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Diabetic tubulopathy (DT) is a recently recognized key pathology of diabetic kidney disease (DKD). The
mitochondria-centric view of DT is emerging as a vital pathological factor in different types of metabolic dis-
eases, such as DKD. Finerenone (FIN), a novel non-steroidal mineralocorticoid receptor antagonist, attenuates
kidney inflammation and fibrosis in DKD, but the precise pathomechanisms remain unclear. The role of
mineralocorticoid receptor (MR) in perturbing mitochondrial function via the PI3K/Akt/eNOS signaling
pathway, including mitochondrial dynamics and mitophagy, was investigated under a diabetic state and high
glucose (HG) ambiance. To elucidate how the activation of MR provokes mitochondrial dysfunction in DT,
human kidney proximal tubular epithelial (HK-2) cells were exposed to HG, and then mitochondrial dynamics,
mitophagy, mitochondrial ROS (mitoROS), signaling molecules PI3K, Akt, Akt phosphorylation and eNOS were
probed. The above molecules or proteins were also explored in the kidneys of diabetic and FIN-treated mice. FIN
treatment reduced oxidative stress, mitochondrial fragmentation, and apoptosis while restoring the mitophagy
via PI3K/Akt/eNOS signaling pathway in HK-2 cells exposed to HG ambiance and tubular cells of DM mice.
These findings linked MR activation to mitochondrial dysfunction via PI3K/Akt/eNOS signaling pathway in DT
and highlight a pivotal but previously undiscovered role of FIN in alleviating renal tubule injury for the treat-
ment of DKD.

1. Introduction

Diabetic kidney disease (DKD) is a high-burden complication that
progresses into end-stage kidney disease (ESKD) and triggers severe
cardiovascular (CVS) events [1,2]. An accumulation of studies eluci-
dates these consequences [3,4]. Tubular hypoxia due to high energy
demands and reduced blood perfusion and non-hypoxia-related factors
drive the rapid progression of interstitial fibrosis and tubular atrophy,
resulting in DKD [4]. Since the proximal tubule is enriched in mito-
chondria for its high energy demand and is dependent on aerobic
metabolism, the mitochondria-centric view of primary DT is regarded in
DKD [3,5]. In a few previous studies, hyperglycemia disrupted mito-
chondrial function in the renal tubules, causing decreased bioenergy

production, faulty mitophagy, and abnormal mitochondrial dynamics,
and triggering oxidative stress, apoptosis, and metabolic irregularities
[6,7]. However, the pathogenesis of mitochondrial dysfunction and the
primary stage of tubulopathy in diabetes mellitus (DM) are unknown
and remain to be comprehended [8].

DKD and its related cardiovascular events pose significant risks
despite treatments with angiotensin-converting enzyme inhibitors
(ACEIs) [9], angiotensin II receptor blockers (ARBs) [10], and
sodium-glucose cotransporter-2 inhibitors (SGLT2is) [11]. Aldosterone
(Aldo) breakthrough/escape occurs when a
renin-angiotensin-aldosterone system (RAAS) inhibitor is used contin-
uously. As a result, Aldo suppression fails, partially contributing to the
progression of DKD [12,13]. In recent clinical trials, the protective
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effects of finerenone (FIN), a new non-steroidal mineralocorticoid re-
ceptor antagonist (MRA) were emphasized, specific to alleviating pro-
teinuria and regaining renal function in individuals with DKD [14,15].
Furthermore, in the FIDELIO-DKD [14] trial that included 5700 in-
dividuals with T2DM and CKD who took maximum tolerable dosages of
an ARB or ACE inhibitor, FIN substantially slowed down the develop-
ment of CKD by 18 % compared to placebo in a mean follow-up period of
2.6 years.

