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Recent advances in understanding the role of IL-4 signaling
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Abstract

Interleukin-4 (IL-4) is a four-α-helical bundle type I cytokine with broad pleiotropic actions on multiple lineages. Major actions of 
IL-4 were  initially  discovered  for  B and  T cells,  but  this  cytokine  acts  on  more  than  a  dozen  different  target  cells  spanning  the  
innate and adaptive immune systems and is produced by multiple different cellular sources. While IL-4 was discovered just under 
40 years ago in 1982, the interest in and discoveries related to this cytokine continue to markedly expand.

 
There are important new

 

advances related to its biological actions and to its mechanisms of signaling, including critical genes and downstream targets in
 

a 
range of cell types. IL-4  is  critical  not  only  for  careful  control  of  immunoglobulin  production  but  also  related  to  inflammation,

 

fibrosis, allergic reactions, and antitumor activity, with actions of IL-4 occurring through two different types of receptors, one of 
which is also used by IL-13, a closely  related  cytokine  with  partially  overlapping  actions.  In  this  review,  we  cover  critical  older

 

information but also highlight newer advances. An area of evolving interest relates to the therapeutic blockade of IL-4 signaling 
pathway   to treat  atopic dermatitis   and   asthma. Thus, this cytokine is historically  important, and research in this area has both 
elucidated major biological  pathways  and  led  to  therapeutic  advances  for  diseases  that  affect  millions  of  individuals.
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Overview
Interleukin 4 (IL-4) was first identified as a factor that 
was produced by T cells and could enhance the prolifera-
tive response of B cells to anti-IgM and also was capable of 
inducible immunoglobulin (Ig) isotype switch of B cells to  
produce IgG, particularly IgG11,2. Subsequently, this cytokine 
was demonstrated to be even more pleiotropic/polyfunc-
tional. For example, IL-4 is also the key cytokine for the  
differentiation of T helper 2 (Th2) cells, which control  
infection by extracellular parasites and contribute to allergic  
responses3,4, and it can induce the differentiation of M2 mac-
rophages, which control infection by the protozoan Trypano-
soma cruzi5. IL-4 acts through two types of receptors—the  
type I and type II IL-4 receptor—which share the IL-4 recep-
tor α chain but have a different secondary receptor, γ

c
 versus  

IL-13Rα1, respectively (discussed in detail in the text), in 
part depending on cell type, and a highly related cytokine,  
IL-13, uses only the type II IL-4 receptor. Not only have 
there been extraordinary advances in the biology of these 
cytokines and their signaling mechanisms, but because of 

the critical roles of IL-4 related to the mediation of allergic 
responses, controlling the actions of this cytokine has been of  
profound therapeutic interest. Indeed, we now are at a point 
of tremendous excitement where blockade of IL-4 and  
IL-13 is effective in the treatment of allergic inflammatory 
responses, including atopic dermatitis and moderate to severe  
asthma.

Biology of IL-4
Although IL-4 is produced primarily by activated CD4+  
T cells4, it also is produced by CD4+NK1.1+ “natural” T (NKT) 
cells, macrophages, eosinophils, basophils, mast cells, and 
type 2 innate lymphoid cells (ILC2s), although the amounts 
of IL-4 produced by these cell types are not uniform6–8  
(Figure 1). IL-4 was initially described as a major B-cell  
growth factor and a promoter of Ig class switch that enhanced 
the production and secretion of mouse IgG1 (human  
IgG4)1,2. Subsequent work revealed that IL-4 is essential for 
the production of IgE, which is critical for allergen sensi-
tization as well as the physiological response to parasites,  

Figure 1. Schematic of cellular sources of interleukin 4 (IL-4) and target cells for IL-4. IL-4 potentially acts on other cells that are not 
listed. ECM, extracellular matrix; IFNγ, interferon gamma; MHC, major histocompatibility complex; NK, natural killer; NKT, natural killer T; Th, 
T helper.
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including helminths. IL-4 induces elevated cell surface expres-
sion of CD23 (the low-affinity IgE receptor) on B cells 
and of class II major histocompatibility complex (MHC)  
molecules. In addition, IL-4 acts as a T-cell growth factor in 
both humans and mice and promotes the differentiation of 
Th2 cells. When combined with phorbol 2-myristate 3-acetate,  
IL-4 is also a potent co-mitogen for thymocytes. Furthermore, 
IL-4 derived from NKT cells is responsible for the expan-
sion of memory-like CD8 T cells in BALB/c mice9. Overall,  
IL-4 can exert actions on a broad range of target cells, includ-
ing macrophages, hematopoietic precursor cells, stromal  
cells, NK cells, and fibroblasts7, and can act as a potent  
anti-apoptotic factor.

