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ABSTRACT: Nowadays pseudopotential (PP) density functional theory
calculations constitute the standard approach to tackle solid-state electronic
problems. These rely on distributed PP tables that were built from all-
electron atomic calculations using few popular semilocal exchange-correlation
functionals, while PPs based on more modern functionals, such as meta-
generalized gradient approximation and hybrid functionals, or for many-body
methods, such as GW, are often not available. Because of this, employing PPs
created with inconsistent exchange-correlation functionals has become a
common practice. Our aim is to quantify systematically the error in the determination of the electronic band gap when cross-
functional PP calculations are performed. To this end, we compare band gaps obtained with norm-conserving PPs or the projector-
augmented wave method with all-electron calculations for a large data set of 473 solids. We focus, in particular, on density
functionals that were designed specifically for band gap calculations. On average, the absolute error is about 0.1 eV, yielding absolute
relative errors in the 5−10% range. Considering that typical errors stemming from the choice of the functional are usually larger, we
conclude that the effect of choosing an inconsistent PP is rather harmless for most applications. However, we find specific cases
where absolute errors can be larger than 1 eV or others where relative errors can amount to a large fraction of the band gap.

■ INTRODUCTION
Since its origin more than 50 years ago, density functional
theory1,2 (DFT) has become the standard approach to tackle the
electronic structure of solids. A workable approach to DFT is
attained via the Kohn−Sham formulation,2 leading to equations
that can be solved efficiently with modern computational
resources. Although DFT is in principle exact, it relies on
approximations of the exchange-correlation (xc) energy func-
tional, which inherently limits the accuracy of calculations.3−8

From a purely theoretical point of view, the xc functional is the
only approximation in DFT. However, in practice, the Kohn−
Sham equationsa system of coupled, nonlinear, and partial
differential equationsare solved numerically, introducing
further approximations. Several different approaches have
been developed and are commonly used in the physics and
chemistry communities. A basic distinction exists between all-
electron and pseudopotential (PP) (or effective-core potential)
methods. In the former, all electrons are explicitly included in
the calculation, and the electron−nuclear attraction is described
by the standard Coulomb potential. The latter method is based
on the distinction between core and valence electrons. By
replacing the effect of the nucleus and the core electrons by an
effective PP, efficient plane-wave9 or real-space10,11 techniques
can be used to solve the Kohn−Sham equations. As a middle
way, the projector-augmented wave (PAW) method12,13 was
developed, combining the advantages of PPs with a
reconstruction of the all-electron wave function. Another
alternative, the hybrid Gaussian and plane-wave density-
functional scheme,14,15 can also be considered intermediate

between PP and all-electron methods. One should keep in mind,
however, that PP and PAW implementations usually rely on the
frozen-core approximation, that is, the inner core orbitals remain
fixed to their atomic values and are not allowed to polarize under
the effect of the valence electrons or the other atoms.
Furthermore, PPs and PAW setups are normally calculated
from atomic density-functional calculations performed with a
specific xc functional and should therefore be only used in
calculations performed with the same functional.
In materials science, DFT calculations are often performed

with these effective-core methods.16,17 Well-tuned PPs can
reproduce very precisely all-electron results for many properties
of solids18−20 but at a much lower computational cost. However,
in order to guarantee this, careful optimization is necessary to
ensure the quality and transferability of the PP for the situation
at hand. Several well-tested tables are available to the
community, but all these PPs are built based on two
approximations to the xc energy functional, the local density
approximation (LDA)21−24 and the generalized gradient
approximation (GGA), and, more specifically, the Perdew−
Burke−Ernzerhof (PBE)25 functional, which is the de facto
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standard in the physics community. This is true for norm-
conserving26 and ultrasoft27 PPs and for the PAW method.12

The disparity between the number of functionals in generally
available PP data sets (LDA, PBE, and sometimes PBEsol28) and
the number of available xc functionals in the literature29,30

