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Chromosome-level genome assembly of a parent
species of widely cultivated azaleas
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Azaleas (Ericaceae) comprise one of the most diverse ornamental plants, renowned for their

cultural and economic importance. We present a chromosome-scale genome assembly for

Rhododendron simsii, the primary ancestor of azalea cultivars. Genome analyses unveil the

remnants of an ancient whole-genome duplication preceding the radiation of most Ericaceae,

likely contributing to the genomic architecture of flowering time. Small-scale gene duplica-

tions contribute to the expansion of gene families involved in azalea pigment biosynthesis.

We reconstruct entire metabolic pathways for anthocyanins and carotenoids and their

potential regulatory networks by detailed analysis of time-ordered gene co-expression net-

works. MYB, bHLH, and WD40 transcription factors may collectively regulate anthocyanin

accumulation in R. simsii, particularly at the initial stages of flower coloration, and with WRKY

transcription factors controlling progressive flower coloring at later stages. This work pro-

vides a cornerstone for understanding the underlying genetics governing flower timing and

coloration and could accelerate selective breeding in azalea.
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The genus Rhododendron (Ericaceae) harbors more than
1000 species and 30,000 cultivars and is known for the
outstanding beauty and diversity of its corollas1,2. During

the 18th century, several Chinese azalea cultivars were introduced
to Europe (especially to England and Belgium), facilitating their
breeding for ornamental use3. R. simsii (potted azalea) is an
evergreen species of the subgenus Tsutsusi, endemic to East Asia,
and is the most widely cultivated Rhododendron species with
numerous cultivars selected from a diversity of wild relatives and
natural hybrids3. At present, the annual production of R. simsii
hybrids has reached approximately 40 million pots in Belgium
alone3,4. Although R. simsii natural blooming extends from the
end of spring to the beginning of summer, some ‘easy-care and
color-rich’ cultivars can bloom as early as Christmas and Spring
Festivals, when few other flowering plants are available2,3. Cur-
rently, azalea cultivars have become the focus of intensive orna-
mental use through hybridizations and production programs,
attaining prominence as pot plants and landscape shrubs in
Europe, North American, and Asia3.

Breeding and development of new ornamental cultivars is
mainly focused on flower color. Moreover, flower color is also of
paramount importance for plant ecology and evolution5. Since
the work of Gregor Mendel (1856–1863), flower color has suc-
cessfully contributed to the elucidation of the fundamental
principles of genetics, while more recently, genomics has pro-
vided insights into the evolution of the biochemical pathways and
regulatory networks underlying phenotypic traits, including
flower color5. So far, pigment analyses for azalea flowers were
based on pigment type and composition percentage; however,
their underlying genetic and regulatory mechanisms are largely
unknown. Recently, some of the flavonoid biosynthesis structural
genes were isolated from several Rhododendron species and cul-
tivars, and the spatiotemporal expression patterns of some key
node-genes were analyzed3,4,6. Although two Rhododendron
genomes were released recently, both were obtained by Illumina
short read sequencing7,8. The lack of a high-quality Rhododen-
dron species whole-genome sequence has seriously hampered the
unraveling of their color formation, in spite of the known long-
term breeding history3,8.

Here, we present a chromosome-scale genome assembly for R.
simsii. The genome of R. simsii is determined by a combination of
long-read sequencing and Hi-C scaffolding technologies. In total,
a 529Mb genome sequence is assembled, and >91% of the gen-
ome could be anchored on 13 chromosomes with a scaffold N50
of 36Mb. We detect the remnants of a whole genome duplication
and find tandem and other small-scale gene duplications to be the
key drivers for gene family expansions. Furthermore, we unravel
the metabolic co-expression network of flower pigmentation and
identified the structural genes, and their potential regulators, of
flower coloring through time-ordered comparative transcriptome
analyses. The availability of this reference genome sequence and
information on the molecular basis and the genetic mechanisms
governing flower color in Rhododendron present valuable
resources for the development of consumer-oriented selective
breeding novelties of azalea.

