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Abstract: Amyotrophic Lateral Sclerosis (ALS) is a progressive and fatal neurodegenerative disease
marked by death of motor neurons (MNs) present in the spinal cord, brain stem and motor cortex.
Despite extensive research, the reason for neurodegeneration is still not understood. To generate
novel hypotheses of putative underlying molecular mechanisms, we used human induced pluripotent
stem cell (hiPSCs)-derived motor neurons (MNs) from SOD1- and TARDBP (TDP-43 protein)-mutant-
ALS patients and healthy controls to perform high-throughput RNA-sequencing (RNA-Seq). An
integrated bioinformatics approach was employed to identify differentially expressed genes (DEGs)
and key pathways underlying these familial forms of the disease (fALS). In TDP43-ALS, we found
dysregulation of transcripts encoding components of the transcriptional machinery and transcripts
involved in splicing regulation were particularly affected. In contrast, less is known about the role
of SOD1 in RNA metabolism in motor neurons. Here, we found that many transcripts relevant
for mitochondrial function were specifically altered in SOD1-ALS, indicating that transcriptional
signatures and expression patterns can vary significantly depending on the causal gene that is
mutated. Surprisingly, however, we identified a clear downregulation of genes involved in protein
translation in SOD1-ALS suggesting that ALS-causing SOD1 mutations shift cellular RNA abundance
profiles to cause neural dysfunction. Altogether, we provided here an extensive profiling of mRNA
expression in two ALS models at the cellular level, corroborating the major role of RNA metabolism
and gene expression as a common pathomechanism in ALS.

Keywords: amyotrophic lateral sclerosis (ALS); human induced pluripotent stem cells (iPSC); motor
neurons (MN); RNA sequencing (RNA-Seq); differentially expressed genes (DEG); protein-protein
interaction (PPI)

1. Introduction

Amyotrophic lateral sclerosis (ALS) is a progressive and irreversible neurodegener-
ative disease characterized by selective loss of motor neurons in the motor cortex, brain
stem and spinal cord. Presently, more than 25 genes have been identified as monogenetic
causes of ALS; among these are mutations of the Cu/Zn superoxide dismutase 1 (SOD1)
and the TAR DNA-binding protein 43 (TARDBP) [1–4]. Despite extensive research, the
underlying pathomechanisms in general but also those which are likely causing motor
neuron degeneration and cell death in SOD1 versus TDP43 mutations remain unknown.
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Over the years, studies on various disease mechanisms including endoplasmic reticu-
lum (ER) stress, oxidative stress, excitotoxicity, inhibition of the proteasome, mitochondrial
damage, dysregulation of RNA metabolism, axonal disorganization and disrupted ax-
onal transport have been implicated in SOD1- and TDP43-ALS [5–10]. In many cases,
these diverse downstream abnormal events activate and recruit nonneuronal cells such
as astrocytes, microglia, and oligodendrocytes, which trigger and sustain motor neuron
degeneration either through the release of neurotoxic or pathogenic factors in response to
a wide range of extracellular signals and stress or through the lack of neuronal support
(neurotrophic factors) [11,12]. Furthermore, generated functional astrocytes from human
pluripotent stem cells (e.g., embryonic stem cells (ESCs) and iPSCs) carrying TDP43 and
SOD1 mutations showed that these mutant astrocytes exhibited increased levels of astro-
cytic toxicity, impaired subcellular localization, decreased cell survival and dysfunction of
the neuroprotective response [13,14]. In addition, microarray and high throughput RNA-
seq based transcriptomic studies have revealed many cellular defects of motor neuron
function in both forms of the ALS models, consistent with the hypothesis that various bio-
logical processes, including inflammation, mitochondrial dysfunction, enhanced apoptosis,
oxidative damage, protein misfolding, altered axonal transport, RNA metabolism and lipid
metabolism contribute to the pathobiology of the disease [15–19]. We recently reported on
network-based interactome and transcription factor analysis of iPSC-derived MNs from
FUS- and SOD1-ALS patients. The results revealed unique pathways associated with
herpes simplex virus infection (FUS mutation) and dysregulation of metabolic pathways
(SOD1 mutation) [15].

Among these, alteration in RNA processing mechanisms [1,20] is considered to be
one of the most important events and can lead to neural dysfunction and neurodegenera-
tion [21–24]. Multiple roles in RNA regulation have been identified for TDP43 such as RNA
splicing, translation, transport and microRNA (miRNA) biogenesis [5,25–27], suggesting a
potential role of altered RNA expression and post translational processing of proteins in
the disease. Unlike TDP43, SOD1 does not contain RNA-binding motifs and ALS patients
with SOD1 mutations do not exhibit similar defects in RNA processing [28–31]. How-
ever, reports have demonstrated a potential function of mutant SOD1 in regulating RNA
metabolism including alternative splicing as well [20,32]. A growing body of evidence
showed that the axons of mature sensory and peripheral motor neurons strongly rely on
mRNA transport and local translation to maintain homeostasis [33,34]. In another finding,
the upregulation of ribosome synthesis in axons has been reported in the pathogenesis of
both mutant SOD1-G93A transgenic mouse models and human ALS autopsy samples [35].

In addition, RNA-seq analyses of the anterior branch of human obturator MNs biop-
sied from patients with ALS demonstrated upregulation of a cluster of genes that play im-
portant roles in biological pathways involving RNA processing and protein metabolism [36].
Accordingly, RNA profiling studies from the axon samples of cultured spinal cord neu-
rons using microfluidic technology revealed that mRNAs and miRNAs are differentially
expressed in the somatic compared with the axonal neuronal compartments, showing aber-
rant axonal RNA metabolism and defects in mitochondrial functions [7,37,38]. Indeed, an
elegant study based on Axon-seq investigated transcriptomic changes in mouse embryonic
stem cells (mESCs)-derived MNs overexpressing SOD1(G93A) showed extensive dysregu-
lation of oxidative energy and ribosome production [39]. Recently, functional enrichment
analysis based on single-cell transcriptomic technology also identified several dysregulated
pathways related to RNA processing mechanisms including translation, splicing and mito-
chondrial function in individual neurons obtained from SOD1 patient-derived iPSCs [40].
Altogether, these transcriptomic investigations support a pathogenic role for dysregulation
of RNA processing in SOD1- and TDP43-ALS.

