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The prevalence and incidence of metabolic-associated fatty liver disease (MAFLD), a
clinically heterogeneous disease whose primary clinical therapies include dietary control
and exercise therapy, is increasing worldwide and constitutes a significant medical
burden. Gut microbes influence the physiopathological processes of the liver through
different mechanisms based on the gut-liver axis. Exosomes are essential carriers of
intercellular communication. Most previous studies have focused on adipocyte- and
hepatocyte-derived exosomes, while the critical role of microbial-derived exosomes and
the molecular mechanisms behind them in MAFLD have received little attention.
Therefore, we searched and screened the latest relevant studies in the PubMeb
database to elucidate the link between microbial-derived exosomes and the
pathogenesis of MAFLD, mainly in terms of insulin resistance, intestinal barrier,
inflammatory response, lipid metabolism, and liver fibrosis. The aim was to provide a
theoretical framework and support for clinical protocols and innovative drug development.

Keywords: metabolic-associated fatty liver disease, gut microbial-derived exosomes, therapeutic approaches,
insulin resistance, intestinal barrier, inflammatory response, lipid metabolism, liver fibrosis
INTRODUCTION

The global prevalence and medical burden of non-alcoholic fatty liver disease (NAFLD), a chronic
liver disease that is mainly associated with environmental, dietary, genetic, intestinal, and immune
factors, is increasing annually (1). Based on the consensus of expert panels in several countries,
NAFLD was renamed as metabolic-associated fatty liver disease (MAFLD). MAFLD is associated
with many diseases, including type 2 diabetes, hyperlipidaemia, and obesity; if left untreated,
MAFLD can progress to steatohepatitis with liver fibrosis and even liver cancer (2). Its diagnostic
criteria include the presence of one of the following three metrics based on hepatic steatosis:
overweight/obesity, type 2 diabetes, or metabolic disorders (3–6). The intestine has the largest
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contact area with the external environment. Its intestinal barrier
function is essential for maintaining homeostasis of the organism
and includes the intestinal microbial barrier and mucus,
gastrointestinal dynamics and secretion, epithelial barrier,
immunity (innate and adaptive), and intestinal vascular and
hepatic barriers (7). A trillion microorganisms are present in
the human gastrointestinal tract. The number of these
microorganisms dramatically exceeds the number of human
cells. Intestinal microorganisms affect the physiological
activities of the host, human metabolism, the immune system,
and neurological diseases (8, 9). The intestine and liver may be
linked through the portal vein and the transport of enteric-
derived products to the liver, thereby affecting bile and associated
antibodies in the intestine (10). Gut microbial-derived exosomes
can be involved in the physiopathological conditions of the body
by transporting a variety of substances. Therefore, in this review,
we provide theoretical support for the development of clinical
treatment protocols and drugs for MAFLD by discussing the
relevance of gut microbial-derived exosomes in the pathogenesis
of MAFLD.
GUT MICROFLORA AND MAFLD

Hundreds of millions of intestinal microorganisms live in the gut.
These intestinal microbes encode millions of genes, 150 times the
number of genes in the human genome, including a rich library of
enzymes (11, 12). They provide uncoded enzymes that participate in
human metabolism and maintain immune homeostasis through
interactions with host cells (13). The gut microbiota is essential for
host metabolism and immune homeostasis, and its components
contribute significantly to shaping the host immune system (14).
The quest to understand the relationship between the host and gut
microbiota continues. Dysbiosis of the intestinal flora may lead to
various diseases in the host, ultimately compromising health (8, 9).
Dysbiosis of intestinal flora is an important pathogenic factor that
induces the development and progression of MAFLD (15). The
mechanisms by which bacteria influence the progression of
metabolism-related diseases are largely unknown, although there
is evidence that microbial-derived exosomes are associated with
inflammation (16). Typically, bacterial cells communicate with their
hosts and other bacteria through direct contact and secretion of
soluble products such as metabolites (e.g., short-chain fatty acids),
lipopolysaccharides, population-sensing peptides, nucleic acids,
proteins, and extracellular vesicles (EVs) (17, 18). For example,
butyrate from microbiota can upregulate miRNA-22 expression in
hepatocytes, which can decrease Sirtuin1 expression and enhance
reactive oxygen species (ROS) production to increase programmed
cell death in hepatocytes (19).
EVS DERIVED FROM GUT MICROBES