FIN and other MRAs exhibited antioxidant, anti-inflammatory, and
anti-fibrotic properties, and reversed metabolic abnormalities in DKD in
a previous study [16]. Insulin resistance is commonly associated with
MR activation in DT and is significantly linked to a decline in GFR [17].
In insulin resistance, the physiological action of insulin is impaired,
disrupting mitogen-activated protein kinase (MAPK), insulin receptor
substrate/phosphatidylinositol 3-kinase (PI3K) signaling pathway, and
others. The downstream candidatures of the PI3K/protein kinase B
(AKT)/endothelial nitric oxide synthase (eNOS) signaling directly
regulate mitochondria, controlling mitochondrial function, oxidative
stress, and apoptosis [18,19]. Mitochondrial dysfunction, including
irregular dynamics, was involved in glomerular podocyte injury in DKD
patients and mouse models [20,21]. However, the involvement of the
mitochondrial axis and the MR-PI3K/AKT/eNOS signaling pathway in
DKD, especially with DT manifestation, has not yet been reported.
Hence, this study aimed to elucidate the effects of MR activation on
mitochondrial dysfunction in the renal tubules in DKD and highlight the
mechanisms by which activation of MR in epithelial cells perturbs
mitochondrial homeostasis via the PI3K/Akt/eNOS signaling pathway.

2. Methods
2.1. Animal studies

C57BL/6J male mice at the age of 3-4 weeks, were acquired from the
Model Animal Research Center of Nanjing University (Nanjing, China)
and reared according to the guidelines of the Animal Research Ethics
Committee of the First Affiliated Hospital of Zhengzhou University.
Eighteen mice were randomly divided into 3 groups, control mice group
(CON), diabetic mice group (DM), and diabetic mice treated with
finerenone group (FIN). The Con group received a standard diet,
whereas the other 2 groups were provided with a high-fat diet (HFD).
After 8 weeks of HFD, mice in the DM group and the FIN group received
intraperitoneal injections of streptozotocin (STZ) (50 mg/kg; Sigma-
Aldrich, St Louis, MO, USA) for 5 days to induce diabetes mellitus.
One week later, blood glucose level was randomly measured in T2DM
model mice, and the value was 16.7 mmol/l. The mice in the FIN group
were given finerenone (MedChemExpress, USA) orally at 3 mg/kg/d for
12 weeks. Blood and urine samples were collected at specific time
points. After sacrificing the mice, the kidneys were collected and stored
at suitable storage conditions for further experiments (Supplementary
Fig. 1A).

2.2. Cell culture

Human kidney proximal tubular epithelial cells (HK-2 cells) (ATCC,
Rockville, MD, USA) were cultured in Dulbecco’s modified Eagle’s me-
dium combined with F-12 Ham nutrient mixture (DMEM: F-12, 1:1
mixture) supplemented with 5 % fetal bovine serum (FBS). HK-2 cells
were plated at about 70 % confluence, then serum starved for 12 h
before exposure to the standard culture conditions containing 5 mM
glucose (the NG group) or a DM comprising of 30 mM glucose plus 2 ng/
mL TGFf; (the HG group) for 24 h. For positive control of MRAs, HG-
cultured HK-2 cells were treated with 5 mM finerenone (the FIN
group) simultaneously (Supplementary Fig. 1B).
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2.3. Physiological characteristics and renal functions

Body weight was measured, and urine and blood samples were
collected biweekly. The Roche Accu-Chek Advantage Meter measured
blood glucose levels. Urine and serum creatinine levels were determined
using a creatinine assay kit (Jiancheng Bio, Nanjing, China). A mouse
albumin ELISA quantification kit (Jiancheng Bio, Nanjing, China) was
used to quantify urine albumin. The urinary ACR (mg/g) was deter-
mined as follows: Urinary ACR(mg/g) = Urine albumin (mg/dl)/ urine
creatinine (g/dl).

2.4. Western blotting

Murine renal tissue or cultured cells was homogenized and lysed in
radioimmunoprecipitation assay (RIPA) lysis buffer supplemented with
phosphatase inhibitor (CW Bio, Beijing, China) and protease inhibitor
(CW Bio, Beijing, China). The samples were blotted and tagged with
relevant antibodies as previously reported. The antibodies against
NR3C2, AKT, p-AKT, PI3K, p62, Atg5, Atg7, Beclin-1, Bax, Cyt C, and
p-actin were purchased from Cell Signaling Technology (Danvers, MA,
USA). The antibodies against Drpl, Fisl, Mfn2, and OPA1 were pur-
chased from Abcam (Shanghai, China), and anti-LC3-II was purchased
from Sigma-Aldrich (Burlington, MA, USA). The antibodies against Mfn1
and eNOS were purchased from proteintech (Wuhan, China). The pro-
tein band was quantified using Image J software. Supplementary Table 1
lists the antibody catalog numbers.