IL-4 receptors
As noted above, IL-4 acts on both lympho-hematopoietic and 
non-lympho-hematopoietic cells10. Interestingly, there are  
two types of IL-4 receptors (Figure 2): type I IL-4 recep-
tors are composed of the 140-kDa IL-4Rα and γ

c
 and are 

expressed on lympho-hematopoietic cells11,12; in contrast,  type II  
IL-4 receptors comprising IL-4Rα and IL-13Rα1 are found 
on non-hematopoietic cells, and type II receptors also 
serve as the functional receptor for IL-1313, and both IL-4  
and IL-13 induce similar actions via this type of receptor.  
Expression of IL-4Rα tends to be quite low, and cells that 
potently respond to IL-4 often express only a few hundred 
receptors per cell. For example, there are only about 300 IL-4  
binding sites on resting lymphocytes, although receptor num-
bers can increase 5- to 10-fold upon cellular activation4. In 
reconstitution experiments, it was found that IL-4 binds to  
IL-4Rα with strong affinity (K

d
 ~ 266 pM), and in the pres-

ence of γ
c
, the binding affinity is increased to “high” affinity  

(K
d
 ~79 pM)12, with the interaction of IL-4-IL-4Rα with  

γ
c
 being weak (K

d
 in > 500 nM)14. The type II IL-4 receptor, 

containing IL-4Rα and IL-13Rα1, is not expressed on mature  
T cells but is expressed on multiple other cell types and can 

transduce signals in these cells. Interestingly, type II receptors  
are expressed on immature T cells, including neonatal  
Th1 cells, and these receptors are implicated as mediating  
apoptosis of these cells15. The differential expression of  
γ

c
 and IL-13Rα1 determines whether IL-4 will signal via the 

type I or type II receptor, and IL-13 shares effects with IL-4  
on the cells with type II IL-4 receptors. Consistent with this 
functional similarity, IL-4 and IL-13 are encoded by adja-
cent genes on mouse chromosome 11 and closely positioned  
on human chromosome 5q31; in both species, they are located 
between the RAD50 and KIF3A genes, consistent with a 
common ancestral gene. Interestingly, the genes encod-
ing γ

c
 and IL-13Rα1 are both located on the X chromosome 

and share some general properties, suggesting that they may  
also have arisen by gene duplication.

Both Il4−/− and Il4ra−/− mice have normal numbers of T and  
B cells, indicating that IL-4 and IL-13 are not required for 
development of these lineages, but they have diminished  
IgG1 production and greatly decreased IgE production, after 
infection with Nippostrongylus brasiliensis, whereas levels  
of IgM and other IgG isotypes are produced at normal  
levels16,17. Interestingly, another γ

c
 family cytokine, IL-21, 

has some properties similar to those of IL-4 but also major  
differences. For example, the development of T and B cells 
is normal in Il21r−/− mice; however, IgG1 levels are greatly 
diminished, and IL-21 is also required for IgG3 production  
by CD40-activated naïve human B cells18,19. Whereas IL-4  
favors the production of IgG1, IL-21 favors IgG3 produc-
tion by CD40-activated naïve human B cells18, and whereas 
mice lacking IL-4 signaling have low IgE, IgE levels are  
elevated in Il21r−/− mice after immunization20, and this may 
be at least in part due to an inhibitory effect of IL-21 on  
IL-4-induced germ line Cε transcription21. IL-4 and IL-21  
appear to cooperate for Ig production as indicated by a  
pan-hypogammaglobulinemia and poorly organized germinal  

Figure 2. Crystal structure of the type I interleukin 4 (IL-4) receptor bound to IL-4 (left) or the type II IL-4 receptor bound to either IL-4 
(center) or IL-13 (right). This figure was adapted using parts of Figure 3   from Elsevier, 132, LaPorte et al., Molecular and Structural Basis of 
Cytokine Receptor Pleiotropy in the Interleukin-4/13 System, 259–72, 200814, with permission from Elsevier.
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centers in mice lacking both IL-4 and IL-21 signaling20.  
According to these observations, both IL-4 and IL-21 contrib-
ute to Ig production, Ig isotype switch, and the differentiation  
of B cells into plasma cells. Interestingly, cells that express 
only IL-4 are more efficient at promoting IgG1 class switch 
and plasma cell differentiation, whereas cells that secrete only  
IL-21 are more efficient at promoting somatic hypermuta-
tion and affinity maturation in B cells, and cells that express 
both IL-4 and IL-21 can serve both functions22. This illustrates 
the important but complex manner in which IL-4 and IL-21  
functionally interact in B-cell biology.