Hence, taking the advantage of iPSC model system and by integrating bioinformatics
analysis, we have examined two ALS models, human motor neurons with mutations in
SOD1 and TDP43. We addressed whether subtypes of ALS caused by different genetic
mutations might be stratified on the basis of transcriptional alterations. Our analysis high-
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lighted distinct clusters of DEGs within both the SOD1 and the TDP43 mRNA profiles,
supporting previous studies of divergent pathways in different ALS genes. However, fur-
ther protein-protein interaction (PPI) network analysis revealed also pathways converging
on the regulation of protein translation, by alteration of ribosomal protein transcription in
SOD1 mutant and splicing deregulation in TDP43 mutant motor neurons.

2. Results
2.1. Motor Neuron Differentiation in iPSC-Derived Cell Lines

We studied iPSC-derived spinal motor neuron cultures from four different non related
ALS patients (two of each carrying SOD1 and TDP43, respectively) which were compared
to three different healthy control individuals (different families with different mutations;
SOD1 D90A, SOD1 R115G, TDP43 S393L and TDP43 G294V, respectively; different controls
from different families, for details see also Table 1). Different gene mutations can cause
significantly different disease courses and phenotypes. This is especially true in the case of
D90A SOD1. Patients carrying D90A SOD1 mutation showed less phenotypic variability
than patients with other Cu/Zn SOD1 mutations, with the exception of the variability
of the age of onset of first symptoms (patients show the widest span of 74 years) [41].
Cellularly, D90A mutant iPSC-derived motor neurons yield also different mitochondrial
and aggregation phenotypes compared to other SOD1 mutations [42]. Since our intention
was to search and address for overarching phenotypes we thus included also a D90A
cell line.

Table 1. Patient/proband characteristics.

Genotype Sex
Age at
Biopsy
(Years)

Mutation Family History
Age of

Disease
Onset

ALS Type Clinical
Characteristics

Disease
Duration
(Months)

Clones DIV

Controls
Female 53 - - - - - 1 30
Male 60 - - - - - 1 30

Female 45 - - - - - 1 30
TDP43-

ALS

Female 85 p.S393L Pos. for ALS 85 Bulbar

Progressive
anarthria, LMND,

no clinical
symptoms of FTD

48 1 30

Male 46 p.G294V neg for ALS 37 Spinal

Early onset ALS
(37 years),

monomelic right leg
amyotrophy, no

clinical symptoms
of FTD

>120
(alive) 2 30

SOD1-
ALS

Male 59 p.R115G
Pos. for ALS
(Mother and

Brother)
n.d Spinal n.d n.d 1 30

Female 46 p.D90A Pos. for ALS
(Brother) 41 Spinal

Slowly progressive
classical spinal ALS,

no cognitive
impairment

204 1 30

n.d: no data; LMND: lower motor neuron disease; DIV: days in vitro.

The generation of human NPCs (neural progenitor cells) and motor neurons was
accomplished following the protocol from Reinhardt et al., Bursch et al. and Naumann
et al. [43–45]. All the iPSC lines we used were low passage number (less than 20) and
differentiated for 14–21 days of terminal differentiation (=total DIV 30). All these cell
lines have been previously characterized including the acquisition of classical spinal mo-
tor neurons markers (described above), electrophysiological function and the sequential
appearance of progressive neurodegeneration. Please refer to the citations for detailed
information [42,46,47]. In summary, immunolabeling detected the presence of neuronal
(TuJ1 80–90%, MAP2 80–90%) and motor neuron specific markers (SMI32 70–75%) in
the cells without significant differences in neuron morphologies between wildtype con-
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trols (n = 3 subjects, 1 clone each) and ALS mutants (SOD1 n = 2 subjects, 1 clone each;
TDP43 n = 2 subjects, 2 clones of one subject and 1 clone of second subject). There was no
difference between wildtype and mutants SOD1 [42,46] and TDP43 [47].

2.2. RNA-Seq Profiling and Identification of DEGs between SOD1- and TDP43-ALS

A detailed outline of the study protocol is summarized in Figure 1. Our analysis
focused on RNA sequencing and bioinformatics analysis of SOD1- and TDP43-ALS mutant
patient-derived spinal motor neurons, as compared to healthy controls (for details of the
cell lines see Table 1).
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Figure 1. Overall workflow of the study.

A total of 1448 DEGs were found in SOD1-ALS, with 668 upregulated and 780 down-
regulated genes. In TDP43-ALS, 1160 DEGs were found, including 626 upregulated and
534 downregulated genes. The cut-off criteria were set at p-value ≤ 0.05 and |log2FC| ≥ 1.5
(FC, fold change). A full list of DEGs is provided in Supplementary Table S1.