2.5. Periodic acid schiff staining and immunohistochemistry

The kidney tissues were paraffin-embedded and cut into 3 pm sec-
tions. The sections were stained utilizing the universal SP test Kit
(Solarbio, Beijing, China) and primary antibodies against Drpl, p-AKT
and MR (listed in Supplementary Table 1). Periodic acid Schiff staining
was carried out using a Periodic acid-Schiff (PAS) stain kit (Servicebio,
Wuhan, China) according to the supplier’s instructions. Briefly, the
sections were dewaxed, oxidized with periodic acid, and colored with
Schiff’s reagent. Hematoxylin dye counter-stained the nucleus, and the
stained section was mounted with neutral gum. The images were
captured using an Olympus microscope (Tokyo, Japan).

2.6. Transmission electron microscopy (TEM)

Renal cortices were cut into 1 mm?® sections and transmission elec-
tron micrographs of the tissue sections were obtained by using an
electron microscope. Briefly, after dehydrating the preserved tissue
blocks and embedding them in Epon 812 epoxy embedding medium,
thin sections were cut for viewing using electron microscopy to view the
mitochondrial fragmentation in renal tubules. Mitochondria with a
length of greater than 2 mm were classified as filamentous, whereas
those with a length of less than 1 mm with a spherical structure were
classified as fragmented [6].

2.7. Immunofluorescence staining and TUNEL assay

HK-2 cells were fixed in 4 % paraformaldehyde for 30 min and then
permeabilized in 0.5 % TritonX-100 at room temperature for 15 min.
The cells were blocked with 3 % bovine serum albumin (BSA) and
labeled with primary antibodies at 4 °C overnight. After rinsing with
phosphate-buffered saline (PBS), samples were incubated with the Alexa
Fluor 488 or 594 (Invitrogen Life Technologies, Carlsbad, CA, USA).
Finally, they were counterstained with 4,6-diamidino-2-phenylindole
(DAPI) and mounted using Vectashield mounting media (Vector Labo-
ratories; Burlingame, CA, USA).

TUNEL staining was performed on cells grown on coverslips by using
the TUNEL Apoptosis Assay Kit (Beyotime, Shanghai, China), following
the manufacturer’s instructions to assess apoptosis rate. Each treatment
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was repeated six times. The cells were viewed using a Zeiss LSM880
confocal microscope (Carl Zeiss, Germany).

2.8. Detection of mitotracker, ROS and ATP

Cell mitochondria were labeled using MitoTracker Red FM (Invi-
trogen Life Technologies, Waltham, MA, USA). After several treatments,
the HK-2 cells were labeled with Mitotracker (50 nM) at 37 °C for 30
min.

To determine the production of mitochondrial and intracellular ROS,

A B
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HK-2 cells were stained with MitoSOX or Ho-DCFDA (Invitrogen Life
Technologies) at 37 °C for 30 min, correspondingly, and observed using
Zeiss confocal microscopy. The data from six independent experiments
were analyzed.

To assess mitochondrial ATP, kidney tissues were incubated with
ATP assay kit (Jiancheng Bio, Nanjing, China).

2.9. Statistical analyses

All in vitro and in vivo studies were repeated three to six times. The
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Fig. 1. Effect of finerenone on kidney function and pathologic alterations in HFD/STZ-induced T2DM mice’s kidneys. (A) The schematic representation of the
study protocol. (B) Representative image of mice and the alterations in kidney morphology. The variations in the body weight (C), blood glucose (D), serum
creatinine (E), and urinary ACR (F) are shown (n = 6). (G) PAS staining provides representative histology of the renal cortex. Scale bar: 20 pm. (H) the production of
mitochondrial ATP in kidney. All data are shown as means + SEM.; *P<0.05 versus the control group, *P < 0.05 versus the T2DM group.
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data was presented as means + SD. The comparison of variables be-
tween the two groups was done by the student’s t-test. One-way ANOVA
was used for comparing variables among multiple groups. Statistical
analyses were done using the GraphPad Prism 6 software. A value of P <
0.05 was deemed to be statistically significant in all comparisons.

