochondria matrix. Levels of cAMP are regulated by phosphodiesterase

(PDE) degrading cAMP to 50AMP. A-kinase anchoring protein (AKAP) 1 recruits macromolecules to mitochondria. Shown are

the mitochondrial respiratory chain complexes I–V localized in the inner membrane of mitochondria. See text for further details.
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blinded atopic volunteers to diesel exhaust extended the allergen-induced increase in airway eosinophils and
IL-5, diesel exhaust alone also increased markers of non-allergic inflammation and monocyte chemotactic
protein (MCP)-1 and suppressed the activity of macrophages and myeloid dendritic cells [45]. These results
implicate that allergic people may be more vulnerable and suffer from worsening of allergic responses due to
diesel exhaust exposure. In line with our conclusion, it has been recently published that the incidence of pediat-
ric asthma is associated with exposure to traffic-related air pollution. It has been reported that black carbon
particles as part of PM reached the fetal side of the human placenta. Meta-analysis even revealed a correlation
between prenatal exposure to PM and preterm birth and small for gestational age [46–48] (Table 1).

Air pollution and mitochondrial function
Excessive production of ROS is known to induce oxidative stress, the latter known to be linked to cardiopul-
monary disorders. However, it is important to realize that under physiological circumstances, production of
ROS is not solely linked to deleterious consequences but is a sine qua non to drive several beneficial cellular
signaling pathways and subsequently train the fitness of organisms [49,50]. Firstly, ROS act as an essential
second messenger able to modulate pro-inflammatory cytokines, cell proliferation and signaling pathways
including but not limited to phosphoinositide 3-kinase/AKT, AMP-activated protein kinase, hypoxia-inducible
transcription factors, calcium and NF-κB (Figures 1 and 2, Table 1) [51–53]. Initial studies in isolated mito-
chondria unraveled their ability to produce superoxide and hydrogen peroxide production [54–56]. Excessive
production of ROS most likely results in mitochondrial damage, subsequently modifying normal mitochondria
functions. Mitochondria functions play an important in the entire cell metabolism due to their central role in
cellular respiration and mitochondrial malfunctions trigger cardiopulmonary disorders encompassing stem cell
hyperplasia and ischemia-reperfusion injury [57–59].
One may envision that mitochondria functions and air pollution are closely related as exposure to different

types of air pollution surely bear the potential to drive to an alteration in the function of different mitochon-
dria complexes and thereby to contribute to mitochondrial dysfunction (Figure 2, Table 1). Indeed, exposure of
alveolar macrophages from wild-type and inducible nitric oxide (NO) synthase knockout mice to DEP from
National Institute of Standards and Technology (Standard Reference Material 2975), resulted in a time-
dependent elevation of the intracellular superoxide anion production and a reduction of the mitochondria
membrane potential [60]. These data demonstrate that DEP indeed bear the potential to induce ROS produc-
tion and mitochondrial damage. Chronic exposure of rats to diesel exhaust from a supercharged common rail
direct injection diesel engine, for 3 h per day, 5 days per week, during 3 weeks reduced left ventricle homogen-
ate mitochondrial respiratory chain complex I activity compared with control rats, leaving mitochondrial
respiratory chain complex activity III and IV unchanged [61]. These results indicate that diesel exhaust select-
ively changes the mitochondrial respiratory chain complex activities, and as largest enzyme complex of the
respiratory chain complex I profoundly contribute to the first step of the mitochondrial electron transport
(Figure 2).
Elevation of ROS upon exposure to a different type of air pollution also contributed to mitochondrial dys-

function in RAW 264.7 macrophages. Exposure of RAW 264.7 macrophages to DEP extract from a light-duty
diesel source resulted in an increase in superoxide and hydrogen peroxide markers and induction of macro-
phage apoptosis [62]. In addition, the authors reported on a decrease of mitochondrial membrane potential
(ΔΨm) pointing to a structural damage of the macrophage mitochondrial inner membrane. Moreover, the
authors showed that exposure of RAW 264.7 macrophages to the antioxidant N-acetylcysteine diminished the
reduction in ΔΨm and superoxide production, thereby providing experimental evidence linking oxidative stress
to a reduced ΔΨm [62]. Taken together, these studies demonstrate that diverse components of air pollution —
particularly DEP — bear the ability to induce ROS production as a powerful biological effect that is directly
related to mitochondria dysfunction as exemplified by the impairment of ΔΨm (Figures 1 and 2).