2.3. Functional and Pathway Enrichment Aanalysis of DEGs

Gene Ontology (GO) and pathway enrichment analysis of DEGs were performed by
different databases, respectively, using p-value ≤ 0.05, and |log2FC| ≥ 1.5 as cut-off value,
which were useful in identifying important biological functions of a specific gene. In SOD1
mutant cells, biological processes (BP) linked to DEGs were significantly enriched in cyto-
plasmic translation, regulation of Wnt signaling pathway and response to oxidative stress
processes. Referring to the analysis of Kyoto Encyclopedia of Genes and Genomes (KEGG),
Reactome and Wikipathways indiated that the top pathways associated with DEGs were
mainly related to ribosome and eukaryotic translation elongation functions (Figure 2A,B).
In TDP43 mutant motor neurons the DEGs were largely involved in regulation of proteoly-
sis, protein export, growth regulation processes, phagocytosis and glycoproteins/glycans
signaling cascades (Figure 2C,D). Collectively, the comprehensive enrichment analysis
indicated distinct transcriptional signatures associated with SOD1- and TDP43-ALS motor
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neurons. These findings are in agreement with previous descriptions of quite different tran-
scriptome changes in SOD1 and TDP43-ALS [38–40]. Top ten biological functions enriched
for SOD1- and TDP43-ALS DEGs by EnrichR and DAVID are presented in Figure S1A,B
and the complete list of all GO/pathway terms is given in Tables S2 and S3.
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html#/main/step1, accessed on 6 July 2022) revealed distinct pathways in SOD1- and TDP43-ALS.
(A) Metascape bar chart of enriched GO and (B) Pathway terms (KEGG/Reactome/WikiPathway)
across the input DEGs in SOD1-ALS. (C) Metascape bar graph of GO terms and (D) KEGG pathways
that are significantly enriched in DEGs specific for TDP43-ALS datasets. X-axis represents the
statistical significance of the enrichment (−log10 (p-value)). Bar chart of GO and Pathway terms
colored by p-values ≤ 0.05 were adapted from Metascape, where terms containing more genes tend
to have more significant p-values. The length of the bar represents the significance of that specific
gene-set or term. The brighter the color, the more significant that term is.
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2.4. PPI Network Construction and Module Analysis

We used the Search Tool for the Retrieval of Interacting Genes database (STRING)
(version 11.5 [48]) and Cytoscape software (Institute for Systems Biology, UCSD, San Diego,
CA, https://www.cytoscape.org, accessed on 28 June 2022) (version 3.8.2 [49]) to predict
protein-protein interactions (PPI) of the detected DEGs in SOD1 and TDP43 datasets which
were subsequently analyzed with the threshold (degrees≥10) using the Molecular Complex
Detection (MCODE) tool [50]. In SOD1, with the confidence at high level, total DEGs (877
nodes and 515 edges, PPI enrichment p = 6.62 × 10−10) were mapped to generate PPI
network (Figure 3A). The analysis by MCODE plugin revealed many functional modules
in the whole DEGs network. However, only top two modules (Modules 1 and 2) containing
five or more than five nodes were identified (Figures 3C and S2A). Metascape (Figure 3E)
and ClueGO/CluePedia (Figure 3G) [51,52] enrichment analysis of the functional module
with the highest MCODE score showed that all the genes from module 1 (CCDC124, EEF1B2,
EEF1G, PLEC, RPL10A, RPL11, RPL13, RPL28, RPL3, RPL32, RPL35A, RPL38, RPL39, RPL5,
RPL6, RPL7A, RPLP0, RPLP1, RPS12, RPS24, RPS6, RPS8, RPSAP58, and TPT1, MRPL34,
MRPL45, MRPL49, MRPL30, and MRPL28) exhibited downregulation and were significantly
enriched in translational elongation, ribosomes and mitochondrial ribosome functions,
while the genes in module 2 (MT-ND3, MT-ND5, MT-ND6, NDUFA12, NDUFA13, NDUFA2,
NDUFA9, NDUFB10, NDUFB9, NDUFC1, NDUFS3, NDUFS4, NDUFS6, NDUFS7, and
NDUFS8) showed upregulation and were involved in NADH dehydrogenase ubiquinone
activity and mitochondrial complex I assembly/OXPHOS system (Figure S2A). Thus, PPI
network analysis highlighted two main pathways out of the multiple pathways affected in
SOD1-ALS above described.

Similarly, in TDP43, the overall PPI network of the total DEGs (upregulated and
downregulated) containing 655 nodes and 136 edges (PPI enrichment p = 0.0626) was
surveyed for identification of functional modules in the network (Figure 3B). In addition,
MCODE plugin was used to extract functional modules and based on highest score two
significant modules were screened out in the whole DEGs of PPI network. One module
included a total of 9 genes; AK6, TAF1, TAF10, TAF11, TAF12, TAF4, TAF5, TAF6, and
TAF7 which were mainly associated with RNA polymerase based general transcription
processes (Figure 3D,F,H), whereas the second module consisted of a total of 7 genes
LSM2, LCM3, LSM4, LSM6, LSM7, LSM8, and SART3 and were mainly enriched in RNA
splicing and spliceosomal snRNP assembly functions (Figure S2B). Of note, both modules
were upregulated in case of TDP43. Thus, also in TDP43-ALS, PPI network analysis
highlighted two main pathways affected. Supplementary Figures S2 and S3 (with gene
names) summarize the modules in PPI networks and their enriched functions, respectively.
The complete results of all PPI network analysis and the list of hub binding partners are
provided in Table S4.

2.5. Identification of Hub Genes and Transcription Factor Regulatory Network Analysis

In SOD1-ALS, the top 10 key nodes of the total DEGs in the PPI network were selected
as hub genes according to the scoring of maximum correlation criterion (MCC) by using
the cytoHubba plugin [53], which identifies important nodes and modules by topological
algorithms. The hub genes of the network analysis were related to ribosomal functions
(RPLP0, RPL11, RPL5, RPL3, RPL13, RPL10A, RPL6, RPS24, RPS8, and RPS6) (Figure 4A).
Notably, these hub genes were mostly downregulated in motor neurons, suggesting that
ribosome misregulation is the most relevant change in SOD1-ALS patients.

https://www.cytoscape.org


Int. J. Mol. Sci. 2022, 23, 9652 7 of 20

Int. J. Mol. Sci. 2022, 23, 9652 7 of 21 
 

assembly/OXPHOS system (Figure S2A). Thus, PPI network analysis highlighted two 

main pathways out of the multiple pathways affected in SOD1-ALS above described. 