3. Results

3.1. Overexpression of MR accentuates the tubulopathy in HFD/STZ-
induced T2DM mice, and FIN treatment attenuated diabetic tubulopathy

HFD and low-dose STZ have been widely used to induce DM in
manifesting early stages of renal injury. FIN, a novel non-steroidal MRA,
was mixed into the mouse chow diet to inhibit MR hyperactivation.
Three groups of mice (n = 6 per group) were allocated for the control
(Con), HFD/STZ-induced T2DM, and T2DM with FIN dietary supple-
mentation (FIN) groups (Fig. 1A). Blood glucose, body weight, serum
creatinine, and urinary albumin-to-creatinine ratio (UACR) were
determined during the study period. As early as 8 weeks on a high-fat
diet, the T2DM mice showed higher body weight, increased blood
glucose, and elevated serum creatinine and urine ACR levels. Interest-
ingly, the urine ACR and serum creatinine in the T2DM mice that
received 12 weeks of finerenone (the FIN group) were decreased

A CON DM FIN
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remarkably compared to those in the T2DM group (Fig. 1E and F);
however, no significant variations in body weight or blood glucose were
observed (Fig. 1C and D). PAS staining revealed protein excretion, sig-
nificant tubular epithelial breaks, hypertrophy of the glomeruli, and a
rise in mesangial matrices in the T2DM mice compared to the control
group (Fig. 1G). Compared with Con group, the mitochondrial ATP
content of the kidney in T2DM group was significantly decreased, and
the decline in ATP production could be mitigated after treatment with
FIN. As shown by immunohistochemical staining, MR expression in the
renal tubule of T2DM mice versus the control mice was elevated, which
was mostly limited to tubular epithelial cells in tubulointerstitial
(Fig. 2A). The morphological features were supported by the intensity of
protein bands through the WB experiment (Fig. 2C and D). However,
treatment with FIN significantly alleviated the above-mentioned
morphological damage in the renal tubule and the overexpression of
MR.

Under normal circumstances, kidney tissue scarcely expresses KIM-1
protein, but the expression level of KIM-1 is significantly increased
within a few hours of kidney injury, which is one of the specific bio-
logical markers for early renal tubular injury. As shown in WB images,
KIM-1 expression has been progressively increased in DM mice kidneys,
but not in FIN mice kidneys (Fig. 2C and H), and so do cell models
(Fig. 4C and G). This data confirmed that the diabetic state led to tubular
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Fig. 2. Finerenone alleviates the overactivation of MR via PI3K/Akt/eNOS signaling pathway in HFD/STZ-induced T2DM mice. (A) Immunohistochemistry
staining for MR showed that the MR expression and activity were significantly higher in the T2DM group compared to controls, and significantly reduced in the
T2DM mice given finerenone. Scale bar: 200 pm. (B) The immunohistochemistry staining for p-AKT revealed that AKT activity was lowered in the T2DM group and
recovered in the finerenone group. Scale bar: 200 pm. (C) The presence of NR3C2, PI3K, AKT, p-AKT, eNOS, and KIM-1 proteins. (D-I) Quantitative analysis of
NR3C2, PI3K, AKT, p-AKT, eNOS, and KIM-1 proteins and p-actin served as a loading control (n = 6). Data are shown as means + SEM; *P<0.05 vs. the control group,

#P < 0.05 vs. the T2DM group.
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also reversed (n = 3). Data are shown as means + SEM; *P<0.05 vs. the NG group, *P < 0.05 vs. the HG group.

injury and interstitial fibrosis, thereby accelerating the progression of
DT, which was restored by blocking MR activation.