(more than 500) is therefore confounding, especially if we
consider that ab initio PPs have been well established since the
late 70’s26,31−35 and that recently developed xc functionals have
been acknowledged to be more accurate for electronic structure
calculations than standard LDA and GGA functionals.36−40 As a
result of this situation, the great majority of calculations
performed with improved functionals make use of an
inconsistent PP, built from LDA or PBE atomic calculations.
This problem is relevant for both total-energy and band-
structure calculations. For the latter, which are the focus of the
present work, the most accurate calculations use either hybrid
functionals (such as the Heyd−Scuseria−Ernzerhof 2006
functional39,40), GW methods,41,42 or specialized semilocal
functionals, such as the modified Becke−Johnson potential43

(mBJLDA). For example, despite the publication of several
studies on the generation of PPs for Hartree−Fock and hybrid
functionals,44−49 the lack of readily available tables means that
most of these calculations are performed with PBE ones.
Furthermore, some codes do not give the user the possibility of
changing the PPs. The situation is even more complicated for
the mBJLDA potential as it is defined for periodic systems and
cannot be applied to atoms, unless specific schemes are
used.50,51 Note that a similar problem exists also for many-
body GW41,42 or LDA + U52,53 calculations that are often
performed with LDA or PBE PPs.
This common practice creates an inconsistency, which

invariably introduces some uncontrollable errors in the
calculations. Even if this is well known, relatively little attention
has been given up to now to quantify the effect of cross-
functional PP calculations.47,50,54−56 With this in mind, we
decided to study the error coming from using an inconsistent PP
in the calculation of band gaps. This was carried out by
comparing the results obtained with three codes: WIEN2k,57,58

an all-electron code that uses the augmented plane wave plus
local orbital (APW + lo) method,59 ABINIT60,61 with norm-
conserving PPs, and VASP13,62 with PAW setups. Note that our
comparison goes beyond theΔ test,17 as we compare band gaps,
which also include the influence of unoccupied bands, and we
take into account errors coming from using inconsistent PPs.

■ METHODS
Data Set. We performed calculations for all materials

contained in the data set developed in ref 63 which counts
473 nonmagnetic semiconductors. This data set covers the
majority of the periodic table and includes materials with a wide
range of band gaps. All calculations were performed at the
experimental geometry (see ref 63 for more details on the
material data set).
Functionals. Besides the standard LDA and PBE func-

tionals, our choice of xc functionals (or potentials) was based on
two criteria: (i) their availability in the three software packages
that we used (see below for more information on the codes) and
(ii) their relevance for the calculation of band gaps.
Our final choice includes the Perdew−Wang (PW92)23 and

the Perdew−Zunger (PZ81)22 parametrization of the LDA
correlation and the local Slater potential (SLOC).64 We also
consider several GGA functionals: PBE,25 revised PBE
(RPBE),65 Engel−Vosko (EV93)66 combined with the

Perdew−Wang (PW91) correlation,67 and high local exchange
(HLE16).68 Finally, we consider the meta-GGA mBJLDA.43

Among the selected functionals, SLOC and HLE16 are less
known and deserve a short description. The “simple local model
for the Slater exchange potential” (SLOC)64 has the same form
as the LDA exchange

= −v anr r( ) ( )b
x (1)

where n =∑j
occ|ψj|

2 is the electron density. This functional uses
two parameters a = 1.67 and b = 0.3, fitted to the Slater
potential69 of a series of closed-shell atoms. The high local
exchange functional68 (HLE16) is obtained by modifying the
weights of the exchange and correlation terms of HCTH/407,70

with the objective to improve the Kohn−Sham band gaps.
Specifically, the exchange term is multiplied by 1.25 and the
correlation term is multiplied by 0.5.
The PW92, PZ81, and PBE functionals are general-purpose

approximations with widespread use in the solid-state
community for total-energy calculations. The mBJLDA
potential is known to yield excellent band gaps, which is also
the case of the simpler SLOC and HLE16, although they are
slightly inferior to mBJLDA.63,71 Note that meta-GGA energy
functionals are not supported self-consistently in the reference
APW + lo WIEN2k code, and therefore, we did not include the
recent meta-GGAs HLE1772 and TASK,73 which also perform
very well for band gaps, in our analysis. Hybrid functionals are
available in the three considered codes; however, they lead to
calculations that are several orders of magnitude more
expensive, in particular, if parameters for highly converged
calculations are used. Therefore, because our test set is very
large, we refrained from using hybrid functionals in the present
work. For the same reason, we did not consider GW methods.