Results
R. simsii genome assembly and annotation. The genome size of
R. simsii (Supplementary Fig. 1) estimated with K-mer analysis to
be ~525Mb (Supplementary Fig. 2) was larger than its size esti-
mation by flow cytometry for yet unresolved reasons (Supple-
mentary Table 1). We produced 100× coverage of PacBio long-
read sequencing data, 170× coverage of short reads of PCR-free
Illumina sequencing, and 100× coverage of Hi-C paired-end reads
(Table 1 and Supplementary Fig. 3). After primary assembly,

comparison, correction, polishing, and scaffolding, a final
assembly of 529Mb was obtained. The assembly is slightly larger
than the estimated genome size, which may be due to high het-
erozygosity (~1.78%, estimated with K-mer frequency, see Sup-
plementary Note 1 for details). After mapping the Illumina reads
to the final assembly, single nucleotide polymorphisms (SNPs)
were identified with SAMtools9 (with default settings) and
obtained a SNP heterozygosity level of ~1.07% and a single base
error rate of ~0.0054% was obtained. There was no obvious GC
bias in the sequencing data from PacBio single-molecule real-time
(SMRT) technology; however, a GC bias was detected for the
Illumina sequencing data (Supplementary Fig. 4), confirming the
advantage of PacBio SMRT technology over Illumina for genome
sequencing10, in addition to the longer read length provided.

The final assembly consisted of 911 contigs and 552 scaffolds
(13 chromosome-level scaffolds, one chloroplast genome, one
mitochondrial genome, and 537 super contigs) with contig N50
of 2.2 Mb and scaffold N50 of 36Mb (Table 1, Supplemen-
tary Tables 2, 3 and Supplementary Fig. 5). The number of
chromosome-scale super scaffolds is consistent with the species’
determined chromosome number of 1311. The high fidelity of the
assembly was supported by the high 10-fold minimum genome
coverage of 99.3% (Illumina) and 98.6% (PacBio), and the high
mapping rates of 93.3% (Illumina) and 90.9% (PacBio). The high
completeness of this assembly was also evidenced by a 93.7%
(1349 genes) Benchmarking Universal Single Copy Orthologs
(BUSCO) recovery score12 (Table 1 and Supplementary Table 4),
which is better compared to two recently released Rhododendron
genomes7,8 obtained by Illumina short read sequencing (Supple-
mentary Fig. 6). Judged by the high long terminal repeat (LTR)
Assembly Index (LAI)13 score of 18.10, the R. simsii genome
attained reference level quality.

We predicted 34,170 genes, and the average lengths for total
gene regions, transcript, coding sequence (CDS), exon sequence,
and intron sequence are 5089.2, 1416.3, 1288.7, 259.7, and
403.1 bp, respectively (Table 1 and Supplementary Table 5). A
total of 32,999 protein-coding genes were predicted, which is
considerably more than those annotated for the R. williamsianum
genome (23,559 genes)7, but similar to those for the R. delavayi
genome (32,938)8 (Table 1). In addition, we predicted 482 tRNAs,
64 rRNAs including eight 28S, six 18S and 50 5S rRNAs, and 625
other non-coding RNAs (211 miRNAs, 16 tRNAs and 158 snoR-
NAs) (Table 1 and Supplementary Table 6).

Among the predicted protein-coding genes, 96.44% could be
annotated through at least one of the following protein-related
databases: the NCBI non-redundant protein database (NR)
(85.70%), the Swiss-Prot protein database (57.80%), the Trans-
lated European Molecular Biology Laboratory (TrEMBL) data-
base (84.90%), the protein families database (Pfam) (73.60%), and
the Gene Ontology (GO) database (57.54%) (Table 1 and
Supplementary Table 7).

R. simsii is an ancient polyploid. A phylogenetic tree was con-
structed for the 15 species of asterids and two outgroup species,
using 806 orthogroups (see “Methods” section). The phylogenetic
relationship between and within the main clades (Asterid I,
Asterid II, and Ericales) agree with previous studies14–17. Mole-
cular dating suggests that R. simsii diverged from the most recent
common ancestor of R. delavayi and R. williamsianum around
14.54 Mya, following the divergence of Rhododendron and Vac-
cinium corymbosum18 around 55.93 Mya (Fig. 1a).