3.2. FIN treatment on mitochondrial homeostasis disorder of
mitochondrial morphology, dynamics, mitophagy, and apoptosis in the
renal tubules of HFD/STZ-induced T2DM mice

The regulatory mechanisms of mitochondrial homeostasis, including
mitochondrial dynamics (fission and fusion), mitophagy, and biogenesis
of mitochondria are multifaceted. Consistent with the outcomes of
recent literature, our in vivo studies found that mitochondrial fission
proteins were increased, whereas fusion proteins and mitophagy pro-
teins were reduced in T2DM mice compared to the control mice on
immunoblot analysis (Fig. 3B, C, and 3D). RAAS activation in the kidney
played a significant role in the advancement of DKD by enhancing the
non-classical aldosterone-MR effect, the MR hyperactivation [13]. To
determine whether activation of MR was an essential step in

diabetes-induced renal tubular mitochondrial dysfunction, mitochon-
drial morphology, dynamics-associated proteins, and
mitophagy-associated proteins were examined in the kidneys of
FIN-treated mice (Fig. 3A-F).

On electron microscopic analysis, the renal tubular cells from the
control mice displayed many elongated mitochondria organized along
the membrane. However, the mitochondria in the tubules of T2DM mice
were short and round shaped or fragmented and scattered. On the other
hand, treatment with FIN significantly reduced the mitochondrial fission
in the renal tubules of DM kidneys (Fig. 3A and E). Additionally, the
expression of mitochondrial-shaping proteins was elucidated. The Drp1-
mitochondrial pro-fission protein, expressed mostly in the renal tubules
by immunohistochemistry, was increased in the DM mice; however, its
in-situ expression was decreased to some extent in the FIN-treated mice
(Fig. 3B). Conversely, the Mfn2-mitochondrial pro-fusion protein was
significantly reduced in the tubules of the DM mice, but in the proximal
tubules, it was largely recovered after the FIN therapy (Fig. 3C).
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Concurrently, immunoblot analysis found the up-regulation of pro-
fission proteins (Drpl and Fisl) and mitophagy protein (p62), and
down-regulation of pro-fusion and mitophagy proteins (Mfnl, Mfn2,
OPA, LC3-II, Atg5, Atg7, and Beclin-1), while repaired levels of these
proteins in the kidneys of DM mice were seen after treating with FIN
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(Fig. 3C, D, 3F, and 3G). Notably, expression of Atg7, a pivotal auto-
phagy effector enzyme that in concert with other Atg proteins, was not
upregulated after the FIN treatment. The LC3-II immunofluorescence
staining was significantly decreased in the tubules of the T2DM group,
and the autophagosome development was largely recovered following
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Fig. 5. Finerenone attenuates HG-induced mitochondrial dynamics and abnormal mitophagy in HK-2 cells. (A-B) Quantitative analysis of mitochondrial
dynamic regulatory proteins and representative immunoblots containing Drpl, Fis, Mfn1l, Mfn2, and OPA from the NG, HG, and FIN groups (n = 3). (C) Confocal
images of Drpl (green), Mfn2 (red), and LC3-II (yellow) in HK-2 cells. The nuclei were counterstained with DAPI (blue). (D-F) Quantification of the degree of Drp1,
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and Beclin-1 from the above three groups (n = 3). Data are shown as means + SEM; *P<0.05 vs. the NG group, *P < 0.05 vs. the HG group.
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the FIN therapy (Fig. 3H). Moreover, the appearance of apoptosis-
related proteins (Bax and Cyt C) was reduced in the FIN-treated group
(Fig. 3J and K). The kidney tissues from the T2DM group that were
labeled with TUNEL staining exhibited increased apoptosis, which was
significantly lowered by the FIN therapy, particularly in the renal tu-
bules (Fig. 3I and L). As demonstrated by these outcomes, FIN amelio-
rated tubular mitochondrial dysfunction and apoptosis in the kidneys of
HFD/STZ-induced T2DM mice in vivo.