Codes.The all-electron calculations were performedwith the
WIEN2k package,57,58 which uses the APW + lo basis set.59 The
calculations were performed with sufficiently stringent param-
eters to ensure well-converged results. In the vast majority of
cases, the convergence error is less than 0.03 eV, but it can be
larger for systems with very large band gaps. The number of k-
points was defined by testing progressively denser meshes, and
the parameter RMT

minKmax (the product of the smallest of the
atomic sphere radii RMT and the plane wave cutoff parameter
Kmax), which determines the size of the basis set, was chosen to
be between 8 and 9 for most systems. For systems with very
small atomic spheres, RMT

minKmax was reduced to a smaller value.
The accurate WIEN2k results serve as a reference for the
comparison with the other codes. As WIEN2k calculations were
converged to 0.03 eV, values that differ by less than this quantity
should be considered equivalent.
The PAW calculations were performed using a custom version

of the Vienna ab initio simulation package (VASP; version
5.4)13,62 that is interfaced to LIBXC.29,30 A plane-wave cutoff of
520 eV was used for all species along with the same k-grids, as in
ref 63. All meta-GGA calculations were performed accounting
for nonspherical contributions of the density gradient inside the
augmentation spheres. VASP calculations are, in general,
restricted to the PAW sets included in the distribution, and
therefore, we were able to use only PBE and LDAPAWPPs. The
choice of how many electrons to include in the valence was
carried out following the recommendations of the Materials
Project database.74

The ABINIT package60,61 was used to test norm-conserving
PP calculations. For LDA and PBE PPs, we resorted to the
Pseudo Dojo distribution75 (version 0.4, with stringent
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accuracy). Although this set covers most of the periodic table,
some elements such as thorium are absent and had,
unfortunately, to be left out of the calculations. Because ABINIT
does not currently support PPs with nonlinear core corrections
for meta-GGAs, mBJLDA calculations with this code were not
performed. For SLOC and HLE16, we generated a set of PPs
using the ONCVPSP package76 (version 3.3.1). As a starting
point, we used the input files from the stringent set of the Pseudo
Dojo distribution, changing them to include the desired
functionals. Whenever we failed to generate a PP using the
“stringent” input (e.g., Br, Te, I, Rn, and La), we resorted to use
the “standard” input. In practice, this leads to include less
electrons in the valence. Further small changes to the local part
of the PP were performed in order to avoid spurious effects (in
particular, ghost states77−79) that were detected by the
postprocessing tools of ONCVPSP. We note that although
care was taken in this process, we did not perform further tests
(Δ-test, GBVR test, etc.18−20) or optimizations. Therefore,
although these PPs yield generally consistent results for band
gaps, care should be taken for a more general use. The PPs are

given in the Supporting Information, and the whole set can also
be downloaded from ref 80.
Note that the three codes, as well as ONCVPSP, are linked to

the library of xc functionals LIBXC,29,30 which allows us to
access several hundreds of functionals, including the ones
considered here.
All calculations were performed neglecting spin−orbit

coupling. This term is expected to contribute on average
about 0.1 eV to the band gap. This amount is considerably
smaller than the typical average error of the xc functionals.
Anyway, as all calculations were performed consistently without
this term, its exclusion does not affect our comparison between
the codes, which is the main purpose of the present work.

Statistics. For the analysis of the results, we compare band
gaps calculated with norm-conserving PPs and PAWmethods to
all-electron values. Our analysis is restricted to the materials that
were not determined by WIEN2k to have a theoretical band gap
smaller than 0.01 eV, despite being measured to be semi-
conductors. From the original 473 entries, WIEN2k predicts
between 13 and 40 of such materials, depending on the
functional.