Synonymous substitutions per site (Ks) age distributions and
collinearity/synteny analyses unveiled evidence for an ancient
whole-genome duplication (WGD) event in the lineage leading to
Rhododendron, around 78Mya (Fig. 1a) (see “Methods” section
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for details), with three Rhododendron species (R. simsii, R.
delavayi, and R. williamsianum) showing signature Ks peaks at
about 0.65 (Fig. 1b lower left). Moreover, intra-genomic analysis
showed that 18.83% of the genome lies within duplicated
segments (6,213/32,999 collinear genes distributed along 289
duplicated blocks; Supplementary Table 8). We also built a gene
homology dot plot from one randomly selected set of chromo-
somes from the tetraploid V. corymbosum and the 13
chromosome-level scaffolds of R. simsii (Supplementary Fig. 7).
Homologous regions showed a 1:1 correspondence, suggesting
that azalea did not share the recent WGD event reported for
blueberry18. At the same time, we detected a 2:1 syntenic
relationship between R. simsii and Vitis vinifera14, a 4:2 syntenic
relationship between Actinidia chinensis19 and R. simsii, and a
4:1 syntenic relationship between V. corymbosum and V. vinifera,
which provide additional evidence for a WGD event in the
common ancestor of Rhohodendron, Vaccinium, and Actinidia
(Fig. 1a and Supplementary Fig. 7). Apart from the WGDs
described above, Ks distributions also provide evidence for WGDs
in Camellia sinensis20 (Ks peak at 0.45 and duplication time
around 68 Mya) and Camptotheca acuminata21 (0.4 and 62 Mya,
respectively) (Fig. 1b lower left).

We also calculated Ks values of one-versus-one orthologs
between V. vinifera and five asterids species (R. simsii, R. delavayi,
R. williamsianum, C. sinensis, and C. acuminata) and calculated
the number of substitutions per synonymous site per year (r) with
the formula, following r= Ks/(2 × (divergence time))16. From this
relative rate test, we found that species from Ericales and
Cornales have a similar substitution rate (Fig. 1b upper right).

Gypsy dominated pericentromeric regions in R. simsii. We
predicted 954,329 repeat elements, totaling 250,988,768 bp
(47.48%) sequence of the assembled genome, containing pre-
dominantly known transposable elements (TEs) (25.56%),
uncharacterized TEs (19.24%), and a smaller proportion of simple
repeats (1.41%). Repeat annotations are provided in Supple-
mentary Fig. 8 and Supplementary Table 9. The uncharacterized
(unknown) TEs may contain highly degenerated TE copies or
lack distinct protein-coding sequences required for further clas-
sification. More work is needed to elucidate the structural and/or
sequence diversity of the uncharacterized TEs.

Long terminal repeat retrotransposons (LTR-RTs) represented
the highest portion (17.01%) in the genome, with superfamilies of
Gypsy (11.90% of the genome sequence) and Copia (4.00%) being
dominant. However, we found that R. simsii features low LTR-RT
accumulation (S+ T+ I= 14,577) but high removal rates
(proportion of LTR clusters with S:I > 3), where S is solo-LTR,
T is truncated LTR-RT and I is intact LTR-RT (Supplementary
Fig. 9 and Supplementary Table 10), which may be one reason for
the overall lower proportion of TE in R. simsii than in other
species analyzed here.

A total of 825 intact Gypsy (8.68 Mb) and 1303 intact Copia
(8.20 Mb) LTR-TRs were identified across the whole R. simsii
genome, with recent bursts, as well as a single ancient
amplification peak predicted at ~2 Mya for most clades of both
Gypsy and Copia (Supplementary Fig. 9 and Supplementary
Table 11). Overall, we found 10.5-84.1% among the different
subgroups of Gypsy and Copia preferentially residing in gene
regions, particularly the chloroplast RNA splicing and ribosome

Table 1 The statistics for genome sequencing of Rhododendron.

R. simsii R. delavayi R. williamsianum

Sequencing
Raw bases of WGS-PacBio Sequel (Gb) 51.15 * *
Raw bases of WGS-Illumina (Gb) 91.49 336.83 *
Raw bases of Hi-C (Gb) 55.681 * *
Raw bases of mRNAseq (Gb) 422.149 * *

Assembly
Genome size (Mb) 528.6 695.1 532.1
Number of scaffolds 552 193,091 11,985
N50 of scaffolds (bp) 36,350,743 637,826 218,828
L50 of scaffolds 7 * *
Chromosome-scale scaffolds (bp) 481,946,564 (91.17%) 0 368,385,547 (69%)
Number of contigs 911 * *
N50 of contigs (bp) 2,234,511 61,801 *
L50 of contigs 66 * *
Number of Gap 359 * *
Complete BUSCOs 93.68% 92.80% 89%
GC content of the genome (%) 38.91% * *