Exosomes were initially thought to be a means of cellular waste
disposal until further studies reported their role in mediating
intercellular communication, thus attracting significant attention
Frontiers in Immunology | www.frontiersin.org 2
from researchers worldwide (20, 21). Exosomes are a class of EVs
with diameters of approximately 30–150 nm (22, 23). Exosomes
are derived from most cell types and are present in cell-
conditioned media and different biological fluids such as
serum, plasma, urine, saliva, ascites, cerebrospinal fluid, and
amniotic fluid (24). Enteric bacteria (both pathogenic and
commensal) derive EVs for communication with their hosts.
These spherical membrane-encapsulated particles transmit some
of the biological components of the parental bacteria to the
extracellular environment (25). EVs perform different biological
functions in the host through different synthetic pathways and
mechanisms (26). EVs mainly consist of outer membrane
vesicles (OMVs) released by gram-negative bacteria and
membrane vesicles (MVs) released by gram-positive bacteria
(25). Studies on gram-negative pathogens have shown that
OMVs internalize in host cells and promote virulence by
delivering cytotoxic factors as well as interfering with immune
system mediators (27–29). Currently, microbiota vesicles are
considered key players in the signaling process of the intestinal
mucosa (25, 30). Gram-negative bacteria follow two major
vesicle formation pathways. The first pathway of formation
involves blistering of the outer membrane of the bacterial
envelope to produce OMVs; the second pathway requires
explosive cell lysis to form outer inner membrane vesicles
(OIMVs) and explosive outer membrane vesicles (EOMVs)
(18). Cytoplasmic membrane vesicles (CMVs) are produced by
gram-positive bacteria through endolysin-triggered bulge cell
death (26). OMVs are broadly defined as EVs. The blistering
membrane process causes OMVs to disrupt the cross-linkage
between the outer membrane and the underlying peptidoglycan
cell wall layer. In the following sections, we collectively refer to all
exosome subtypes as EVs. A variety of functions of exosomes
have been characterized, including cell proliferation,
differentiation, apoptosis, and immunomodulation (31, 32).
Transcriptomic analysis revealed that EVs carry a variety of
cargo, including many functional small coding miRNAs,
messenger RNA (mRNA), and non-coding RNA (ncRNAs).
Proteomic analysis has revealed that EVs also carry other
cargo, including membrane-bound proteins, enzymes (e.g.
autolysins), toxins, polysaccharides, and peptidoglycans
(25, 33). EVs deliver these bioactive components to receptor
cells to perform these functions (34).
GUT MICROBIAL-DERIVED EVS AS AN
IMPORTANT MEDIATOR OF THE
ASSOCIATION OF GUT MICROBES
WITH MAFLD

Gut microbial release EVs that contain specific cargo molecules
and have multiple functions (35). Various RNA species (e.g.,
mRNA, miRNA, tRNA) are among the biologically active
components of EVs and may affect host gene expression when
delivered to host cells (36–38). In a previous study, the role of
OMV in signal transduction between the gut microbiota and the
host was demonstrated. OMV produced by the symbiotic
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probiotic Escherichia coli induced the expression and secretion of
several cytokines and chemokines in an in vitro model (39). EVs
contain microRNAs (miRNAs), small coding RNA molecules
that regulate gene expression after transcription. miRNAs
remain biologically active after delivery to host cells (40).
Transfection of Caco2-BBE cells derived from the parental
Caco2 strain with mature miR-99b, miR-125a-5p, and miR-
1269 decreased the cell growth rate and trans-epithelial
resistance, indicating a shift toward the HT29-Cl.19A cell
phenotype. EVs may support the transportation process for
miRNA to affect cell function (41). Thus, intestinal bacteria use
OMV as an essential strategy to communicate with and influence
the host responses.