Table 1. M(A)E (in eV), Standard Deviation (in eV), M(A)PE (in %, for Band Gaps Larger Than 0.25 eV), and Maximum
Absolute Error (in eV) with Respect to the All-Electron Results Obtained with the Considered Functionals When a Standard
(LDA or PBE) PP is Used

ME MAE σ MPE MAPE max. err.

ABINIT LDA@LDA 0.01 0.02 0.04 0.45 2.47 −0.28 (SnTe)
SLOC@LDA 0.05 0.08 0.14 3.13 5.43 1.33 (LaF3)
PBE@PBE 0.01 0.02 0.06 0.82 2.31 0.19 (GeAs)
RPBE@PBE 0.01 0.03 0.04 0.98 2.89 −0.30 (SnTe)
EV93@PBE 0.03 0.06 0.08 2.26 4.51 0.36 (ZnO)
HLE16@PBE 0.06 0.10 0.14 3.57 6.50 1.10 (LaF3)

VASP LDA@LDA 0.01 0.03 0.04 0.93 2.96 −0.27 (SnTe)
SLOC@LDA −0.03 0.09 0.14 −1.48 5.76 −0.76 (BiF3)
mBJLDA@LDA −0.07 0.10 0.24 −1.55 4.32 −3.42 (Ne)
PBE@PBE 0.01 0.03 0.04 1.17 2.74 −0.25 (LaF3)
RPBE@PBE 0.00 0.02 0.04 0.16 2.33 −0.32 (SnTe)
EV93@PBE 0.00 0.03 0.04 −0.18 2.24 −0.28 (SnTe)
HLE16@PBE −0.03 0.11 0.17 −1.75 6.12 −1.17 (NaCl)

Figure 1. Histograms of errors (with respect to the all-electron results) for band gaps computed with VASP (left) and ABINIT (right). Boxes have a
width of 0.02 eV.
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Whenever presenting the results, we use the notation
<functionals xc>@<pseudo xc>, and if the code used is
ambiguous, we precede this string with its name. For example,
ABINIT/PBE@LDAwouldmake a reference to the set of values
computed with ABINIT, using the PBE functionals with LDA
PPs.
The statistical analysis is based on the determination of the

mean absolute error, MAE = ∑i=1
n |yi − yi,exp|/n; the mean error,

ME = ∑i=1
n (yi − yi,exp)/n; the standard deviation of the errors,

σ = ∑i=1
n (yi − yi,exp − ME)2/n; the median error (MnE); the

interquartile range; the median of the absolute deviations from
the median (MADM); the mean absolute percentage error; the
mean percentage error; and the maximum absolute error in the
calculation of band gaps with respect to experimental values.
The complete set of results is presented in Tables SI−SVII of the
Supporting Information, while Table 1 shows a summary of the
most important statistical quantities.
After a preliminary analysis of the results, it became apparent

that relative quantities (such as the MAPE) were being
extremely affected by materials with very small band gaps.
This is easy to understand as small errors lead to a rather large
relative error for systems with band gaps smaller than 0.2 eV,
skewing significantly the statistical averages. Therefore, we
opted to consider, in Table 1, percentage quantities (MAPE and
MPE) for the subset of systems with band gaps larger than
0.25 eV. Absolute quantities were still computed for the entire
data set.

■ RESULTS
We start our analysis by looking at the results computed with the
generally available LDA and PBE data sets. As visible in Table 1,
band gap calculations performed with LDA and PBE xc
functionals on top of the corresponding PPs are in excellent
agreement with all-electron calculations. Not only are the MAE
and ME for these calculations very small (in absolute value
smaller than 0.03 eV) but also the dispersion of results is quite
localized. This is visually represented in the error histograms of
Figure 1 and also in the corresponding standard deviation σ
(smaller than 0.06 eV). The maximum absolute error in these
conditions is around 0.2−0.3 eV. However, one can see from the
distribution of errors that absolute values larger than 0.1 eV are
rare. These conclusions are valid for both PP and PAW
calculations, although the MPE and MAPE of the latter are
consistently larger. This may be explained by the fact that the
Pseudo Dojo sets75 are much more recent than the PAW sets
available in VASP and that they were systematically optimized.
In any case, these errors are certainly acceptable for the large
majority of applications. This confirms the generally accepted
idea that effective-core methods (either norm-conserving or
PAW approach) are reliable for the calculations of band gaps.
Moving to the cross-functional calculations, we have to