Air pollution and the cardiopulmonary function
Several cohort studies reported on associations between air pollution and a higher percentage of cardiovascular
mortality [63–65]. Due to size, PM such as DEP is able to enter the endothelial cells of blood vessels [34]. It is
generally believed that it is this ability of air pollutants to enter the blood vessels — therefore the blood circula-
tion and subsequently the systemic circulation — to cause cardiovascular dysfunction (Figures 1 and 2).
Exposure of 21 healthy adult subjects to diesel exhaust from a generator induced acute vasoconstriction, a
process sensitive to the antioxidant N-acetylcysteine [66]. Interestingly, exposure of nineteen healthy volunteers
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to diesel engine exhaust inhalation in the absence or presence of a particle trap demonstrated that the particle
trap reduced the DEP number, a process associated with increased vasodilatation and reduced thrombus forma-
tion [67]. This study demonstrates the direct impact of DEP on blood vessel function, and further highlight the
potential of air pollution to impair cardiovascular functions.
Of interest, also a study with a total of 34 non-smoking healthy adults from the New York City metropolitan

area and New Jersey traveling to East and South cities expected to exhibit high levels of PM2.5, showed signifi-
cant changes in respiratory symptoms measured as forced expiratory volume in the first second (FEV1) as well
as changes in heart rate and heart rate variability [68]. Furthermore, in a cohort of 772 patients with myocar-
dial infarction in the greater Boston area cardiac symptoms were correlated with exposure to PM2.5, carbon
black, and gaseous air pollutants [69]. It has also been reported an association between increased levels of
PM10 with the risk of coronary events, such as myocardial infarction, and elevation in hospitalizations for
respiratory diseases including COPD [70,71]. These studies demonstrate the ability of coarse particles and fine
PM from air pollution in the induction of cardiopulmonary impairments potentiality inducing the elevation of
health adverse problems.

Air pollution and the lung
Air pollution not only induces inflammation and/or oxidative stress in the lungs but — importantly — it
seemed to have a more profound impact on the normal physiological function of the lung, to be precise it
seemed to impair normal breathing [72,73]. Lungs are in direct contact with air eventually loaded with toxic
pollutant gases and PM [74]. Due to size, PM such as DEP is able to enter deeply into the lungs thereby reach-
ing alveoli spaces [30] (Figures 1 and 2). It is generally believed that in particular long-term exposure to air pol-
lution of the lung epithelium severely limit lung function [10]. Moreover, the adverse health effect of air
pollution is not restricted to long-term exposure, but also to acute exposure. Air pollution exposure has been
associated with acute exacerbations of chronic bronchitis and asthma as well severe acute exacerbations of
COPD [75–77].
A recent study in China has shown that long-term exposure of 137 diesel engine testing workers to diesel

engine exhaust of heavy-duty diesel engines significantly decreased the FEV1, the ratio of forced expiratory
volume in 1 second to forced vital capacity (FEV1/FVC), maximal mid expiratory flow curve (MMF), forced
expiratory flow at 50% of FVC (FEF50%), and forced expiratory flow at 75% of FVC (FEF75%) compared with
non-exposed workers [73]. Exposure of eighteen healthy volunteers to diluted diesel exhaust in a chamber for
3 h in a double-blind set up demonstrated a moderate but persistent reduction in peak expiratory flow com-
pared with the control group exposed to filtered air [72]. These data indicate that low levels of diluted diesel
exhaust as a part of air pollutant induce deleterious — though temporary — effects on lung function.
Next to adults, newborns and children are affected by air pollution thereby representing vulnerable subgroups

in the population. Post-natal exposure to air pollution seems to reduce lung growth during school age [78–80]. In
2009 in Switzerland, a prospective birth cohort of 241 healthy term-born neonates and maternal exposure to
PM10 revealed a strong association between the exposure to PM10 during pregnancy and reduction of lung func-
tion of newborns seen by higher respiratory need [81]. Meanwhile, several studies implicate that long-term mater-
nal or postnatal exposure to different types of air pollution, such as traffic-related air pollution, impact the
development of lungs subsequently leading to an impairment of lung function in childhood [78–81].
Next to animal experiments and studies in population cohorts, researchers use as a valuable tool structural