IL-4 signaling
Like the other γ

c
 family cytokines, IL-4 activates multiple sig-

naling pathways (Figure 3). IL-4 activates JAK1 and JAK3 
via the type I IL-4 receptor; however, IL-4 activates JAK1 
and either JAK2 or TYK2 (depending on the cell type) via  
type II IL-4 receptors. Although there are subtle signaling  
differences between the type I and type II receptors23, IL-4  
and IL-13 are both distinctive in their potent activation of 
STAT6, which docks on key phosphotyrosines on IL-4Rα  
(Figure 3)24,25. STAT6 is so vital for the actions of IL-4  
that Stat6-deficient mice phenocopy many of the defects  

Figure 3. Schematic of some of the major signaling pathways and molecules involved in interleukin 4 (IL-4) signaling. IL-4 signaling 
via the type I IL-4 receptor, consisting of IL-4Rα and γc, activates JAK1 and JAK3, whereas JAK1 and TYK2 are the tyrosine kinases involved 
in IL-4 signaling via the type II IL-4 receptor, which consists of IL-4Rα and IL-13Rα1. Type II IL-4 receptor–specific molecules are shown in 
red font. IRS2 and Shc interact with phosphorylated Y497, whereas Y575, Y603, and Y631, when phosphorylated, are docking sites for the 
SH2 domain of STAT6. Collectively, these signaling molecules mediate IL-4 signaling as well. IL-13 signals via the type II IL-4 receptor and 
activates JAK1 and either JAK2 or TYK2 but not JAK3. Nevertheless, the major signaling pathways are the same as what is shown given that 
IL-4Rα is the dominant molecule for the docking of signaling proteins. All of the positions of tyrosines indicated in the figure are derived from 
human IL-4Rα. STAT3 can also be recruited to the IL-13Rα1 in the type II receptor in human macrophages.
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observed with Il4- or Il4ra-deficient mice (e.g., related to Th2 
differentiation and Ig class switch). However, in addition to 
JAK-STAT activation, like insulin, IL-4 can induce tyrosine 
phosphorylation of an IRS1-like molecule in hematopoietic 
cells, denoted IRS226,27. Studies in Irs2-deficient mice indicate 
that IL-4-activated IRS2 mediates negative regulatory feed-
back for the PI3K pathway in macrophages by targeting the  
phosphorylation of IRS1.

Recently,  there  has  been considerable interest in IL4I1, which 
is encoded  by  an early IL-4-inducible gene in B cells28 that    
belongs   to  the  L-amino-acid  oxidase  family  and  catalyzes  the 
oxidation of amino acids, including L-phenylanine29. It inhibits T-  
cell  proliferation by  releasing its  enzymatic catabolite, hydrogen 
peroxide, which results in lower expression of T-cell recep-
tor zeta (TCRζ). However, it also contributes to macrophage 
programming and is a regulator of M2 macrophage polari-
zation that inhibits T-cell activation via L-tryptophan and  
L-arginine depletion as well as increased IL-10 production30. 
Moreover, it activates the aryl hydrocarbon receptor and pro-
motes tumor progression31. IL4I1 also was reported to be a 
prognostic biomarker affecting the local T-cell response in 
human cutaneous melanoma32 and to be capable of promot-
ing central nervous system remyelination by modulating  
T cell–driven inflammation33.

Effects of IL-4 on T-cell differentiation
IL-4 is one of the key signature cytokines of Th2 cells3,34–37. 
Interestingly, IL-4 can also drive Th2 cell differentiation, which 
constitutes a powerful positive feedback mechanism  during  
T-cell differentiation38. IL-4  may directly act on     
CD4   T  cells  during   T-cell  activation  to   induce   Th2  cell  
differentiation. STAT6 activation by IL-4 is necessary and suf-
ficient during this process39. The initial source of IL-4 could 
be basophils, NKT cells, or naïve CD4 T cells themselves.  
Low dose of antigen stimulation may result in IL-2-depend-
ent STAT5-driven early IL-4 production, which in turn fur-
ther promotes Th2 cell differentiation40. Both IL-2- and  
IL-4-mediated signaling are also capable of inducing the expres-
sion of IL-4Rα, which can further enhance cellular respon-
siveness to IL-439,41,42. IL-4/STAT6 signaling in activated  
CD4 T cells induces the expression of the Th2 master tran-
scription factor GATA3, which is critical for Th2 cell function 
and maintenance43,44. GATA3 directly activates Il5 transcrip-
tion45; it also plays an important role in chromatin remodeling at 
the Il4/Il13 cytokine locus during Th2 cell differentiation46–48.  
In addition, the activation of STAT5 proteins (activated by  
IL-2 and potentially by other cytokines) is essential for initi-
ating and maintaining Th2 differentiation44,49,50. IL-2 induces  
IL-4Rα expression early in Th2 differentiation, facilitating  
responsiveness of cells to IL-4, which promotes and sus-
tains GATA3 expression. The induction of IL-4Rα by IL-2 is  
attributed to the binding of STAT5 proteins to the GAS motifs 
in the first intron of the Il4ra gene, and constitutive expres-
sion of Il4ra in Il2−/− CD4+ T cells restores Th2 differen-
tiation in these cells51. Many Th2-specific genes, including  
those encoding IL-5, IL-13, and T1/ST2 (IL-33 receptor  
α chain), are GATA3 direct targets46; the clustering of some 

of these genes may help to explain their coordinated induc-
tion during Th2 differentiation. IL-4 can also expand GATA 
3-expressing Th2 cells through STAT6-mediated upregulation  
of transcription factor Gfi-152. IL-4 not only can drive  
Th2 cell polarization from naïve CD4 T cells but also induces a 
Th2 cell phenotype in already-differentiated Th cells, includ-
ing Th17 cells53. Genome-wide CRISPR screens have also 
been performed and have revealed crosstalk between dif-
ferentiation and activation in the Th2 differentiation proc-
ess, underscoring the roles of factors, including Pparg and  
Bhlhe40, in controlling Th2 cell differentiation54.