Similarly, in TDP43, the overall PPI network of the total DEGs (upregulated and 

downregulated) containing 655 nodes and 136 edges (PPI enrichment p = 0.0626) was sur-

veyed for identification of functional modules in the network (Figure 3B). In addition, 

MCODE plugin was used to extract functional modules and based on highest score two 

significant modules were screened out in the whole DEGs of PPI network. One module 

included a total of 9 genes; AK6, TAF1, TAF10, TAF11, TAF12, TAF4, TAF5, TAF6, and 

TAF7 which were mainly associated with RNA polymerase based general transcription 

processes (Figure 3D,F,H), whereas the second module consisted of a total of 7 genes 

LSM2, LCM3, LSM4, LSM6, LSM7, LSM8, and SART3 and were mainly enriched in RNA 

splicing and spliceosomal snRNP assembly functions (Figure S2B). Of note, both modules 

were upregulated in case of TDP43. Thus, also in TDP43-ALS, PPI network analysis high-

lighted two main pathways affected. Supplementary Figures S2 and S3 (with gene names) 

summarize the modules in PPI networks and their enriched functions, respectively. The 

complete results of all PPI network analysis and the list of hub binding partners are pro-

vided in Table S4. 

 

Figure 3. PPI network analysis of total DEGs converge to two main affected pathways in both, 

SOD1- and TDP43-ALS. (A) PPI network of SOD1- and (B) TDP43-ALS DEGs, in which thicker lines 

Figure 3. PPI network analysis of total DEGs converge to two main affected pathways in both,
SOD1- and TDP43-ALS. (A) PPI network of SOD1- and (B) TDP43-ALS DEGs, in which thicker lines
indicates stronger data support. The nodes indicate the DEGs and the edges indicate the interaction
(experimental evidence only) between two proteins. The STRING database was used to establish
functional associations among the known and predicted proteins using annotated DEGs as query for
SOD1- and TDP43-ALS interaction networks, with high confidence score of >0.7 and a maximum
number of interactions to top 20. (C) The module 1 from SOD1- and (D) TDP43-ALS identified from
the whole PPI network. (E) Enrichment analysis of the module 1 from SOD1- and (F) TDP43-ALS by
Metascape. X-axis represents the statistical significance of the enrichment (−log10 (p-value)). Bar
chart of GO and Pathway terms colored by p-values were adapted from Metascape, where terms
containing more genes tend to have more significant p-values. The length of the bar represents the
significance of that specific gene-set or term. The brighter the color, the more significant that term is
(G) Comprehensive enrichment analysis of the functional group network (only significantly enriched
GO terms/Pathways are visualized, p-value ≤ 0.05) for module 1 in SOD1- and (H) TDP43-ALS
using ClueGo/CluePedia plugin in Cytoscape. ClueGO/CluePedia annotation results are based on
biological process (circular node) and KEGG pathway (triangle shape) analysis.
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Figure 4. Integrated analysis on hub genes further highlighted one main pathway in SOD1- and
TDP43 ALS. (A) Top 10 hub genes from SOD1- and (B) TDP43-ALS identified using the cytoHubba
plugin (Cytoscape) among TDP43-ALS and SOD1-ALS datasets. The deeper the color of the node,
the higher the level of significance at the PPI network. (C) The hub gene-transcription factor (TF)
regulatory interaction networks in SOD1- and (D) TDP43-ALS datasets. Red and pink nodes stand
for the hub gene and blue and green diamond stands for the transcription factor.

On the other hand, using the cytoHubba plugin in Cytoscape [53], a total of 10 nodes
were identified as hub genes from the overall PPI network of TDP43-ALS motor neurons
(TAF10, TAF1, TAF12, TAF6, TAF5, TAF11, TAF7, TAF4, AK6, and LSM7) (Figure 4B). As
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shown in Figure 4, the majority of the hub genes in the network were upregulated DEGs in
TDP43-ALS samples and were significantly involved in RNA processing functions such as
transcription and splicing.

To identify key regulators of the SOD1 and TDP43-ALS dysregulated genes, a target
gene-transcription factor (TF) regulatory network of the identified ten hub genes was con-
structed and analyzed in NetworkAnalyst. In the SOD1-ALS analysis, a gene-TF network
was performed including 68 interaction pairs among 10 genes and 45 TFs (Figure 4C).
While RPS24 was found to be regulated by 9 TFs, RPL6 was regulated by 8 TFs, RPL10A
was regulated by 7 TFs, and RPLP0 was regulated by 6 TFs. In addition, various TFs were
found to regulate more than one hub gene, and four TFs (PPARG, GATA2, FOXF2, and
FOXC1) were identified with a connectivity degree ≥5 in the gene-TF regulatory network,
indicating that these TFs have close interactions with these hub DEGs (Table 1).

Similarly, the gene-TF regulatory network in TDP43-ALS was also constructed includ-
ing 54 interaction pairs among 9 genes and 39 TFs (Figure 4D). Of these, TAF5 was found
to be regulated by 10 TFs, LSM7 was regulated by 8 TFs, TAF6 was regulated by 6 TFs, and
TAF11 was regulated by 5 TFs. Based on a connectivity score ≥5, forkhead Box C1 (FOXC1)
was predicted to regulate seven genes and GATA-binding factor 2 (GATA2) was found to
regulate 5 genes (Table 2). The complete list of all TFs is given in Table S5.

Table 2. Transcription factors (TFs) of hub genes.