Microbiota-derived EVs are always localised in organs such as
the gastrointestinal tract, which is in close contact with bacteria.
The biodistribution of EVs derived from the human intestinal
commensal bacterium Bacteroides thetaiotaomicron after gavage
in mice with fluorescent labelling revealed that some EVs
accumulated in the liver (42). In addition, by engineering
Escherichia coli to express Cre recombinase (E. coli Cre)
colonized into Rosa26.tdTomato-background mice, the Cre-
LoxP system was used to report bacterial OMV transfer into
intestinal epithelial cells and induce fluorescent reporter gene
expression, including intestinal stem cells and mucosal immune
cells such as macrophages. Outside the intestine, bacterial-
derived Cre induces extended marker gene expression in
various host tissues, including the heart, liver, kidney, spleen,
and brain. E. coli OMVs are mainly concentrated in the hepatic
confluent region (43). In contrast, endocytosis of endothelial
cells is involved in the active transcellular migration of EVs
across the epithelial monolayer (e.g., endocytosis, multivesicular
body formation, and cytokinesis on the other side of the
transcellular layer), which may be a pathway for EVs to cross
the intestinal barrier and even the blood-brain barrier (44). Thus,
EVs or OMVs released by microorganisms can act as biological
shuttle systems for cross-border communication in the host,
where bacteria transfer functional biomolecules via EVs to
individual host cells and target organs, such as the liver. In
summary, gut microbes may also be involved in the development
of MAFLD through the release of multiple mediators, among
which gut microbial-derived EVs may serve as important
mediators of the association between gut microbes and
MAFLD. Below, we describe the potential effects of gut
microbe-derived EVs on various aspects of MAFLD, including
insulin resistance, intestinal barrier function, inflammation,
lipids, and liver fibrosis.

Gut Microbial-Derived EVs and
Insulin Resistance
Gut microbial-derived EVs influence glucose metabolism by
regulating insulin resistance. Insulin resistance is one of the
core mechanisms of MAFLD (45). Thus, intestinal barrier
dysfunction and increased intestinal permeability in MAFLD,
which often implies absorption of host-microbial EVs and
lipopolysaccharides (LPS), may lead to a state of insulin
resistance (46). Similarly, a study characterising microbial-
Frontiers in Immunology | www.frontiersin.org 3
derived EVs from serum, urine, and stool samples from
Korean T2DM subjects found that microbial-derived EVs were
prevalent in other parts of the body, such as stool, serum, and
urine, whereas gut microbial-derived EVs were less likely to cross
the intestinal barrier in healthy individuals (47). It was found
that fecal-derived EVs induced insulin resistance and poor
glucose tolerance in high-fat diet (HFD)-fed mice compared to
conventional diet-fed mice. Macrogenomic analysis revealed that
Pseudomonas panacis (phylum Proteobacteria) EVs can pass
through the intestinal barrier to insulin-responsive organs,
such as the liver, skeletal muscle, and adipose tissue. They play
multiple roles in HFD-fed mice, including blocking insulin
signalling pathways in skeletal muscle and adipose tissue,
inhibiting insulin-stimulated glucose uptake and GLUT4
translocation in myotubes, and suppressing pAKT expression
levels in the skeletal muscle and adipose tissue of mice (48). The
skeletal muscle is one of the major tissues involved in peripheral
glucose uptake. When free fatty acids are elevated in the body,
glucose utilisation by skeletal muscles is inhibited, resulting in
insulin resistance (49).