IL-4 may also indirectly promote Th2 cell differentiation. 
It has been reported that IL-4 may induce TSLP55, which  
is a critical mediator of Th2 responses in vivo through its 
actions on dendritic cells (DCs) or T cells56–59. IL-4 and  
IL-13 can also act directly on intestinal epithelium to induce 
tuft cells to produce IL-2560, a potent activator of ILC2s, which 
are the counterparts of Th2 cells within the innate immune  
system8,61–63. ILC2s can mediate type 2 inflammation through 
their production of IL-5 and IL-13 even in the absence of Th2 
cells, but under certain circumstances, ILC2s may also pro-
mote the differentiation of CD4+ T cells toward the Th2 cell  
fate64. Furthermore, ILC2s and Th2 cells may directly  
interact with each other through MHCII–TCR interaction65. 
Therefore, ILC2s and Th2 cells may exhibit crosstalk and  
collaborate in type 2 immune responses in vivo via multiple  
mechanisms8,61,66–68.

Although IL-4 seems to be required for Th2 cell differentia-
tion in vitro, both IL-4-dependent and IL-4-independent Th2  
cell differentiation have been reported in vivo3. Although 
GATA3 is absolutely required for Th2 cell differentiation both 
in vitro and in vivo, Th2 cell differentiation may occur even  
in CD4 T cells expressing low levels of GATA3 if these cells 
also receive a strong STAT5 signal44,50. Multiple cytokines, 
including IL-2, IL-7, IL-9, IL-15, and TSLP, can activate  
STAT569,70, and TSLP has been shown to program a path-
ogenic Th2 cell state71, which may provide a basis for  
IL-4-independent but GATA3-dependent Th2 cell differen-
tiation in vivo. Indeed, our unpublished data indicate that 
high amounts of IL-7 or TSLP are capable of inducing Th2 
cell differentiation to a certain degree in the absence of IL-4  
signaling in vitro. This finding may partially explain the dif-
ference between in vitro and in vivo differentiation. However, 
it is possible that in vivo cell–cell interactions through co-
stimulatory molecules, such as OX-4072,73 or Notch signaling74,  
are involved in IL-4-independent Th2 cell differentiation.

A recent study further assessed the requirement of IL-4 sig-
naling for the differentiation of Th2 cell subsets in vivo75. Inter-
estingly, in draining lymph nodes, while the development  
of IL-4-producing T follicular helper (Tfh) cells is not 
affected, non-Tfh IL-4-producing cells (Th2 effector cells) 
are reduced in the absence of IL-4 signaling. Furthermore,  
in dermal and lung tissues, whereas the generation of  
IL-13-only-producing Th2 cells is IL-4-independent, the 
generation of IL-4-producing Th2 cells (with or without  

naïve
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IL-13 co-expression) depends on IL-4 signaling. Interestingly,  
TSLP drives the differentiation of IL-13-expressing Th2  
cells76. These results indicate that IL-4 and TSLP can influ-
ence the differentiation or the expansion (or both) of dis-
tinct Th2 cell subsets. IL-4 can act in an autocrine fashion 
related to cell proliferation and survival, which may explain 
the preferential expansion of IL-4-producing Th2 cells as  
compared with other Th2 cells in vivo.

Together with transforming growth factor beta (TGFβ), IL-
4 through activating STAT6 has been reported to induce  
IL-9-producing (Th9) cells from either naïve CD4 T cells or 
from Th2 cells77–79. Not only can IL-4-producing Th2 cells 
convert into IL-9-producing Th9 cells, IL-9-producing cells  
can—according to our unpublished data—also become  
IL-4-producing cells in the absence of TGFβ. Therefore, it is 
possible that  a transcription factor whose expression is regu-
lated by the balance between TGFβ and IL-4  serves as a 
switch for determining conversion from Th2 to Th9 cells  
or vice versa. Interestingly, together with IL-1β, IL-4 can 
induce the differentiation of anti-tumor Th9 cells in the 
absence of TGFβ signaling80, and these cells are phenotypi-
cally distinct from the Th9 cells induced by the combination  
of IL-4 and TGFβ.