Cellular
Model TFs Target Genes Count

SOD1-ALS

PPARG RPL6, RPLP0, RPL3, RPS24, RPL13, RPL10A 6

GATA2 RPL11, RPS8, RPL6, RPL13, RPL10A, RPL5 6

FOXF2 RPL11, RPL6, RPLP0, RPS24, RPL13, RPL5 6

FOXC1 RPS6, RPL6, RPL3, RPS24, RPL13 5

TDP43-ALS
FOXC1 TAF4, TAF7, LSM7, TAF1, TAF10, TAF11, TAF5 7

GATA2 TAF6, TAF7, LSM7, TAF1, TAF10 5

3. Discussion

In this study, we have performed systematic transcriptome profiling and bioinfor-
matics analyses to identify genes that were differentially expressed (p-value ≤ 0.05) in
iPSC-derived MNs from SOD1- and TDP43-ALS patients and healthy controls using high-
throughput RNA-Seq technology. Firstly, our data revealed that both SOD1-and TDP43-ALS
datasets exhibited different signatures, suggesting the molecular pathogenesis of different
genetic ALS forms might exhibit varying extents of genotype and phenotype overlap.
Secondly, in depth PPI based modeling identified pathogenic pathways, namely translation
and transcription, which converge on defects in RNA metabolism in models associated
with mutations in SOD1 and TDP43. While defects in RNA processing, transcription and
splicing were expected to be common occurrences in RNA binding protein TDP43 and thus
in overall protein landscape architecture, it was surprising to note that the most important
hub mechanistic pathway in SOD1 also involved translation.

To further refine the GO and KEGG enrichment analysis, we performed a thorough
analysis of the contribution of experimentally-derived PPIs for annotation of proteins and
generated a functionally arranged module of terms GO/pathway that were differentially
regulated with their significant gene interactions based on the p-values and kappa statis-
tics. In SOD1, we identified important genes and their functional interactions and how
they were associated with the pathogenesis and progression of ALS. Genes most strongly
downregulated in motor neurons were found to be key drivers involved in the differential
regulation of the protein translational pathway and ribosomal functions (Figure 3C,E,G).
Interestingly, in agreement with a previous gene expression profiling study analyzing
iPSC-derived MNs as well as biopsied samples from ALS and motor neuropathy patients,



Int. J. Mol. Sci. 2022, 23, 9652 10 of 20

our analysis revealed significant overrepresentation of genes and pathways relevant to
ribosome biogenesis and RNA processing [35,36,39,40,54]. Similarly, the ribosomal protein
S6 has been observed in the axons of embryonic sympathetic and hippocampal neurons
grown in vitro, indicating that local mRNA translation also occurs in growing axonal
projections [55]. Of these, the ribosomal proteins L10A (RPL10A) and S6 (RPS6) were the
most relevant hub genes identified in our network analysis (Figure 4A). Other translational
proteins identified in neurons in vitro including the larger and smaller ribosomal subunits
RPL5, RPL13 and RPS24 were also shared with our study. Impaired protein translation
and ribogenesis, reflecting the importance of local translation machinery, have been ex-
tensively implicated in the pathogenesis of ALS, while it is rather novel in SOD1-ALS,
respectively [7,21,35,56–58]. Therefore, more experimental studies investigating and clari-
fying the potential involvement of these ribosomal proteins on the disease progression of
SOD1-ALS are necessary to confirm the results of this study.

Additionally, the GO/pathway analysis on functionally grouped modules in SOD1-
ALS revealed that the upregulated genes in module 2 were mainly involved in mitochon-
drial complex assembly (NADH to ubiquinone) (Figure S2A). Notably, the results from
module analysis of the PPI network were consistent with the results of GO functional
annotations of these DEGs. Interestingly, there have been several transcriptome inves-
tigations in SOD1 human samples, motor-neuron like NSC34 culture and many animal
models [30,59–62]. These studies have reported dysregulation of genes involved in path-
ways related to oxidative stress, mitochondria, fatty acid/lipid metabolism, synapse and
neurodevelopment, respectively. In accordance with these findings, we also observed an
upregulation of complex I activity as well as increased ROS levels. It is worth mentioning
that upregulation of mitochondrial genome encoded complex I subunits could represent
a compensatory mechanism. Moreover, post-mitotic neurons are highly vulnerable to
mitochondrial defects, which are pathogenically triggered by simultaneous failures of RNA
processing, suppression of protein synthesis and ATP supply [63–65]. Intriguingly, we
also uncovered that mRNAs encoding mitochondrial ribosomes were selectively down-
regulated in SOD1-ALS, suggesting potential deficits in mitochondrial translation as well
(Figure 3A). Overall, our findings from the enrichment analysis support protein translation
as an important function for understanding the pathogenesis of SOD1-ALS; however, the
exact mechanism is unclear, and further biochemical experiments are needed to validate
these results in more detail.

In TDP43-ALS, the expression of several genes is dysregulated affecting up to a third
of the transcriptome [27,66,67], leading to the defect of multiple biological processes includ-
ing alterations in RNA metabolism, mitochondrial dysfunction/oxidative stress, altered
protein transport, apoptosis, and DNA damage/genomic instability. Through PPI network
analysis of DEGs in TDP43, we also identified key genes and significant modules of the
interaction networks enriched in transcription, splicing, and DNA repair molecular path-
ways. Implications of TDP43 in multiple steps of RNA metabolism such as transcription,
splicing, RNA stability, microRNA processing, and mRNA transport were well established
in many model systems [5,25,26]. TDP43 is also known to act as a splicing regulator whose
depletion or overexpression can affect the alternative splicing of several genes [27,66] and
expression of these genes was reported to be dysregulated in human CNS tissues from
TDP43 ALS cases [68,69]. An important regulatory machinery during RNA splicing in
eukaryotes is the spliceosome, composed of small nuclear ribonucleoproteins (snRNAs)
including U1, U2, U4, U5, and U6 snRNA, in addition to a range of small nuclear RNAs
(snRNPs) [70]. Reports showed that the expression profiles of such snRNAs were altered in
TDP-43-knocked down cells and spinal cord from ALS patients [71,72]. Interestingly, our
enrichment analysis of the two modules have revealed large amount of upregulated U6
snRNA or spliceosome assembly, and RNA polymerase II transcription machinery genes,
highlighting that abnormal accumulations of TDP-43 in MNs could be responsible for this
outcome (Figures 3D,F,H and S2B). Since a previous study demonstrated that upon TDP43
depletion the expression level of the U6 snRNA was significantly decreased [73], we hy-
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pothesize that the effect in our TDP43 mutant motor neuron is due to toxic gain of function
of TDP43 resulting in neuronal death. Other important functions such as regulation of
nuclear division, genome integrity, and DNA replication pathways were also identified in
TDP43-ALS datasets. Indeed, patients’ motor neurons derived from ALS-linked mutations
showed upregulation of the p53 pathway, high levels of DNA damage during long term
culture, followed by ROS production [74–76]. Moreover, loss of TDP43 was associated with
DNA damage and compromised cell viability in patient motor neurons [77–79]. Notably,
our analysis indicated that the expression levels of the DNA repair genes were increased in
TDP43 patients compared with healthy controls, suggesting that there might be a molecular
link between the increased DNA repair machinery observed upon TDP43 mutation. Addi-
tionally, we also identified misregulation of different genes (e.g., KIF14) that are involved
in microtubule-based transport pathways and disease progression, consistent with the
literature findings showing that TDP43 may physically interfere with mitochondria and
impair their transport in motor neurons [6,47,80]. Collectively, our PPI analysis uncovers
many key functions of TDP-43 including transcriptional regulation, and maintenance of
genomic integrity by recruitment of DNA repair factors, thus providing new insights into
the pathogenesis of TDP-43-ALS. Future experimental validation should be aimed at iden-
tifying conditions as well as biological processes in which these hub genes and pathways
are involved so that their potential therapeutic properties can be monitored and analyzed.