distinguish two different cases. Rather good results are still
found for RPBE@PBE and EV93@PBE, which is probably due
to the fact that the functional forms of RPBE and EV93 do not
differ too much from PBE so that the PBE PPs are still accurate
for RPBE and EV93. The increase in mean errors is the largest
for EV93@PBE with ABINIT, 0.06 eV for the MAE, and 4.51%
for the MAPE.
The situation is different for functionals that give accurate

band gaps (HLE16, SLOC, and mBJLDA). Indeed, we can see a
clear drop in accuracy, as seen by the increment in the various
mean errors. For instance, the MAPE lies between 4.5 and 6.5%
with both ABINIT and VASP, which is two or three times larger

than when LDA/PBE calculations are performed with a
consistent PP. Note that these are still relatively small values,
clearly smaller than the average errors with respect to
experiment, which are of the order of 30%.63 The loss in
performance is more strikingly seen in terms of the dispersion of
the errors (see Figure 1). In particular, the standard deviation σ
reaches values in the range 0.14−0.24 eV, which represents a
threefold increase. This increase in dispersion leads inevitably to
an increase in themaximum error that can reach 1 eV or more, as
shown in Tables 2 and 3. For example, ABINIT/SLOC@LDA

and ABINIT/HLE16@PBE yield errors of 1.33 and 1.10 eV for
LaF3, respectively, corresponding to very large relative differ-
ences of ∼50 and ∼30%, respectively, with respect to WIEN2k
values. VASP−PAW setups do not perform better. Maximum
errors of −1.17 eV with VASP/HLE16@PBE (for NaCl) and
−0.76 eV with VASP/SLOC@LDA (for BiF3) are obtained.
The situation is particularly worrying for mBJLDA@LDA,
where we find a maximum deviation of −3.42 eV (for Ne) with
respect to WIEN2k, while three other error values are above
1 eV. Curiously, ABINIT calculations tend to overestimate band
gaps, while the reverse is true for VASP (see Tables 2 and 3 and
Figure 1).
The solution to avoid such inaccuracies when using a new

functional is rather clear and straightforward, namely, a PP has to
be generated, optimized, and tested specifically for the new
functional. This is what we have done for HLE16 and SLOC.
The results are shown in Table 4, where we list the MAE,
standard deviation σ, and MAPE for all functional combinations
of LDA, PBE, HLE16, and SLOC. As expected, using an LDA
potential in a PBE calculation or vice versa has relatively a small
effect on the overall quality of the band gaps. However, using an
inconsistent potential in a SLOC or HLE16 calculation has a
much larger effect (by a factor of at least 3), confirming what was
already discussed above. Because, grossly speaking, the differ-
ence between LDA and PBE results is smaller than the one
between PBE/LDA and HLE16/SLOC, it is not entirely
unexpected that an inconsistent PP for SLOC and HLE16
yields worse results. Performing consistent calculations brings
back the PP error to the normal range (below 0.05 eV for the
MAE and σ and at ∼ 2% for the MAPE). Unfortunately,
generating consistent PPs is far from obvious for more

Table 2. List of the Ten Materials with the Highest Absolute
Error (with Respect to the All-Electron Values)a