IL-4 on ILC2s and other ILCs
Like Th2 cells, ILC2s can produce IL-5 and IL-13; although 
ILC2s also produce IL-4 under certain circumstances81–84, they 
produce  much  less  IL-4  than  Th2   cells85.  However, the  
ability of ILC2s to produce IL-4 in vivo and the physiologi-
cal importance of such production require further investi-
gation. Nevertheless, ILC2s can be identified by an Il4  
reporter construct in mice in steady state and after IL-25  
treatment, indicating that the Il4 locus has an open chroma-
tin configuration in these cells86. The reason why ILC2s pro-
duce much less IL-4 than Th2 cells do is unknown, but it  
seems likely that the chromatin structure at the Th2 cytokine 
loci containing Il4/Il13/Il5 is quite distinct87. Interestingly,  
lung Th2 cells produce more IL-13, but draining lymph node 
Th2 cells produce more IL-488,89; thus, it is also possible  
that preferential expression of IL-13 over IL-4 or vice versa 
is determined in a tissue-specific fashion90. GATA3 expres-
sion levels vary between ILC2s and Th2 cells in different  
locations. Thus, it is conceivable that the level of expres-
sion of GATA3, by regulating the formation of distinct 
chromatin structures at the Th2 cytokine loci, determines  
expression of IL-4 versus IL-13. Although many studies  
have demonstrated the physiological importance of IL-13  
production by ILC2s, fewer have studied the importance  
of IL-4 production by these cells. Interestingly, however, it 
was reported that IL-4 produced by ILC2s drives Th2 cell dif-
ferentiation84 and that IL-4 produced by ILC2s in IL-4Rα 
Y709F mutant mice (Y709 in mice corresponds to Y713 in 
humans) may promote food allergy by blocking the generation  
of allergen-specific regulatory T cells91.

ILC2s can be divided into IL-33-responsive nILC2s (natu-
ral ILC2s) and IL-25-responsive iILC2s (inflammatory  
ILC2s)92,93. iILC2s are located mainly in the gut but can 
migrate to the lung tissue after Nippostrongylus brasiliensis  
infection94 or IL-25 treatment95 and produce both IL-4  
and IL-1394. Interestingly, deficiency of BATF, a Fos family  
member that is a component of AP1 complexes96 and that 
helps to form AP1-IRF4 composite elements97–100, selectively  
affects iILC2s but not nILC2s in the lung after infection94. 
iILC2s may turn into nILC2-like cells or ILC3-like cells92.  
c-Kit-expressing ILC2s in humans may resemble iILC2s in 
mice, and these cells can be converted into RORγt-expressing  
cells by IL-1 and IL-23 stimulation; this conversion is pro-
moted by TGFβ but inhibited by IL-4101. By contrast, during  
ILC2 development, TGFβ was recently reported to induce  
T1/ST2 expression and thus to promote ILC2 develop-
ment from its progenitors102. IL-1 together with IL-12 may 
convert ILC2s into interferon gamma (IFNγ)-producing  
ILCs, but IL-4 can inhibit this effect103–105. In addition to an 
important role of IL-4 in maintaining ILC2 identity, IL-4  
or IL-13 (or both) made by Th2 cells may act directly on  
ILC2s to induce local expansion of ILC2s during type 2 
immune responses106. Furthermore, basophil-derived IL-4 con-
trols ILC2 actions, including the secretion of IL-13 during  
protease allergen–induced airway inflammation107.

IL-4 and macrophages
IL-4 is known to regulate the phenotypes of  
macrophages108–116. Since macrophages are mediators of host 
defense and play critical roles in a range of physiological  
processes, including tissue homeostasis and repair, recent  
studies have focused on understanding macrophage popula-
tions that mediate these specific functions in the context of 
diverse settings such as allergic inflammation, nematode infec-
tion, cancer, muscle regeneration, and thermogenesis117–125.  
Macrophages can adopt a wide spectrum of phenotypes control-
led by tissue and environmental signals. A pro-inflammatory  
phenotype exists at one end of the spectrum (previously  
termed “M1” for lipopolysaccharide [LPS]/IFNγ-activated  
macrophages), and the pro-tissue repair phenotype at the other  
end (previously termed “M2,” “M2a,” or alternatively acti-
vated macrophages [AAMs] for the IL-4- or IL-13-activated  
macrophages). These strongly polarized phenotypes were  
initially characterized in vitro where addition of specific 
recombinant cytokines could push phenotypes to extremes in  
isolation108,109. M1 cells are typically found in abundance in 
tissues during infections with intracellular pathogens, expo-
sure to components of bacterial cell walls, and high levels  
of IFNγ. In contrast, M2 cells are found in abundance in  
tissues high in IL-4 and IL-13, as is seen in parasitic worm 
infection or allergic inflammation. However, it is now appreci-
ated that the heterogeneity of macrophage phenotypes is more 
complex in vivo, and traditional markers used for M1 versus  
M2 delineation, CD86 and CD206, respectively, are not suf-
ficient to resolve the complexity of macrophage phenotypes  
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in vivo113,115,116,126. Furthermore, the limited models of  
macrophage-specific or -selective deletion make it difficult to 
unambiguously assign roles for certain types of macrophages  
in disease processes127–129.