Finally, a gene regulatory network containing hub genes–TFs was constructed to better
understand the process of gene regulation. Upon analysis, peroxisome proliferator activated
receptor gamma (PPARG), GATA-binding factor 2 (GATA2), and forkhead box C1 (FOXC1)
were predicted as the most significant TFs in both SOD1- and TDP43-ALS showing their
direct interactions with target genes associated with ribosome and transcription functions
(Figure 4, Table 1). The involvement of PPARG in mitochondrial biogenesis and cell
survival in neurons has been extensively implicated in neurodegenerative diseases [81,82].
Activation of PPARG has been shown to confer neuroprotection in Drosophila models
overexpressing TDP43 or FUS, and in SOD1 mouse models [83–85]. In addition, network
analysis identified important TFsFOXC1 and GATA2 regulating transcriptomic changes
in Alzheimer’s disease and neurodegeneration [86,87]. Thus, associations between the
identified hub genes and TFs demonstrated that they may influence important toxicity
pathways in these two ALS models, but experimental studies are crucial to understand their
implications in the two ALS models. Taken together, the transcriptome analyses presented
here extend the basis for a better understanding of the underlying molecular mechanisms of
SOD1- and TDP43-ALS. Our results further suggest that targeting gene-specific alterations
may be the best strategy when investigating new therapeutic approaches for genetic ALS
and other neurodegenerative diseases.

Regardless of the aforementioned strengths, there are still some limitations in our
study. Firstly, our sample size is relatively small and, results are purely in silico based.
Hence our analyses are not free from potential random errors and false positive DEGs.
Secondly and more importantly, the results of the current study are entirely based on
bioinformatics prediction without subsequent experimental validation. However, for the
PPI modelling, we used databases which included only experimentally proven protein-
protein interactions. Thus, future studies are needed to experimentally prove our findings.
Finally, although we intended to have uniform age and gender-matched controls in both
the SOD1 and TDP43 datasets, we suggest that the disease lines were quite different and
in fact the controls were well age- and sex-matched in case of SOD1, but not perfectly in
TDP43. However, we wanted to use the same controls for both cases to avoid changes due
to difference in controls.

4. Materials and Methods
4.1. Patient Characteristics

We included patient cell lines carrying mutations in SOD1 (female, age at biopsy 46,
D90A [one clone], male, age at biopsy 59, R115G [one clone]) and in TDP43 (a “benign”
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S393L, late onset primary anarthria with ALS/LMND, no clinical symptoms of FTD, female,
age at biopsy 85, family history of ALS and PD and a “malign” G294V, early onset ALS,
no clinical symptoms of FTD, male, age at biopsy 46, no family history, two clones from
patient), which were identified by Sanger sequencing in clinical settings prior to fibroblast
derivation and were compared to three different wildtype cell lines from healthy volunteers
(female, age at biopsy 53; male, age at biopsy 60; and female, age at biopsy 45). An
overview of the used cell lines is given in Table 1. All experiments were in accordance
with the Helsinki convention and approved by the Ethical Committee of the Technische
Universität Dresden (EK45022009, EK393122012) and patients and healthy volunteers gave
their written consent prior to skin biopsy.

4.2. Generation and Expansion of Cell Lines

Fibroblast cell lines were established from skin biopsies obtained from familial ALS
patients and healthy controls. In case of the control lines, genetic testing was performed
and they were only included if this was negative for mutations in the four main ALS genes
C9ORF72, SOD1, FUS and TARDBP. The reprogramming procedure to obtain iPSC from
fibroblasts and characterization of control iPSC lines was described previously [44,45,47].

The generation of human neural progenitor cells (NPC) and motor neurons (MN) was
performed as previously reported [45] based on the protocol by Reinhardt et al. [43,88].
Importantly, the NPC culture was a resource for final MN differentiation, which was
initiated by treatment with 1 µM purmorphamine (PMA) in N2B27 and supplemented with
1 µM retinoic acid (RA) on the third day. To increase the purity of MN enriched cell culture
another split was performed on day 9 of the protocol. In parallel, the medium constitution
was changed: Instead of PMA and RA, 10 ng/µL BDNF, 500 µM dbcAMP and 10 ng/µL
GDNF was added to N2B27 ensuring neuronal maturation. Motor neurons were harvested
after being cultured for 30 days [42,46,47].