ABINIT

SLOC@LDA HLE16@PBE

material error material error

AlPO4 0.47 (7.75) LaCuOTe 0.44 (0.65)
SiO2 0.48 (7.70) ZnSnO3 0.44 (2.47)
LaCuOSe 0.51 (0.44) GeO2 0.45 (2.12)
Al2O3 0.52 (7.25) ZnO 0.48 (2.82)
LaCuOS 0.55 (0.57) LaCuOSe 0.52 (0.99)
K2La2Ti3O10 0.60 (1.17) LaCuOS 0.56 (1.17)
La2O3 0.85 (1.89) NaLa2TaO6 0.71 (2.63)
NaLa2TaO6 0.85 (1.73) CuLaO2 0.76 (2.38)
CuLaO2 0.91 (1.75) La2O3 0.77 (2.83)
LaF3 1.33 (2.59) LaF3 1.10 (3.81)

aWe consider here band gaps calculated with the ABINIT code using
the SLOC and HLE16 functionals. The signed error is shown for each
entry, and the all-electron band gap is indicated in parenthesis. All
values are in eV.
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sophisticated methods such as hybrid functionals, many-body
theories, or even the meta-GGA mBJLDA potential.
As the mBJLDA is currently the best performing semilocal

functional for the prediction of band gaps,63,71 a more detailed
discussion is in order. The exchange component of mBJLDA
(the correlation component consists of LDA) is essentially a
rescaling of the Becke−Johnson81 exchange potential via a
density-dependent parameter c

π
τ= + −v cv c
n

r r
r
r

( ) ( ) (3 2)
1 5

6
( )
( )x

mBJ
x
BR

(2)

where

∫α β= + |∇ ′ |
′

′c
V

n
n

r
r

r
1 ( )

( )
d

cell cell

1/2Ä

Ç

ÅÅÅÅÅÅÅÅÅÅ

É

Ö

ÑÑÑÑÑÑÑÑÑÑ (3)

In eq 2, n is the electron density, τ is the kinetic energy density,
and vx

BR is the Becke−Roussel potential.82 α = −0.012 and
β = 1.023 Bohr1/2 are parameters which were fitted specifically
for band gaps.43 Originally, mBJLDA was implemented in an all-
electron code, meaning that the quantities in eqs 2 and 3 are

defined with respect to the total density n and kinetic energy
density τ of the system, comprising core and valence electrons.
However, in the case of a PP code, such as ABINIT, one has to
work with the pseudodensity n that differs significantly from the
total density in the regions around the atoms (i.e., it is much
smoother). As such, it is doubtful that all-electron and PP
calculations of eq 3 should give the same result. In fact, at the
very least, the coefficients α and β should be reoptimized for
pseudodensities (see, e.g., ref 83 for such a procedure with
ABINIT).
There is also some incongruousness within the VASP

implementation of mBJLDA. Even if the PAW method allows
us to recover the true density of the system theoretically, VASP
performs an additive separation of c. This is certainly better than
ignoring the contribution of the core density to c, but it is a
numerical approximation. In practice, this leads to an under-
estimation of c (for most cases, see Figure S1) and therefore of
the band gap (because the band gaps increase in a monotonous
way with c). In order to illustrate the effect of an inaccurate value
of c on the band gap more concretely, we show, in Table 5, the

mBJLDA band gap obtained with VASP and WIEN2k for some
of the materials where the discrepancy between the two codes is
the largest (from 1 to 4 eV). However, if the VASP calculations
are performed by fixing the value of c to the one obtained from
the WIEN2k calculation, then the band gap is clearly much
closer to the WIEN2k value. For instance, for Ne, the VASP
error gets reduced from about 3.5 to 1.8 eV. This shows that a
large portion of the error with VASP is due to an inaccurate
calculation of c.
The definition of the c parameter also creates some

complications for the generation of an mBJLDA PP. As seen
in eq 3, this parameter becomes ill-defined for (semi)finite

Table 3. List of the Ten Materials with the Highest Absolute Error (with Respect to the All-Electron Values)a