To better phenotype expression of markers by macrophage 
populations in tissue, Sommerfeld et al.130 recently used  
single-cell RNA sequencing (scRNA-Seq) to characterize 
macrophage phenotypes in mouse muscle tissue undergoing  
injury response to agents that drive either a pro-fibrotic (F)  
or a pro-regenerative (R) response. They identified two  
unique macrophage phenotypes in muscle macrophages 
in each condition (F1, F2 and R1, R2 respectively). Under 
fibrotic conditions, muscle macrophages (defined as 
CD45+CD64+F4/80hi) were characterized by gene expression as 
CD9−CD301b−MHCIIhi (F1) and CD9hiCD301b− MHCII-IL-36g+  
(F2). Under regenerative conditions, muscle macrophages 
were characterized as CD9+CD301b+MHCIIhi (R1) and  
CD9−CD301b+CD206+ (R2). Interestingly, the R2 macrophages  
were sustained in the tissue for up to 6 weeks after injury 
and upregulated genes that are associated with classic M2 
or M-IL-4 macrophages, including Chil3, Mrc1, Ccl24,  
and Il4ra. Because IL-4 plays an important role in muscle  
repair131, it is likely that the R2 macrophages differentiated 
in response to environmental IL-4 or IL-13 are present in the 
injured muscle. The R2 gene expression profile overlapped with 
that of human liver macrophages132, suggesting that M-IL-4  
macrophages might participate in tissue repair and regenera-
tion. Further analysis of macrophages found in other tissues 
undergoing type II inflammatory responses will be needed 
to determine whether the addition of cell surface markers 
such as CD301b and IL-4Rαhi to other “M2” marker panels,  
including CD206 and transglutaminase-2 (TG2)112, will pro-
vide consistent discrimination of macrophages activated by 
IL-4 or IL-13 in vivo. In this regard, Zhou et al.133 described 
an increase in CD206+CD103+ interstitial lung macrophages 
in response to endothelial cell–derived R-spondin 3 in vitro 
and during the repair phase of an LPS-induced lung injury  
model in vivo. The R-spondin 3-induced increase in  
anti-inflammatory M2-like macrophage phenotype (expressing  
Mrc1, Arg1, Retnla, ChiL3, and Il10) was necessary to limit  
endotoxemia-induced lung damage and death.

An enhanced understanding of the role for IL-4-activated  
M2 macrophages in tissue repair and host immune response 
will be needed to fully appreciate and take full advantage of 
the potential of these cells. For example, IL-4-coated gold  
nanoparticles were used to enhance recovery of injured 
skeletal muscle, resulting in a 40% increase in muscle  
force134. The IL-4 nanoparticles increased the percentage of 
muscle M2 macrophages twofold, and the beneficial effect  
was abrogated by monocyte/macrophage depletion.

A number of studies have implicated M2 macrophages as 
vital contributors to the anti-helminth immune response135–137, 
to the severity of allergic inflammation119,138,139, and to tissue  
repair134,140. However, truly understanding their function has 

been hampered by the lack of robust and specific mecha-
nisms for their deletion. Methods used in the past include  
transiently poisoning macrophages with clodronate-loaded  
liposomes or conditional deletion using LysM-Cre deleter 
mice, but neither approach is specific for M2 cells127–129. How-
ever, a recent publication141 describes the generation of mice  
(RetnlaCre_R26tdTomato) reporting expression of RELMα, a pro-
tein induced by IL-4 in macrophages, and mice that support  
conditional deletion of RELMα-expressing cells by treatment 
with diphtheria toxin (RetnlaCre_R26iDTR). Using the reporter 
mice, the authors found that white adipose tissue, peritoneum,  
and gut were enriched with Relmα-tdTomato+ macrophages 
at a steady state. In addition, Relmα expression was detected 
in alveolar epithelial type 2 cells and in subsets of eosi-
nophils and neutrophils. Interestingly, alveolar macrophages  
were largely negative for Relmα-dtTomato expression, even 
when stimulated with IL-4 in vitro, although a minor subset 
produced a low level of Relmα. These results are consistent  
with a study142 demonstrating that alveolar macrophages 
were much less responsive to IL-4 than peritoneal macro-
phages,   potentially   because    of   impaired   glycolysis  in  
the pulmonary niche. The alveolar macrophages regained 
responsiveness to IL-4 after their removal from the lungs 
in a glycolysis-dependent pathway. Surprisingly, the basal  
expression of Relmα-dtTomato in peritoneal macrophages 
was not dependent on IL-4/IL-13 or STAT6, in contrast to 
the low basal expression in alveolar macrophages, which was 
dependent on IL-4/IL-13/STAT6. Infection with the nematode  
N. brasiliensis resulted in an increase in lung Relmα-dtTo-
mato+ interstitial macrophages and eosinophils in an  
IL-4/IL-13- and STAT6-dependent manner.