4.3. RNA Isolation and Transcriptome Analysis

After 30 DIV, each culture was washed by gently replacing the maturation medium
with PBS warmed to 37 ◦C. Total RNA from ~5 × 106 cells was extracted using the RNeasy
Kit (QIAGEN) according to the manufacturer’s protocol including a column DNase digest.
The RNA was eluted in RNase-free water and RNA quality was assessed by measuring the
ratio of absorbance at 260/280 nm using a Nanodrop 1000 Spectrometer (Thermo Scientific,
Waltham, MA, USA).

For RNA-Seq, motor neurons of the cell lines wildtype controls, SOD1-ALS and
TDP43-ALS were generated in biological triplicates (3 independent differentiations side
by side) and 1 µg of total RNA was isolated and validated as previously described and
was used for selection of Poly(A) plus RNA and library preparation was done after oligo
(dT) selection. RNA-Seq libraries were generated by performing RNA fragmentation,
cDNA synthesis, linker ligation and PCR enrichment. These libraries were then subjected
to paired-end sequencing on an Illumina HiSeq2500 platform (Illumina, San Diego, CA,
USA) to obtain reads. The raw reads were quality controlled (QC) and verified before
mapping. A total of 180 million pairs of RNA reads of size 100 bp were generated from
the 8 samples and were uniquely aligned to the human reference genome (hg38 (obtained
from Ensembl assembly v100) after a cleaning step to remove low quality regions. After
trimming adaptor sequences and removing low quality reads, we got 6 to 7 million reads
per sample. The GC content was 30% and the percentage of reads with ≥Q30 were 99%
in all samples. On average, ~92% of total high quality clean reads were aligned to the
reference human genome hg38_ensembl_release100.The alignment was performed using
STAR aligner program with default parameters. For further preprocessing and quality
control, aligned sequence reads (BAM files) were uploaded into Partek Genomics Suite
version 7.0 software (Partek Inc., St Louis, MO, USA) using standard pipeline settings
provided by Partek software. Raw read counts were obtained by quantitating aligned reads
with annotated human genes hg38_Ensembl v100, using the Expectation Maximization
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(EM) algorithm, in which isoform expression levels are quantified across the whole genome
at the same time [89]. Details of the Partek EM algorithm can be found in the White Paper
on RNA-Seq Methods [90]. Normalization of the raw read counts was performed with the
Partek software using Reads Per Kilobase per Million (RPKM) normalization method [91].
The differential gene expression analysis was performed using Partek software’s ANOVA
model statistical approach with default parameters to analyze the difference between
wildtype control and ALS mutant cell lines. To generate significant DEGs among different
samples, a cutoff of the false discovery rate p-value ≤ 0.05 (Benjamini–Hochberg correction)
and |log2FC| ≥ 1.5 were applied. The lists of DEGs were used for gene ontology and PPI
analysis using Metascape, EnrichR, DAVID, STRING and NetworkAnalyst databases.

4.4. Functional Annotation of DEGs by GO and KEGG Analysis

To discern the implications of DEGs in SOD1 and TDP43-ALS, we performed func-
tional and pathway enrichment analyses of the mapped genes using the most commonly
used web-based online platforms such as Metascape [92], EnrichR [93] and DAVID [94].
Gene ontology (GO) analysis is a common method in functional enrichment analysis, aim-
ing to provide biological attributes of DEGs such as biological processes (BP), molecular
functions (MF), and cellular components (CC). Kyto Encyclopedia of Genes and Genomes
(KEGG) http://www.genome.jp/kegg, accessed on 20 June 2022 [95] database is crucial in
understanding different pathways, their associated functions in a given biological system,
and the molecular level information using the large-scale datasets generated from genome
sequencing. The different databases provided similar information with the majority of the
genes acting in RNA metabolic processes (Table S3 and Figure S1A,B).

Metascape (http://metascape.org/gp/index.html#/main/step1, accessed on 6 July
2022) is a powerful gene function annotation tool, which is involved in four processes: ID
conversion, gene annotation for a large number of genes or proteins, enrichment analysis
and construction of PPI networks [92]. Metascape integrates several functional databases,
such as GO, KEGG and Uniprot to analyze multiple gene sets simultaneously. The DEGs
were analyzed and visualized by Metascape with the criteria of minimum overlap >3,
p-value ≤ 0.05, and minimum enrichment score > 1.5.

EnrichR (http://amp.pharm.mssm.edu/Enrichr/, accessed on 6 July 2022) is a web-
based tool that allows the evaluation of annotations with its extensive gene set libraries [93].
The significant GO terms and KEGG (http://www.genome.jp/kegg) pathways were se-
lected with a threshold p-value ≤ 0.05.

DAVID (The Database for Annotation, Visualization, and Integrated Discovery) (Ver-
sion 6.8 https://david.ncifcrf.gov/home.jsp, accessed on 6 July 2022) [94] is an online tool
allowing a comprehensive analysis of a large list of DEGs to identify enriched biological GO
terms, and visualize genes on KEGG pathway maps. Enrichment analysis was performed
with a p-value significance level of ≤0.05 and a gene count ≥3.

4.5. PPI Network Construction and Identification of Hub Genes

To better understand the functional interactions of the DEGs and identify the most
important candidate genes in ALS disease subtypes, a comprehensive protein-protein
interaction (PPI) network of their encoding products was constructed by using the STRING
(The Search Tool for the Retrieval of Interacting Genes/Proteins) database (Version 11.0,
https://string-db.org/, accessed on 9 July 2022) [48]. The STRING database collects and
integrates all functional associations between the genes/proteins by consolidating known
and predicted interaction data derived from sources including databases, high-throughput
experiments, co-expression, text mining, neighborhood and gene fusion with the highest
confidence score. The statistical enrichment analyses in STRING indicated that the DEGs
were significantly enriched in PPI networks (p-value ≤ 0.05). Based on experimentally-
derived interactions, with a high confidence score of 0.7 (confidence score ≥ 0.7), and a
maximum number of interactions to top 20, two PPI networks were generated by map-
ping total DEGs for each SOD1- and TDP43-ALS subtypes respectively. Subsequently, PPI