VASP

SLOC@LDA HLE16@PBE mBJLDA@LDA

material error material error material error

KTaO3 −0.43 (2.35) ThO2 −0.56 (3.83) NaCl −0.66 (8.38)
LiTaO3 −0.44 (3.16) LiCoO2 −0.59 (1.18) LiF −0.68 (12.76)
BaCl2 0.44 (5.86) BiF3 −0.60 (4.49) KCl −0.70 (8.48)
Ba2InTaO6 −0.45 (4.08) La2O3 −0.63 (2.83) SrF2 −0.83 (11.04)
NaTaO3 −0.45 (2.75) NaLa2TaO6 −0.63 (2.63) MgF2 −0.84 (11.36)
HfO2 −0.47 (4.31) NaBr −0.91 (6.45) AlPO4 −0.84 (9.10)
AgF 0.52 (3.07) NaF −0.93 (9.35) NaF −1.23 (11.48)
Bi2O2CO3 −0.57 (0.97) LaF3 −1.01 (3.81) Ar −1.25 (13.79)
LaF3 −0.67 (2.59) NaI −1.10 (5.69) LiIO3 −1.74 (4.91)
BiF3 −0.76 (4.70) NaCl −1.17 (7.63) Ne −3.42 (22.27)

aWe consider here band gaps calculated with the VASP code using the SLOC, HLE16, and mBJLDA functionals. The signed error is shown for
each entry, and the all-electron band gap is indicated in parenthesis. All values are in eV.

Table 4. MAE (in eV), Standard Deviation σ (in eV), and
MAPE (in %) with Respect to the All-Electron Results for the
Band Gaps Obtained Using the ABINIT Code for all Cross-
Functional PP Combinations

functional

LDA PBE HLE16 SLOC

PP

MAE
LDA 0.02 0.05 0.12 0.08
PBE 0.05 0.02 0.10 0.09
HLE16 0.10 0.07 0.03 0.08
SLOC 0.08 0.07 0.10 0.03

σ

LDA 0.04 0.06 0.16 0.14
PBE 0.06 0.03 0.14 0.16
HLE16 0.14 0.11 0.04 0.12
SLOC 0.13 0.13 0.13 0.05

MAPE
LDA 2.47 4.88 7.79 5.43
PBE 4.92 2.31 6.50 5.94
HLE16 8.92 5.87 2.22 5.37
SLOC 6.90 6.50 6.28 1.94 Table 5. mBJLDA Band Gaps (in eV) Obtained with VASP

and WIEN2ka

solid VASP VASP (c = cWIEN2k) WIEN2k

Ne 18.85 20.48 22.27
Ar 12.55 13.29 13.79
LiF 12.08 12.37 12.76
KCl 7.78 8.19 8.48
Al2O3 7.86 7.94 8.28

aThe second set of VASP results were obtained with the parameter c
in eq 2 fixed to the value obtained from the WIEN2k calculation.
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systems. This problem can however be bypassed. For example,
Bartoḱ and Yates50 have recently proposed using a constant
value for c during PP generation, obtaining good agreement with
all-electron calculations. Another possible solution is the use of
the localized version of the mBJLDA potential recently
proposed in ref 51.

■ CONCLUSIONS
In summary, we performed a series of band gap calculations on a
test set of 473 materials using all-electron, norm-conserving PP
and PAW methods. Our goal was to estimate the error in the
band gap when standard LDA/PBE PPs or PAW setups are used
inconsistently to perform electronic structure calculations using
other density functionals. From our results, we concluded the
following.

1. As expected, consistent PP calculations are perfectly
suited for the evaluation of band gaps. The errors with
respect to the all-electron reference results (MAE ≈
0.02 eV) are considerably smaller, by 1 or 2 orders of
magnitude, than the errors (with respect to experiment)
due to the approximation to the xc functional.

2. Using an inconsistent PP, that is, one that was generated
and optimized for another xc functional, increases the
mean absolute errors by a factor of 3 or more so that the
MAE, for instance, can reach values around 0.1 eV.
However, this is still smaller than the error due to other
theoretical approximations, such as the choice of the xc
functional; therefore, the PP approach is still justified for
several applications, especially when one is interested in
average quantities.