Intestinal Microbial-Derived EVs and the
Intestinal Barrier in Inflammation
As shown above, microbial-driven disruption of the intestinal
epithelial and intestinal vascular barriers is a prerequisite for
MAFLD, and disruption of the intestinal epithelial and vascular
barriers is dependent on the Wnt/b-catenin signalling pathway to
promote MAFLD (50). Gene (F11r) encoding junctional adhesion
molecule A knockout mice with high fructose, high fat, and
cholesterol induce defects in intestinal epithelial permeability,
exhibiting more pronounced steatosis (51). The increased
intestinal permeability allows the entry of multiple intestinal
microbial-derived EVs and LPS, which may be a mechanism
contributing to the development of MAFLD. Similar association
studies have found increased levels of circulating bacterial EVs in
patients with intestinal barrier dysfunction, such as untreated
intestinal mucosal inflammation, and levels of bacterial EV-
associated LPS correlated with plasma zonulin levels. This
suggests that intestinal barrier dysfunction leads to the
translocation of bacterial EVs (52). The microbiota affects
miRNA expression in the caecum, and their target genes may
control the synthesis of proteins related to immune system
management and control of intestinal barrier function.
Microbial-derived EVs may bridge these gaps and play an
important role in maintaining intestinal barrier homeostasis.
Microarray analysis of intestinal miRNAs from C57 mice raised
under specific pathogen-free (SPF) and germ-free (GF) conditions
revealed reduced intestinal miR-10a expression in SPF mice
compared to that in GF mice, while GF mice showed decreased
intestinal miR-10a expression after decolonization with field
bacteria. Intestinal symbiotic bacteria maintain intestinal
homeostasis by downregulating dendritic cell miR-10a
expression through Toll-like receptor (TLR)-TLR legend (TLRL)
interactions and the MyD88-dependent pathway, targeting IL-12/
IL-23p40 expression (53). In addition, EVs are considered to have
microbial-associated or pathogen-associated molecular patterns
May 2022 | Volume 13 | Article 893617
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(MAMPs) (54). The content of MAMPs in EVs allows them to
bind to host pattern recognition receptors (PRRs) in immune and
non-immune cells to promote host pathology and immune
tolerance, or confer protective immunity (54). Vibrio cholera
was found to secrete OMV to induce the expression of pro-
inflammatory cytokines (e.g., IL-8 and GM-CSF) and chemokines
(e.g., CCL2, CCL20, and thymic stromal lymphopoietin) in
intestinal epithelial cells in a NOD1-dependent manner through
activation of the MAPK/NF-kB pathway. In vitro OMV-
stimulated epithelial cells can promote the expression of high
levels of costimulatory molecules and the release of pro-
inflammatory cytokines and chemokines, such as IL-1, IL-6,
TNF-a, CCL22, and CCL17, through the activation of dendritic
cells (DCs). These cytokines activate CD4+ T cells and promote
IL-4, IL-13, and IL-17 release (28). The human commensal
bacterium Bacteroides fragilis produces a capsular polysaccharide
(PSA)-dependent TLR-2 signaling pathway that promotes IL-10
production in dendritic cells (DCs) and prevents chemotactic
colitis in mice (55). Thus, microbially derived EVs may be
associated with inflammation through multiple immune cells
and coordinate the release of multiple biological mediators,
particularly MAFLD. For example, gram-negative EVs are
characterized by internal phospholipid lobules and external
lipopolysaccharide (LPS), a TLR-4 agonist (18). Escherichia coli
releases OMV containing active pore components of LPS that
drive inflammatory responses in human epithelial cells via Ca2+

signaling and activate TLR-4 (56). In the liver, activation of TLR-4
signaling in hepatocytes, accompanied by nuclear factor kappa B
(NF-kB) activation and nuclear translocation, plays an important
role in the initiation of MAFLD (57). TLR-4-deficient mice
hepatocytes exhibit reduced insulin resistance and obesity-
associated inflammation during high-quality diet feeding (58). In
addition, systemic deletion of TLR-4 attenuates NASH
development in MCD diet-fed mice (59). EVs can also deliver
LPS into the cytosol of host cells and activate macrophages via
TLR-4 receptors (60). In contrast, macrophage activation in
MAFLD recruits inflammatory factors and is an essential driver
of inflammation. Lipoteichoic acid (LTA) on the surface of gram-
positive bacteria and their EVs can bind to TLR-2 to drive the
immune response (26). Furthermore, peripheral blood
mononuclear cells (PBMCs) stimulated of with Escherichia coli
strain Nissle 1917 (EcN) or the commensal E. coli strain ECOR12
in vitro secreted OMV and LPS alone resulting in interleukin (IL)-
10, macrophage inflammatory protein 1 alpha (MIP1a), tumor
necrosis factor (TNF)-a, IL-6, and IL-8 secretion, implying
intestinal inflammation and disruption of the intestinal barrier.
Co-culture of intestinal epithelial Caco-2/PBMCs revealed that
OMV was internalized by Caco2 cells, thereby preventing the
overproduction of multiple pro-inflammatory factors and
promoting the production of the anti-inflammatory cytokine IL-
10 (39). EcN-derived OMV can promote IL-22 production,
transforming growth factor (TGF)-b secretion, and Treg
differentiation (39). IL-22 has been shown to enhance intestinal
epithelial barrier function (61) and can cooperate with IL-6 to
induce the transcription factor Runx1 to promote the
differentiation of Th1 cells to Th17 cells, which promotes
Frontiers in Immunology | www.frontiersin.org 4
inflammation by secreting cytokines such as IL-17, while Treg
cells can promote the secretion of the anti-inflammatory factor IL-
10 to suppress inflammation (62, 63).