3.3. Reduction of PI3K, Akt phosphorylation, and eNOS in DM state and
recovery of T2DM-induced inactivation of the PI3K/Akt/eNOS signaling
pathway by the blockade of MR

The role of PI3K in regulating mitochondrial function draws atten-
tion to diabetes [22]. The PI3K/Akt/eNOS signaling pathway controls
and is controlled by multiple regulators that are implicated in mito-
chondrial function. Given the profound effects of PI3K on mitochondrial
intrinsic apoptosis, we tested whether blockade of MR (FIN treatment)
could activate PI3K, which then could mediate mitochondrial energy
homeostasis through Akt phosphorylation. In our in vivo studies, the
presence of PI3K, Akt, the phosphorylation of Akt and eNOS were
elucidated in the WB experiment. On immunoblot analysis,
down-regulation of PI3K, and the phosphorylation of Akt in
HFD/STZ-induced T2DM mice were observed, while no remarkable
differences in the Akt were found among the CON, DM, and FIN groups.
However, restoration of the PI3K/Akt/eNOS signaling pathway in the
kidneys of T2DM mice was seen after FIN treatment (Fig. 2C, E, 2G and
2H). Similar to the animal experiments, exposure of HK2 cells to HG
ambiance resulted in a significant decrease of PI3K, eNOS and the
phosphorylation of Akt, and the FIN treatment reversed these changes
significantly (Fig. 4B, C, 4E, 4G, and 4H). Meanwhile, no notable
alteration of Akt was noticed among the three groups in vitro. The
inactivated PI3K/Akt/eNOS signaling pathway by the diabetic state was
restored by FIN treatment, which correlated well with the mitochondrial
function, suggesting that the activation of MR as a key factor within the
PI3K/Akt/eNOS signaling pathway, specific to mitochondrial dysfunc-
tion induced by the renal tubular injury in diabetes mellitus.

3.4. Alterations in mitochondrial dynamics and autophagy by HG
ambiance and attenuation of the mitochondrial dynamics and autophagy
disruption by inhibition of MR

Mitochondria are dynamic organelles that allow eukaryotic cells to
adapt to changes in their environment to survive via dynamic changes,
such as undergoing continuous fission and fusion [23]. Besides,
mitophagy is the selective elimination of injured mitochondria by
autophagy. Given these dynamics, the influence of HG on both mito-
chondrial dynamics and mitophagy was evaluated. The HK-2 cells
exposed to HG displayed higher percentages of fragmented mitochon-
dria (Fig. 6A). Specifically, the presence of Drpl and Fisl proteins
increased, while the protein levels of Mfn1, Mfn2, and OPA decreased
compared to the control cells (Fig. 5A and B). Additionally, Drpl and
Mfn2 fluorescence intensities were comparable to the quantitative
evaluations of immunoblot (Fig. 5C, D, and 5E). During the process of
mitophagy, LC3-I transformed to LC3-II [24]. Immunofluorescence
staining of LC3-II labeled the autophagosome, whereas immunoblot
analysis of mitophagy-associated proteins quantified mitophagy.
Reduction of mitophagy was regarded after counting cells with punctate
LC3-II appearance (Fig. 5C and F). WB also showed a reduced protein
level of mitophagy-related proteins (LC3-II, Beclin-1, Atg5, Atg7, and
others), and these proteins were reduced in cells subjected to HG con-
ditions (Fig. 5G and H).

To determine whether inhibition of MR hyperactivation had any
protective effect on mitochondrial dynamics (fusion/fission) and the
mitophagy process, non-steroidal MRA-FIN was treated in the HK-2
cells. Based on the therapeutic effect of the drug (Supplemental Fig. 2),
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5 pM was selected as the testing concentration of FIN in the in vitro
cultures of HK-2 cells. Notably, activated Drpl was attenuated, and
inactivated Mfn2 was alleviated in the FIN group, and this process was
accompanied by an antagonistic effect on MR. Similar to the results of
the mice experiments, restoration of mitophagy was observed in the FIN-
treated cells. Whether it was immunofluorescence or a Western blot, an
upsurge of mitophagy was noted in the HK-2 cells treated with FIN
compared to the cells under HG ambiance.