3. Nevertheless, the error in few specific (and unpredictable)
cases can be quite large, with band gaps sometimes
differing from the all-electron results by several eV.
Therefore, when one requires precise numerical estima-
tions of band gaps, the use of consistent PPs or all-electron
calculations is strongly recommended.

Of course, these conclusions can be relevant not only for
semilocal functionals; the use of inconsistent PPs with hybrid
functionals, LDA + U, or many-body approaches such as GW
should also be investigated more thoroughly.
The test set employed here did not contain magnetic

materials. Effective-core methods are known to perform
sometimes badly for these types of systems (e.g., see ref 84).
Preliminary calculations indicate that using the wrong PP in this
situation can lead to errors as bad or worse than the ones
observed here, but future tests are necessary to be able to
properly quantify this effect.
As a final word, band gaps are only one of the many quantities

of interest for the solid-state community. Large-scale studies of
the effect of cross-functional calculations on other properties
such as formation energies, geometries, absorption spectra, and
so forth are important and should be encouraged. Only with
access to such quantitative data, we canmake informed decisions
on the choice of methods for the calculation of electronic
properties of materials.
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(12) Blöchl, P. E. Projector Augmented-Wave Method. Phys. Rev. B:
Condens. Matter Mater. Phys. 1994, 50, 17953−17979.
(13) Kresse, G.; Joubert, D. From Ultrasoft Pseudopotentials to the
Projector Augmented-Wave Method. Phys. Rev. B: Condens. Matter
Mater. Phys. 1999, 59, 1758−1775.
(14) Lippert, G.; Hutter, J. x. r.; Parrinello, M. The Gaussian and
augmented-plane-wave density functional method for ab initio
molecular dynamics simulations. Theor. Chem. Acc. 1999, 103, 124−
140.
(15) Lippert, B. G.; Hutter, J.; Parrinello, M. A hybrid Gaussian and
plane wave density functional scheme. Mol. Phys. 1997, 92, 477−488.
(16) Martin, R. M. Electronic Structure: Basic Theory and Practical.
Methods; Cambridge University Press: Cambridge, 2004.
(17) Lejaeghere, K.; et al. Reproducibility in density functional theory
calculations of solids. Science 2016, 351, aad3000.
(18) Garrity, K. F.; Bennett, J. W.; Rabe, K. M.; Vanderbilt, D.
Pseudopotentials for High-Throughput DFT Calculations. Comput.
Mater. Sci. 2014, 81, 446−452.
(19) Jollet, F.; Torrent, M.; Holzwarth, N. Generation of Projector
Augmented-Wave Atomic Data: A 71 Element Validated Table in the
XML Format. Comput. Phys. Commun. 2014, 185, 1246−1254.
(20) Lejaeghere, K.; Van Speybroeck, V.; Van Oost, G.; Cottenier, S.
Error Estimates for Solid-State Density-Functional Theory Predictions:
An Overview by Means of the Ground-State Elemental Crystals. Crit.
Rev. Solid State Mater. Sci. 2014, 39, 1−24.
(21) Vosko, S. H.; Wilk, L.; Nusair, M. Accurate spin-dependent
electron liquid correlation energies for local spin density calculations: a
critical analysis. Can. J. Phys. 1980, 58, 1200−1211.
(22) Perdew, J. P.; Zunger, A. Self-Interaction Correction to Density-
Functional Approximations for Many-Electron Systems. Phys. Rev. B:
Condens. Matter Mater. Phys. 1981, 23, 5048−5079.
(23) Perdew, J. P.; Wang, Y. Accurate and Simple Analytic
Representation of the Electron-Gas Correlation Energy. Phys. Rev. B:
Condens. Matter Mater. Phys. 1992, 45, 13244−13249.
(24) Perdew, J. P.; Wang, Y. Erratum: Accurate and Simple Analytic
Representation of the Electron-Gas Correlation Energy [Phys. Rev. B
45, 13244 (1992)]. Phys. Rev. B 2018, 98, 079904.
(25) Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized Gradient
Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865−3868.
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