Annotation
Number of predicted genes 34,170 * *
Number of predicted protein-coding genes 32,999 32,938 23,559
Average gene length (bp) 5,089.22 4,434.22 4,628
Average CDS length (bp) 1,288.73 1,153.21 *
Average exon per transcript 5 4.62 5.68
Number of tRNAs 482 * *
Number of rRNAs 64 * *
Repeat sequences (bp) 250,988,768 (47.48%) 359,874,503 (51.77%) *
Annotated to Swiss-Prot 19,079 (57.80%) 22,693 (68.90%) *
Annotated to PFAM 24,301 (73.60%) * *
Annotated to GO 25,038 (75.90%) 16,471 (50.00%) 18,538 (79%)
Annotated to KO 11,506 (34.90%) * *

The assembly for R. simsii was compared with two previously reported genome assemblies for Rhododendron species, R. williamsianum, and R. delavayi. Asterisk (*) indicates data were not shown in the
original articles.
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Fig. 1 Genome evolutionary history. a Chronogram showing divergence times and genome duplications in asterids (asterid II, asterid I, Ericales, and
Cornales), with node age and the 95% confidence intervals labeled. Resolved polyploidization events are shown with blue (duplications) and red
translucent dots (triplications). Pie charts show the proportions of gene families that underwent expansion or contraction. Predicated WGD only shown for
Ericales and Cornales. *WGD identified in this study. #WGD reported in Wang et al.69. %WGD reported in Colle et al.18. b Ks distribution on the upper right
(insert) is showing Ks distribution from orthologs between Vitis vinifera and each of the five species (Rhododendron delavayi, R. simsii, R. williamsianum,
Camellia sinensis, and Camptotheca acuminata). Ks distribution in the lower left showing Ks distribution from paralogs within Rhododendron delavayi, R. simsii,
R. williamsianum, Camellia sinensis, and Camptotheca acuminata. c Synteny and distribution of genomic features. a, the density of Ogre, a family of Gypsy LTR-
RT. b, the density of Tekay, a family of Gypsy LTR-RT. c, The density of all Gypsy LTR-RT. d, the density of all Copia LTR-RT. e, gene density. f, histogram of
GC content. A map connecting homologous regions of the genome is shown. The red lines represent syntenic regions for the WGD event (78 Mya) and
blue lines represent γ-WGD event. The line segments of bold gray in outer circles indicate predicated centromeres and pericentromeric regions on the 13
chromosomes.
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maturation (CRM) family of Gypsy (57.63%) and the Ale family
of Copia (52.73%), Supplementary Figs. 10a, b and Supplemen-
tary Table 11. However, most members of Gypsy and Copia were
found 3-5 Kb distant from genic regions (Supplementary Fig. 10c).
Insertion dynamics were similar between LTR-TRs proximal to
and far away from genes, and among subgroups of both Gypsy
and Copia (Supplementary Figs. 10d, e and f).

Gene density decreased and GC content increased from the
chromosome ends towards the centromeres (Fig. 1c and
Supplementary Fig. 11). We found that the accumulated Gypsy
elements tend to be clustered in the pericentromeric regions,
particularly Tekay and Ogre, yet there was a relatively even
distribution for Copia elements along the chromosomes. More-
over, it was found that more Copia elements experienced positive
selection (Ka/Ks > 1) in their reverse transcriptase (RT) domains,
while RT domains of Gypsy elements showed lower Ka/Ks ratios
and relatively smaller Ka values (Supplementary Fig. 12). The
distinct behaviors of Gypsy and Copia remain to be elucidated.

TD/PD contributed to gene family expansion in R. simsii. We
identified 29,396 duplicated genes that were classified into five
different categories: 6056 whole-genome duplicates (WGD
duplicates, 18.4%), 4746 tandem duplicates (TD, 14.4%), 3732
proximal duplicates (PD, 11.3%), 6399 transposed duplicates
(TRD, 19.4%), and 8463 dispersed duplicates (DSD, 25.6%) (see
“Methods” section, Supplementary Fig. 13). We compared the Ks
and Ka/Ks distribution among different modes of gene duplica-
tion. Higher Ka/Ks ratios and smaller Ks values were found for
tandem and proximal duplicate gene pairs (Fig. 2a and Supple-
mentary Fig. 14), suggesting an ongoing and continuous process
for tandem and proximal duplications and more rapid sequence
divergence and stronger positive selection than genes originated
through other duplication modes.