Gut Microbial-Derived EVs and Adipose
Tissue Inflammation
Leaking bacterial products from the gut can also exacerbate the
adipose tissue inflammatory response during the progression of
MAFLD, leading to insulin resistance and having important
effects on systemic metabolism. In addition to metabolites,
microbial DNA accumulates in the peripheral circulation and
adipose tissues of obese patients (64, 65). Obesity leads to a
decrease in the number of complement receptors of the
immunoglobulin superfamily (CRIg+) macrophages in human
and mouse livers. This phenomenon diminishes the hepatic
clearance of circulating bacterial EVs, leading to the spread of
bacterial EVs to more distant adipose tissue and inducing
inflammation and metabolic disturbances. The intervention of
EVs in the intestinal flora of obese mice attenuated the reduction
of insulin-stimulated AKT phosphorylation and activation of the
cGAS/STING signalling pathway in adipocytes 3T3L-1 cells and
enhanced the inflammatory response in adipose tissue (66).
Bacterial EVs are enriched in b-cells of obese patients and
promote islet inflammatory responses and impair insulin
secretion from b-cells by activating the cGAS/STING signalling
pathway (67). Similarly, EVs derived from adipocytes of obese
patients can promote the release of inflammatory factors such as
TNF-a and IL-6 from monocytes and upregulate hepatocyte
TGF-b, PAI-1, MMP-7, and TIMP-1 expression to mediate
hepatic steatosis and fibrosis (68).

Gut Microbial-Derived EVs and
Liver Fibrosis
Repeated inflammatory stimulation in MAFLD may lead to a
poor healing response and, thus, a liver fibrotic response. EVs
may be associated with liver fibrosis progression by regulating
the expression of miRNAs and their target genes. By assessing
miRNA expression profile changes through liver biopsies in
patients with no fibrosis or severe liver fibrosis or cirrhosis, 30
upregulated and 45 downregulated miRNAs were found to be
present in patients with liver fibrosis (69). In addition, serum
levels of IL-6 and miR-233 in patients with NAFLD were
correlated. Liver fibrosis was more severe after IL-6 bone
marrow-specific knockdown in mice fed a high-fat diet. In
vitro experiments suggested that the mechanism may involve
IL-6 promoting the release of miR-233-containing exosomes
from macrophages and reducing the pro-fibrotic gene
expression of TAZ (70). Similarly, miR-21 regulates fibrosis
progression in the liver (71). In addition to regulating miRNA
expression, microbial-derived EVs can directly inhibit liver
fibrosis by modulating inflammation and maintaining
intestinal barrier homeostasis. Akkermansia muciniphila
primarily inhabits the gastrointestinal mucus layer and is
considered a probiotic strain for the treatment of obesity-
related diseases (72). Previous studies have shown that heat-
inactivated Akkermansia muciniphila can modulate the LPS-
May 2022 | Volume 13 | Article 893617
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induced gene expression of liver fibrosis markers, including
smooth muscle alpha-actin (a-SMA), tissue inhibitor of
metalloproteinase (TIMP), collagen type 1 (Col1), TGF-b,
TLR-4, and peroxisome proliferator-activated receptor
gamma (PPARg), in LX-2 cells and reverse the activation of
hepatic stellate cell (HSC) in LPS-stimulated LX-2 cells. EVs
(50 mg/ml) isolated from Akkermansia muciniphila inhibited
TLR-2 and TLR-4 gene expression in LPS-stimulated LX-2 cells
(73). They also reduced the release of serum cytokines TNF-a
and IL-6, and increased the level of the anti-inflammatory
factor IL-10, thereby suppressing inflammation (73). In
addition, Akkermansia muciniphila and its EVs increased
ZO-1 expression. They inhibited TNF-a and TLR-4 in the
colonic tissues of HFD-fed mice, suggesting that they could
improve intestinal barrier function and suppress inflammatory
responses (73). EVs secreted by Akkermansia muciniphila
also modulate intestinal integrity and restore disturbed
intestinal flora by inhibiting the expression of liver fibrosis
markers, including a-SMA, PDGF, TIMP, and Col1a1, and by
suppressing inflammatory genes in experimental mice (73).
In addition, MAFLD is associated with renal fibrosis. Live
Akkermansia muciniphila bacteria and their EV attenuate
HFD/CCL4-induced renal tissue injury and the associated
gene expression of renal fibrosis, such as a-SMA, PDGF,
Col1a1, and TGF-b (73).