and/or immune cells of the lungs such as but not limited to epithelial cells, smooth muscle cells and macrophages
to understand adverse effects of air pollution on the cellular level, particularly to gather insights into mechanistic
pathways linked to inflammation, oxidative stress and modifications in cellular phenotypes [82–84].
In a very recent study, exposure of primary bronchial epithelial cells to a 0.57 μm median diameter aerosol-

ized DEP for 24 h increased gene expression of inflammatory markers such as the C-X-C motif chemokine
ligand 8 (CXCL8) and TNF-α, next to the gene expression of oxidative stress markers such as NF-κB, heme
oxygenase (decycling) 1 (HMOX1) and glutathione peroxidase. In contrast, in DEP generated and collected
from a three-cylinder, 3.8 l tractor engine, exposed to co-cultures of primary bronchial epithelial cells with
THP-1 derived macrophages the expression of both CXCL8 and TNF-α was reduced, similar as the gene
expression of NF-κB and HMOX1 [82] (Table 1). These studies implicate that cell–cell interactions determine
the net-outcome of the deleterious effects of air pollutants on airway physiology.
Lung cells are the most vulnerable type of cells affected by air pollutants including DEP probably due to the

direct contact of the respiratory tract with air [74]. The inevitable contact with air during years most likely
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drive not only inflammation but also trigger cell differentiation and/or cell phenotype alterations, a process
referred to as EMT [84]. The superfamily of CYP1 genes are closely intermingled with the metabolism of xeno-
biotics, a process mainly regulated by the AHR known to be in turn activated by PAH known to be released by
combustion system. Chronic exposure of human bronchial epithelial cells (BEAS-2B) to low concentration of
DEP (Standard Reference Material 1650b) with known concentrations of PAH and nitro-PAH, and with a
mean particle diameter of 0.18 μm, for 6 months did not change basal mRNA expression of both CYP1A1 and
CYP1B1 mRNA [83]. Moreover, under the outlined experimental design long-term DEP-exposed BEAS-2B did
not undergo EMT studied by gene expression of E-cadherin, vimentin and N-cadherin [83]. However, in
another recent study BEAS-2B were exposed to primary ultrafine particles (UFP) from diesel and transcrip-
tional changes were followed with an RNA-seq time-course. Genes related to the xenobiotic metabolism such
as CYP1A1, CYP1B and to inflammation such as IL24, IL1A and IL1B were profoundly changed in BEAS-2B
cells exposed to UFP diesel. In addition, the transcription factor NFE2L2 was up-regulated together with genes
related to the antioxidant response such as HMOX1, TXNRD1 and NQO1 [85] (Table 1). A recent study using
human bronchial smooth muscle cell and human bronchial fibroblasts exposed to PM2.5 showed an increase in
human bronchial smooth muscle migration but not of human bronchial fibroblasts [86]. The data demonstrate
that human bronchial smooth muscle migration may contribute to airway structure modification during PM2.5

exposure. Taken together the current studies indicate that cellular responses of lung cells profoundly differ
depending on the type of air pollutants used and interval of exposure implicating that cellular imprinting by
air pollutants change in time and space.