3.5. Exposure of HK-2 cells to HG ambiance causes morphological
changes in mitochondria, oxidative stress, and apoptosis, but treatment
with FIN reduces mitoROS production and apoptosis in tubular cells

Disruption of mitochondrial function and abnormally fragmented
mitochondria may invariably result in mitochondrial oxidative stress
and cell apoptosis. Mitochondrial morphological changes were observed
in HK2 cells stained with MitoTracker red using laser scanning confocal
microscopy. As shown in Fig. 6A and C, in the NG (5 mM) group,
mitochondrial fluorescence was uniformly present, and they trans-
formed into local punctate over burst fluorescence signal of varying
strength after the HG exposure for 24 h. In the FIN group, the non-
steroidal MRA-FIN protected the mitochondria and ameliorated the
mitochondrial morphological abnormalities (Fig. 6A and C).

Increased mitoROS production was strongly associated with mito-
chondrial dysfunction, impaired OXPHOS, and an imbalance of energy
homeostasis in DT [3]. We also detected oxidative stress and apoptosis in
the in vitro experiment. Under HG ambiance, both the mitochondrial and
intracellular levels of ROS were increased. In contrast, in the FIN-treated
HK-2 cells, mitochondrial and intracellular levels of ROS were
comparatively lower in intensity of staining with MitoSOX and
Hy-DCFDA probes, respectively (Fig. 6B and D).

Immunoblotting revealed a substantial rise in pro-apoptotic proteins
Bax and Cyt C in the HG group. Surprisingly, all of these impacts were at
least partially mitigated by the FIN treatment (Fig. 6E and F). The HK-2
cells in the HG group subjected to TUNEL staining indicated concomi-
tant upsurges of mitoROS and apoptosis, and they were significantly
lowered by the FIN treatment (Fig. 6H). Therefore, FIN, by inhibiting the
activation of MR, exerted the antiapoptotic and antioxidant properties in
the renal tubular epithelial cells.

4. Discussion

Proteinuria and ultrastructural glomerular lesions have always been
focused when exploring the pathogenesis of DKD [25]. However, the
main emphasis on the glomerular changes in DKD has partially shifted to
renal tubular changes since clinical manifestations of renal disorder
were highly linked to tubular interstitial fibrosis and tubular atrophy [3,
26]. Treatments that particularly target pathophysiological disruptions
in the renal tubules have been challenged [27]. In this study, significant
lesions in the renal tubule were found in HFD/STZ-induced T2DM mice
(Fig. 1G). A critical question, “Can relieving tubular injury reverse DKD
progression?” needed to be addressed. The current study (Fig. 1E, F, and
1G) found that FIN, a selective non-steroidal MRA, not only ameliorated
DT but also, improved renal function by lowering serum creatinine and
urinary ACR. FIN also alleviated glomerular irregularities to a certain
degree (Fig. 1G), indicating that renal glomeruli and tubules were
inextricably linked to DKD. Chen [28] and Lee [7] et al. found that in-
hibition of SGLT2 by empagliflozin in diabetic renal tubular injury
decreased albuminuria, BUN, and body and kidney weight in addition to
reducing tubulointerstitial damage. Based on this finding, the strategy
focusing on the renal tubules, specific to mitochondrial fragmentation,
mitochondrial fission, and mitophagy may help understand the patho-
genesis and improve treatment for DKD [7,29].

The renal tubules actively reabsorb filtered initial urine, which re-
quires abundant energy, and the renal tubules are therefore rich in
mitochondria [30]. Mitochondria maintain their homeostasis by
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mitochondrial dynamics and kinetics, mitophagy, and mitoROS regu-
lation, and it has been evaluated in numerous diseases [31-34], but
studies on mitochondrial dysfunction in DKD, are limited. Based on
some existing studies, mitochondrial homeostasis played bidirectional
roles in several renal illnesses, such as DKD [35] and AKI [36].
Mitophagy and mitochondrial fusion provide cytoprotective effects
during kidney damage by DKD, while mitochondrial fission precipitates
the renal damage [37,38].

Our study revealed that most of mitochondria in the injured renal
tubules of T2DM mice were fragmented and distributed in a disorga-
nized manner in the cells (Fig. 3A). Furthermore, mitophagy was
decreased in the tubules and the wounded mitochondria were removed
less efficiently. Enhanced fragmentation of mitochondria, decreased
mitophagy, and fission and fusion under the HG atmosphere were
identified in the tubular cells in in vitro and in vivo experiments (Figs. 3, 5
and 6). The mitochondrial function was perturbed and resulted in an
increase in mitoROS production and activation of the mitochondrial
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apoptotic cascade (Fig. 7).