Gut Microbial-Derived EV and
Lipid Metabolism
Lipid deposition in MAFLD and lipotoxicity due to oxidative stress
are essential drivers of inflammation, and microbial-derived EVs
may affect hepatic lipid regulation via different mechanisms.
Akkermansia muciniphila has also been shown to correlate with
the lipid content. Changes in Akkermansia muciniphila are
associated with lipid metabolism in adipose tissue and expression
of inflammatory markers and glucose, insulin, triglyceride, and
leptin levels in obese mouse models (74). A similar study found that
post-pasteurization Akkermansia muciniphila can affect intestinal
lipid absorption and metabolism, thus regulating body weight and
fat gain by regulating perilipin2 lipid droplet-associated factors (75).
In addition, gavage of A. muciniphila I (Amuc_GP01) in an HFD-
induced experimental mouse model improved glucose tolerance,
hyperlipidemia, and hepatic steatosis (76). Furthermore, in the
HFD-induced intestinal microbiota of mice, triglyceride content
in the liver was positively correlated with miR-21 expression,
whereas hepatic miR-21 expression was positively correlated with
Firmicutes and negatively correlated with Proteobacteria and
Bacteroides acidifaciens. The ability of the bacterial antigens to
regulate hepatic miRNAs was tested in vitro. The pro-
inflammatory LPS of E. coli O55:B5 promoted miR-21 expression
in primary wild-type mouse hepatocytes in a dose-dependent
manner, suggesting that gut microbes, possibly through their
antigens (e.g., LPS), regulate hepatic miRNA expression to
influence the liver (77). The regulatory effects of miRNAs on gut
bacteria and the liver need to be further validated by in vivo
experiments. In aged DB/DB mice, long-term (18 weeks)
inhibition of miR-21 reduces body weight and adipocyte size (78).
Frontiers in Immunology | www.frontiersin.org 5
In addition, it was found that intestinal flora disorders in MAFLD
abnormally increased the Bacteroidetes ratio and Streptomyces spp.,
and that high mobility group box 1 (HMGB1) promoted hepatic
steatosis through transfer from the intestine to the liver (79).

In addition to the potential impact of microbial-derived EVs on
lipid metabolism in MAFLD, most studies have found relevance of
other source-derived exosome secretions to MAFLD, particularly
lipid-regulated EVs release. For example, plasma exosome levels are
significantly elevated in MAFLD patients. Fatty acid-induced
damage-regulated autophagy modulator (DRAM) enhances
hepatocyte-associated exosome release by promoting lysosomal
localization of stomatin upon interaction with stomatin, which
may serve as a potential biomarker of MAFLD (80). The presence
of many membrane-bound vesicles generated by hepatocytes in
experimental mice with steatohepatitis that respond to FFA-derived
EVs correlates significantly with disease severity (81). Similarly,
adipocytes can endocytose HepG2 cell-derived exosomes, thereby
promoting their inflammatory phenotypic differentiation by
activating phosphokinase and NF-kB signalling and recruiting
inflammatory macrophages to co-promote the inflammatory
milieu (82). The most relevant research advances have been
reviewed widely (83–86). Without going into much detail, we
note that the potential relevance of excessive lipid deposition in
MAFLD and its regulation in microbially derived EVs deserves
further investigation.
FUTURE PERSPECTIVE
AND CHALLENGES