Using RetnlaCre_R26iDTR mice, the authors showed that dele-
tion of RELMα-expressing cells with diptheria toxin (DT)  
during a primary infection with N. brasiliensis resulted 
in lethality but that control mice treated with DT cleared 
the infection and survived. Furthermore, removal of  
RELMα-expressing cells by DT during a secondary infec-
tion impaired protection, as assessed by larger parasite bur-
dens in lung and small intestine and lower parasite counts  
in the skin, the site of parasite entry. Similar results were 
obtained using a strain with a Cre-inducible DTR in CSF1R  
(CD115)+ cells (RetnlaCre_CD115iDTR) that allowed for spe-
cific deletion of RELMα+ macrophages. Use of these RetnlaCre  
strains, in addition to the Csf1rLsL-DTR143 and CD206DTR144 
mice, will enhance the ability to specifically delete M2 mac-
rophages and specific genes they express. This will allow  
the investigation of their roles in diverse effector func-
tions, including protection from helminthic parasites, eosi-
nophilic inflammatory diseases, tissue repair, fat and glucose  
metabolism, and tumor growth.

IL-4 and chromatin remodeling in macrophages
Macrophage phenotypes are controlled by epigenetic mecha-
nisms, including histone modifications145–147. Early studies  
demonstrated that the histone 3 Lys 27 (H3K27) demethylase 
jumonji-domain containing-3 (JMJD3) is essential for development  
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of M2 cells in vitro and in vivo148,149. IL-4-induced acti-
vation of STAT6 resulted in increased abundance of  
JMJD3, which resulted in augmented expression of Irf4 
and other downstream M2 genes by regulating histone  
modifications148. JMJD3 activity resulted in methylation of 
H3K27, thus relieving this negative histone mark. It was  
further reported that IL-4 induced an increase of H3K4  
methylation and acetylation of H3 bound to M2 genes, 
marks of active chromatin. IL-4-induced polarization to the 
M2 phenotype is influenced by sex differences in humans 
and mice138,150. It was recently shown that female alveolar  
macrophages have increased IL-4Rα and estrogen receptor (ER)  
α expression compared with male counterparts, and greater 
epigenetically poised chromatin at M2 gene promoters, 
while the promoters were epigenetically silenced in male  
macrophages151. Furthermore, estradiol (E2) acting through 
ERα supported enhanced expression of IL-4-induced M2 genes.  
Exposure of female macrophages to E2 permanently changed 
the responsiveness of the cells to subsequent Th2 inflam-
matory stimulus even after macrophages were removed 
from all exogenous E2 up to 10 days later. These data have  
important implications for diseases in which E2 and mac-
rophages play a key role, such as allergic asthma and breast 
cancer, and suggest that sex may influence the outcome of  
therapeutics targeting macrophages151.

Large-scale “omic” studies have recently shown that oppos-
ing macrophage polarization programs induced by IL-4 versus 
IFNγ show epigenomic and transcriptional cross-regulation152,  
and each cytokine is able to suppress a subset of genes regu-
lated by the opposing cytokine. Upon IL-4 stimulation of  
macrophages, greater H3K27 acetylation was observed in 
genomic regions with high representation of canonical binding 
sites for STAT6. These regions were mainly near IL-4-inducible  
genes that were suppressed by IFNγ. Interestingly, a small 
set of IL-4-regulated genomic regions resistant to IFNγ  
suppression was enriched for Myc-binding E-box sequences.  
IL-4 increased the abundance of Myc protein and this 
was important for the induction of genes resistant to IFNγ  
suppression, including Ccl2, Ccl17, and Ccl12152. Tang et al.  
further showed that IL-4-induced changes in chromatin  
accessibility can differ in different types of macrophages153. 
The regions of chromatin altered by IL-4 were enriched for  
PU.1 binding motifs, notably in intronic regions capable of 
modulating higher-order structure of DNA (minor groove  
width and twist). Polymorphisms in C57BL/6 versus BALB/c  
mice in sequences flanking PU.1 binding motifs that  
altered DNA shape configurations were shown to contribute 
to differences in chromatin accessibility in response to IL-4.  
Moreover, global transcriptional profiling showed that  
macrophages from the different strains responded differently  
to IL-4. For example, IL-4-stimulated macrophages from 
BALB/c mice expressed lower levels of cell cycle–related 
genes, PDL-2, and MHC class II than macrophages from  
C57BL/6 mice. These results support the model that genetic 
polymorphisms that cause alterations in local DNA structure  
can influence changes in chromatin accessibility stimulated  
by IL-4. Whether this is directly correlated with differences  

in their transcriptional responses to IL-4 remains to be  
determined153. Furthermore, it has not yet been deter-
mined whether modulating epigenetic pathways will be use-
ful in controlling macrophage polarization in disease states154.  
Indeed, in addition to positive effects, STAT6 has been shown 
to repress a set of inflammatory enhancers, thereby limit-
ing the activation of AAMs155. Moreover, IL-4 via STAT6 can 
promote TET2-dependent demethylation to favor DC dif-
ferentiation156; conversely, DCs can act to reinforce Th2  
cytokine production in allergic disease157.