The MR (encoded by NR3C2) is a transcription factor that binds to
appropriate ligands to activate a signal cascade. MR activation has
distinct negative impacts on different cell types, including car-
diomyocytes, vascular smooth muscle cells, endothelial cells, adipo-
cytes, and inflammatory cells in addition to its renal function, resulting
in severe renal and CVS consequences, and thus seeking curative abili-
ties of pharmacological MRAs [39]. A single-cell sequencing study
revealed that the expression of mineralocorticoid receptors was
increased in the proximal tubule in diabetic patients compared to the
control kidney. In addition to inducing changes in gene expression,
non-genomic effects of aldosterone have been documented in epithelial
cells. This study found that the non-genomic effects of aldosterone could
be crucial in the context of diabetes-induced organ injury and it was the
significance and value of this research, as shown in Fig. 7, that the red
pentagon represented the aldosterone, which binds to the non-classical
MR pathway (expressed in the proximal tubular epithelial cells).
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Kolkhof et al. [40] demonstrated that FIN, but not eplerenone,
enhanced the systolic and diastolic left ventricular function and
decreased the brain natriuretic peptide prohormone plasma levels in rats
that suffered from chronic heart failure [40]. Likewise, in a rat model of
acute ischemia leading to CKD renal damage, FIN inhibited ROS gen-
eration during reperfusion, thus alleviating proteinuria and renal
structural and functional injuries [41]. FIN, a selective non-steroidal
MRA, is a viable drug for the treatment of DKD due to its claimed ef-
fect of MR stimulation in inflammation, oxidative stress, and fibrosis
[42]. However, the mechanism via which MRAs exert the renal pro-
tective effect in DKD is unknown and poorly studied. According to the
major FIDELIO-DKD clinical study, FIN delayed CKD progression and
lowered the risk of adverse cardiovascular events in T2DM patients. The
fundamental mechanisms through which MR activation leads to kidney
damage need to be explored. As demonstrated in Figs. 2 and 4, under HG
ambience, MR was increased in tubular cells, where it influenced
mitochondrial dynamics, including mitophagy via PI3K/Akt/eNOS
pathway. PI3K/Akt/eNOS is a traditional signaling pathway that is
involved in cell development and survival as a result of extracellular
signals [19,43]. PI3K phosphorylation stimulates its downstream pro-
tein Akt, phosphorylates Akt (p-Akt) and eNOS, regulating a variety of
physiological functions, such as cell differentiation, propagation,
migration, and apoptosis [19,44]. In rat kidney fibroblast cells, ligation
of aldosterone to MR led to fast stimulation of the growth factor re-
ceptors in kidney fibroblasts and the induction of PI3K/Akt/eNOS
signaling, which activated the cell proliferation [18]. In this model of
T2DM, a key curative function of FIN was elucidated, which was ach-
ieved by the suppression of MR via PI3K/Akt/eNOS signaling pathway,
hence normalizing the mitochondrial dysfunction and decreasing the
mitoROS production and tubular cell apoptosis with the improvement in
kidney functions (Figs. 1-3). Despite this investigation efforts, some
difficulties remained unresolved. For example, the mechanism by which
MR activation modulated the PI3K and downstream Akt/eNOS still has
to be explored. What’s more, whether MR activation in epithelial cells
directly controls mitochondrial homeostasis is worthy of further
investigation.

In conclusion, the current study found that DM activated the MR,
triggering mitochondrial dysfunction. FIN prevented mitochondrial
homeostasis imbalance in the DM mice or the HG-induced HK-2 cells
through the PI3K/Akt/eNOS pathway, which positively contributed to
an overall improvement of renal tubular function in this abnormal
condition. Hence, the experimental results supported the clinical indi-
cation of FIN, exploring its therapeutic effect in alleviating tubular
injury and improving overall renal function in patients whit CKD and
T2DM.
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