http://www.genome.jp/kegg
http://metascape.org/gp/index.html#/main/step1
http://amp.pharm.mssm.edu/Enrichr/
http://www.genome.jp/kegg
https://david.ncifcrf.gov/home.jsp
https://string-db.org/
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networks were analyzed by Cytoscape (version 3.8.2, http://cytoscape.org/, accessed on
28 June 2022) software [49], an open source software for visualizing complex biomolec-
ular interaction networks containing diverse plugins for multiple analyses. Cytoscape
represents PPI networks as graphs with nodes illustrating proteins and edges representing
associated interactions. The significant hub nodes in the PPI network were selected accord-
ing to the scoring of maximum correlation criterion (MCC) by using the Cytoscape plugin
cytoHubba (https://apps.cytoscape.org/apps/cytohubba, accessed on 28 June 2022), [53]
which explores important nodes and modules by topological algorithms. The topological
parameter indicates the importance of a node (protein) as functionally connecting link in a
PPI network, suggesting an important biological function. The top ten genes scoring the
highest in the PPI network were identified as hub genes in our present study.

4.6. Module Identification and Enrichment Analysis

The Cytoscape plugin Molecular Complex Detection (MCODE, version 2.0.0; http:
//apps.cytoscape.org/apps/mcode, accessed on 28 June 2022) [50] was applied to ex-
tract highly interconnected modules that detect densely connected regions in large PPI
networks that may represent molecular complexes, with the default analysis criteria as
degree cut-off = 2, node score cut-off = 0.2, K-core = 2 and maximum depth = 100 [50].
Significant modules were identified with MCODE score ≥ 5 and nodes ≥ 5.

The functional enrichment analyses of these predicted genes was performed by
ClueGO/CluePedia plugin of Cytoscape (version 3.8.2) in each module [51,52]. ClueGo in-
tegrates gene ontology (GO) terms and enriched KEGG pathways and creates a functionally
organized pathway term network. p-values ≤ 0.05 were considered to be significant. Vali-
dation of molecular/biological function of ALS subtypes and finding potentially essential
genes can be inferred through these analytical results.

4.7. Gene-Transcription Factor Interaction Analysis

Official gene identifiers from the dysregulated hub genes were imported into Net-
workAnalyst tool (http://www.networkanalyst.ca/faces/home.xhtml, accessed on 20 June
2022) [96] for network analysis of transcription factors (TFs) and JASPER database was
used to identify TF-gene interactions. NetworkAnalyst is a comprehensive web-based
platform for network-based visual analytics of gene expression profiling, metaanalysis,
and biological interpretation. The JASPER database includes curated, non-redundant
transcription factor-binding profiles based on experimental methods [97]. The network
topological parameters (i.e., degree and betweenness centrality) were used to rank the
identified transcription factors that regulated the expression of hub genes. A hub gene-TF
regulatory network was constructed and analyzed in NetworkAnalyst [96].

4.8. Statistical Analysis

RNA seq data were statistically analyzed using Partek Genomics Suite software
(Partek Inc., Chesterfield, MO, USA). All of the gene expression samples presented in
this study were designed for 3 biological replicates (mean ± SD, n ≥ 3). p-value ≤ 0.05
and log2FC ≥ 1.5 or log2FC ≤ −1.5 were considered as significant thresholds for the
identification of DEGs. For the functional enrichment and PPI/GGI/regulatory network
analysis, significantly enriched GO terms, pathways and modules were identified using a
p-value ≤ 0.05 as the cut off value for statistical significance.

4.9. Data Availability

Raw and processed data in this study were deposited in the NCBI Gene Expression
Omnibus (GEO, http://www.ncbi.nlm.nih.gov/geo, accessed on 17 August 2022) with the
following accession number: GSE210969.

http://cytoscape.org/
https://apps.cytoscape.org/apps/cytohubba
http://apps.cytoscape.org/apps/mcode
http://apps.cytoscape.org/apps/mcode
http://www.networkanalyst.ca/faces/home.xhtml
http://www.ncbi.nlm.nih.gov/geo
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5. Conclusions

The strength of the current study is that we performed integrative bioinformatics
analyses of large-scale RNA-Seq expression profiling data sets to identify key genes and
multiple pathways dysregulated in iPSC-derived spinal motor neurons from SOD1- and
TDP43-ALS patients. By utilizing both comprehensive enrichment and PPI/regulatory
network interaction analyses, our data have revealed that—on the one hand—the SOD1
transcriptome is remarkably distinct from that of TDP43. On the other hand, advanced
bioinformatics condensed the multiple dysregulated pathways to two mainly affected in
each condition. By this means, we identified RPL3, RPS24, MRPL28, TAF5, LSM7, MT-ND6,
NDUFA13 and NDUFC1 as hub genes in SOD1- and TDP43-ALS patient-derived motor
neurons, most of which were required for RNA metabolism and oxidative energy produc-
tion. Of note, we found dysregulation of gene expression as the common denominator
in both disease conditions. While this was on the level of the transcriptional machinery
and splicing regulation in TDP43-ALS, we identified impaired expression of components
of the protein translation/ribosome machinery in SOD1-ALS. Our findings need further
experimental verification, but may provide potential useful evidence and ideas for further
exploration of the underlying mechanisms of ALS pathogenesis.
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C9ORF72 Chromosome 9 open reading frame 72
TARDBP TAR DNA-binding protein 43
iPSC Human patient-derived induced pluripotent stem cell
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DEG Differentially expressed genes
GEO Gene expression omnibus
NGS Next generation sequencing
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KEGG Kyto encyclopedia of genes and genomes
STRING The search tool for the retrieval of interacting genes/proteins
DAVID The Database for Annotaion, Visualization, and Integrated Discovery
PGS Partek genomic suite (Partek Inc)
GO Gene ontology
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MAPK Mitogen activated protein kinase
PPI Protein-protein interactome analysis
MCODE Molecular Complex Detection
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PPARG Peroxisome proliferator activated receptor gamma
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