IL-4 and neutrophil function
Neutrophils are normally considered the first line of defense 
against bacterial infections and are the first immune cell type  
to enter a site of inflammation. Neutrophilic infiltration is 
most associated with Th1 and Th17 immune responses, but  
neutrophils also have been reported to play important roles in  
anti-helminth immunity158–160. Priming of macrophages to 
become M2 cells and engage in the killing and clearance 
of helminthic parasites was dependent on the presence of  
neutrophils159. In addition, both mouse and human neu-
trophils can kill helminth larvae in vitro with the cooperation  
of macrophages158, and neutrophils and macrophages have 
been found clustered around parasites in vivo160, suggesting  
that neutrophils play a cooperative role in type II immune 
responses. On the other hand, recent reports demonstrate that  
IL-4 signaling suppresses neutrophil function. Woytschak 
et al. reported that IL-4 treatment of neutrophils inhibited 
their migration toward CXCL2 and reduced expression of  
CXCR2161. Furthermore, treatment of mice infected with 
the bacteria led to reduced neutrophil counts, reduced neu-
trophil migration, increased bacterial burden, and decreased  
survival. Neutrophils isolated from IL-4-treated mice had 
reduced expression of CXCR2 and elevated expression of  
CXCR4. Similarly, Impellizzieri et al. showed that treat-
ment of human neutrophils with IL-4 inhibited their migra-
tion to CXCL2 and reduced the formation of extracellular  
neutrophil extracellular traps162. Thus, it has been hypoth-
esized that neutrophils assist macrophages early in the course 
of a nematode infection, but as Th2 cells arrive and produce  
high levels of IL-4, neutrophil function is downregulated 
to limit neutrophil-mediated tissue damage163. Future stud-
ies will be needed to determine whether these pathways can be  
targeted in various infectious or inflammatory diseases.

Therapeutic manipulation of the actions of IL-4
Agents that either increase or inhibit IL-4 activity have 
been generated. Although it is less clear from a therapeutic  
perspective that augmenting IL-4 would be beneficial, engi-
neered IL-4 “superkines” have been generated. A type I  
IL-4 receptor–selective IL-4 superkine exhibits marked 
enhanced binding for γ

c
 and exhibits 3- to 10-fold enhanced 

potency for STAT6 activation, whereas an IL-4 variant with 
enhanced affinity for IL-13Rα1 more potently drives the  
differentiation of monocyte-derived DCs164.

One of the most exciting molecules from a therapeutic  
perspective is a fully humanized IgG4 monoclonal antibody, 
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dupilumab,     
 IL-4Rα chain required for receptor dimer formation and 

thereby inhibits the actions of both IL-4 and IL-13. Dupilumab 
was approved by the US Food and Drug Administration 

 in 2017 for the treatment of moderate to severe atopic der-
matitis and subsequently for add-on treatment of moderate 
to severe asthma with eosinophilic phenotype in patients age 

 12 or older165,166, and there was an 87% decrease in asthma 
exacerbation in one study167. Another monoclonal antibody, 
lebrikizumab, which blocks the actions of IL-13 but not 

 IL-4, has been shown to be effective in treating asthma168.
  Pitrakinra is a variant of human IL-4 with mutations in 

helix D that are critical for dimerization of IL-4Rα forma-
tion with γ

c
 or IL-13Rα1 and thus blocks signaling by IL-4 

 or IL-13. Pitrakinra has shown some efficacy in the treat-
ment of asthma in a subset of patients169. Tralokinumab is 

 another IL-13-based inhibitor. Thus, monoclonal antibod-
ies, engineered cytokines, and potentially small molecules 
are ways to fine-tune the signal strength of IL-4 or IL-13 

 (or both) and represent next-generation approaches for treat-
ing allergic and inflammatory diseases. It will be interest-
ing to assess the potency and relative utility of agents that 
selectively target type I versus type II immunity versus the 

 combination of both type I and type II immunity.

Besides anti-IL-4Rα-based therapies, reagents targeting the 

 Fc region of IgE (omalizumab), the α subunit of IL-5 
 (reslizumab, mepolizumab—phase 2b studies), domain 1 
 of IL-5Rα (benralizumab), and TSLP (tezepelumab-phase 2a 
 study) are under active investigation170,171.

Finally, because type I IL-4 receptors contain γ
c
 as a critical 

component and IL-4 activates JAK1 and JAK3 via these recep-
tors, one must be cognizant of the inhibition of IL-4 signaling 

 by JAK inhibitors (Jakinibs) that target either of these  JAK 
kinases.  ndeed,  a  number  of                   Jakabibs      are  being  evaluated  for            

 

Conclusions
In a little under 40 years, IL-4 has expanded from being discov-
ered as a factor with biological actions on B cells to a molec-
ularly defined molecule with diverse actions on a range of 

 

cell lineages. Accordingly, manipulating the actions of IL-4 

 

has broad ramifications, including related to allergy, cancer, 

 

and even the central nervous system. Besides the enormous 
new basic science information that has accrued, the therapeu-
tic manipulation of the actions of this cytokine has already 
shown promise in disease states. Better understanding its 
actions and signaling mechanisms will continue to provide 

 

new information and targets to further manipulate its actions.
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