Many cited studies still use the term “NAFLD” and link to other
metabolic diseases such as T2M. In view of the update of NAFLD
terminology and diagnostic criteria to further standardise and
advance clinical and research progress in the discipline of
hepatology, we use the term “MAFLD” instead of “NAFLD”
throughout the text. We believe that it is extremely important to
standardise and update this terminology; however, the diagnostic
distinction between them should be noted in the future. Sumida
et al. summarised the current pharmacological treatments for
MAFLD and the possible challenges (87). In summary, there are
no FDA-approved treatment options for MAFLD, and diet control
and exercise remain important lifestyle interventions. In addition,
several drugs have potential therapeutic effects by targeting different
mechanisms, such as lipid deposition (elafibranor), oxidative stress,
inflammation, cell death (emricasan), intestinal microenvironment
and metabolism (IMMe124), and antifibrotic drugs (cenicriviroc),
some of which are already in clinical trials (87). As mentioned
above, gut microbial-derived EVs might affect MAFLD through
different mechanisms; therefore, the proposed increase in beneficial
gut microbes (flora transplantation, genetic engineering) or
reduction of harmful gut microbial populations (lifestyle changes,
pharmacological interventions) are potentially important
approaches. Probiotics, prebiotics (fermented products that
improve the flora composition of patients) (88) and prebiotics
(combination of probiotics and dietary or food components) can
improve the extent of experimental animal models and MAFLD
May 2022 | Volume 13 | Article 893617
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patients. For example, the intake of Lactobacillus acidophilus La5
and Bifidobacterium lactis Bb12 improved liver enzymes, total
serum cholesterol, and LDL cholesterol levels in patients with
MAFLD (89). Prebiotics can significantly reduce TNF-a, CRP,
liver enzymes, and steatosis in patients (90). Most of the current
studies on MAFLD and gut flora have focused on changes in the
abnormal gut flora and the influence of the flora on a particular
aspect of MAFLD and have not directly focused on the role of gut
microbial-derived EVs. This is an important mechanism by which
the intestinal flora exerts its physiopathological functions.
Considering the preliminary studies on the potential benefits of
probiotic transplants, prebiotics, and prebiotics for MAFLD
treatment in combination with the role of EVs in MAFLD, we
believe this will be a direction with great research potential in the
future; however, further well-designed preclinical and clinical trials
are still needed for in-depth studies.
DISCUSSION

Based on the gut-liver axis theory, gut microbes are an essential
component of the human body, and their derived EVs, which
contain abundant microbial DNA, proteins, and lipids, have been
gradually recognized to contribute to the pathological mechanisms
of various liver diseases, especially MAFLD (see Figure 1). In this
article, we provide a theoretical basis for developing innovative
Frontiers in Immunology | www.frontiersin.org 6
clinical treatment options for MAFLD based on gut microbial-
derived EVs by discussing their potential relationship with insulin
resistance, the intestinal barrier, inflammation, lipid metabolism,
and liver fibrosis and the improvement of MAFLD through
probiotic colonization. There is great potential to elucidate the
molecular composition of the cargoes carried by EVs and to explore
how they interact with receptor cells and their mechanisms by
combining a variety of modern molecular biology techniques and
multi-omics applications.
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FIGURE 1 | The connection between gut microbial-derived exosomes and MAFLD. Many microorganisms exist in the human body, which can secrete EVs, a bilayer
lipid membrane structure that can include the outermost LPS, cytoplasmic and membrane-bound proteins, DNA, multiple protein components, etc. Based on the
gut-liver axis theory, EVs can carry various biological mediators and affect multiple cells through many signaling pathways to influence pathological mechanisms in
MAFLD, including intestinal barrier homeostasis, insulin resistance, lipid metabolism, inflammatory response, etc.
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