Air pollution and cardiopulmonary cAMP nanodomains
There is an unmet need to unravel the molecular mechanisms initiated due to the exposure of lung cells to air
pollution. Without any doubt oxidative stress — characterized by an imbalance between oxidants and antioxi-
dants and ultimately linked to mitochondrial dysfunction [8] — plays an important role in cardiopulmonary
impairments related to air pollution exposure. Pharmacological targeting of cAMP seems to profoundly allevi-
ate cardiopulmonary dysfunction [11–15]. Of note, cAMP has recently emerged as a potent regulator of mito-
chondrial metabolism [18], and even more intriguingly a unique mitochondrial cAMP nanodomain seem to
exist composed of sAC, PDE2, Epac1 and AKAP1 [16,19–23]. Several lines of evidence indicate that
cAMP-producing G protein-coupled receptors for β2-agonists and PGE2 are repressed under settings of dis-
eased lungs [15,24–27]. In addition to cAMP-producing receptors, expression and function of PDEs (primarily
PDE4, PDE3, PDE2) are altered in cardiopulmonary pathologies [87,88]. Epac1 and Epac2 act as lung cAMP
‘receptors’. Our research group has been the first to demonstrate that oxidative stress severely alters expression
and function of both (anti-fibrotic) Epac1 and (pro-inflammatory) Epac2, and that PGE2 receptors signal
through Epac1, in a process involving beta-catenin the latter closely related to lung repair [13,89–91] (Figures 1
and 2). As air pollution provokes oxidative stress, it is rather likely to assume that different types of air pollu-
tants severely alter cAMP signaling properties, whether mitochondrial cAMP nanodomains are altered and if
so to which extent and by which air pollutant remains to be studied in more detail. However, exposure of
primary murine tracheal epithelial cells and human airway smooth muscle to PAH — known to be released by
diesel combustion — reduced cAMP production by β2-adrenoreceptors, a process expected to profoundly limit
the responsiveness to the standard pharmacotherapy [92]. Further studies are needed in order to understand
the molecular mechanisms underlying the mechanisms of DEP as the main source for air pollution and their
potential cross-talk to cAMP.
Lung remodeling plays an important role in lungs diseased due to exposure to air pollution. Exposure of

mice to diesel particles collected after 1 day of the routine operation of a bus from São Paulo city induced
alterations in lung morphology such as alveolar enlargement [93]. EMT — one driver of lung remodeling [94]
is characterized by a loss of cell to cell junctions subsequently leading to a loss in cell interactions with basal
membrane [13,95,96]. Used as in vitro model, exposure of BEAS-2B cells to an ultrafine PM induced pheno-
typic changes for EMT exemplified by a reduction in the epithelial marker E-cadherin and an increase in the
mesenchymal marker α–smooth muscle actin, seen by immunohistochemistry and mRNA expression [84]. In
contrast, chronic exposure of BEAS-2B cells to DEP (Standard Reference Material 1650b) did not induce EMT
[83] (Table 1). Such seemingly differences are most likely due to different types of air pollutions and further
point to the importance of studies in subcellular domains in space and time. Of particular interest are studies
linking mitochondrial dysfunction to a potential therapeutic targeting of cAMP, the latter known to diminish
cardiopulmonary dysfunction [11–15].
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Conclusions
Exposure to air pollution is related to several cardiopulmonary disorders. Adverse cardiopulmonary effects are
most likely linked to the small size of particles present in air pollution and their ability to reach deep lung parts
and to even enter blood vessel endothelial cells [34]. Though adverse health effects of air pollution, including
diesel exhaust, particulate of air pollution and traffic-related air pollution, are generally prevalent in the popula-
tion, some groups are more vulnerable and therefore need special attention such as asthmatic subjects, heart
failure patients, newborns and children [44,69,78–81]. Several studies — particular in recent times — evaluate the
impact of air pollution on cardiopulmonary dysfunction. As mitochondria fulfill a central role in balancing cellu-
lar energy metabolism, we propose the mitochondrial dysfunction induced by exposure to DEP is key to cardio-
pulmonary impairments. Targeting of the mitochondrial cAMP nanodomain bear the therapeutic potential to
diminish air pollutant — particularly DEP — induced decline in cardiopulmonary function.

Perspectives
• Air pollution exposure increases the risk of several disorders mainly in the cardiopulmonary

system, which is related to the elevation of morbidity and mortality. PM and DEP originated
from diesel automotive engines are envisioned as the primary cause for cardiopulmonary
dysfunction.

• DEP induces inflammation and ROS production ultimately leading to mitochondrial dysfunc-
tion. DEP impair structural cell function and initiate the EMT, a process leading to dysfunction
in endothelial as well as epithelial barrier, hamper tissue repair and eventually leading to fibro-
sis. Mitochondrial dysfunction seems to be linked to alterations in cyclic AMP signaling prop-
erties and seem to foster cardiopulmonary decline.

• Furthermore, studies are urgently required to decipher the molecular mechanisms underlying
the devastating effects of the major air pollutant knowns as DEP on the mitochondrial cAMP
nanodomain. Targeting of the mitochondrial cAMP nanodomain as therapeutic intervention
potentially diminish air pollutant induced decline in cardiopulmonary function.
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