All predicted gene models for the 17 species were clustered
using OrthoFinder (version 2.3.1)22, resulting in 22,455
orthogroups (Supplementary Tables 12 and 13). Using CAFÉ
(version 4.0)23, 1515 gene families (6,754 genes) were found to be
expanded, while 1657 gene families were found to be contracted
in R. simsii, with 57.6% of the expanded gene families (EGFs) due
to TD and PD duplications (Fig. 2b). Hypergeometric tests were
performed for overlapping genes between expanded gene families
and WGD-TD-PD-TRD-DSD (Fig. 2c). TD-EGFs and PD-EGFs
genes were found exhibiting divergent enriched GO terms. For
example, TD-EGFs enriched categories are implicated in plant
self-defense, development and adaptation, while PD-EGFs genes
are enriched in GO terms involved in ‘binding’ and ‘recognition’.
In brief, newly generated tandem and proximal duplications have
been important sources of gene family expansion in R. simsii
(Supplementary Fig. 14).

To verify whether the identified tandem gene clusters are real
and not artificial due to errors in the genome assembly, we
mapped our PacBio long-reads back to the assembly, and
examined whether the pair of adjacent tandem duplicated genes
or the intergenic region could be fully or partially recovered by
the mapped long-reads. We indeed found that most (79–87%) of
the duplicated genes could be recovered, fully or partially, both
for transcription factor (TF) or anthocyanin/flavonol biosynthetic
genes (Supplementary Fig. 15). These results provide very good
evidence for the true existence of tandem gene clusters.

Flowering-time genes in R. simsii. We detected 424 genes related
to flowering-time control in R. simsii by querying the Flowering
Interactive Database, FLOR-ID24, in which 295 flowering-time
genes are functionally characterized for Arabidopsis. With regards
to gene function, the categories ‘General’ and ‘Photoperiodism,

light perception and signaling’ were represented in large pro-
portions of 37.26% (158) and 20.99% (89) among all flowering-
time control genes (Fig. 2d). There was a clear time-gradient of
expression of the flowering-time related genes (Supplementary
Fig. 16) across the five examined flower coloring stages. In
addition, we identified a gene family (OG0000614) encoding 13
members of high-affinity sucrose transporters that may play key
roles in flowering transition delay25. This gene family was iden-
tified by CAFÉ as being expanded in azalea, and its members
showed continuous upregulation in the corolla during the flow-
ering time-series (Supplementary Fig. 16).

Flower pigmentation genes in R. simsii. Our high-quality gen-
ome assembly allowed reconstruction of the metabolic pathway
for flower coloration, specifically capturing the implicated enzy-
matic genes in this process. We unveiled 58 genes encoding
enzymes functioning in the carotenoid biosynthesis pathway
(Supplementary Fig. 17) and 125 enzymatic genes with predicted
functions in anthocyanin and flavonol biosynthesis (Fig. 3 and
Supplementary Fig. 18). Flavonoids are synthesized by a branched
pathway that yields both colored anthocyanin pigments and
colorless flavonols. Furthermore, we predicted five genes encod-
ing three enzymes of blue-anthocyanins modification, including
one anthocyanin 5-(6”‘-hydroxycinnamoyltransferase) (5AT|
3AT, one of gentiodelphin-acyltransferase, EC 2.3.1.153), two
ternatin C3-acyltransferases (ternatin C3-AT, EC 3.2.2.24), and
two viodelphin-glucosyltransferases (viodelphin-GT, EC 2.3.1.-)
(Fig. 3 and Supplementary Fig. 18).

Gene duplication events linked to flowering time and color. TD
genes were found to be enriched for GO terms related to sec-
ondary metabolic biosynthetic and modification processes
(Fig. 2c). Furthermore, the proportion of TD/PD genes linked to
flower coloration was significantly higher in R. simsii than that in
related species (Supplementary Table 14). Counting the number
of enzymatic genes in tandem or proximal gene clusters unveiled
that TD/PD duplications substantially contributed to the
observed proportions of enzymatic genes for the anthocyanin/
flavonol versus the carotenoid biosynthesis pathway. TD/PD
duplications affected 17% of genes for carotenoid biosynthesis in
the R. simsii genome (Supplementary Fig. 17 and Supplementary
Table 15) and 42% of the genes for anthocyanin/flavonol bio-
synthesis (Fig. 3 and Supplementary Table 15), respectively. In
addition, important TD/PD events were also found for 52.63%
(10/19) of the genes coding for 4CL (4-coumarate: CoA ligase 4;
EC 6.2.1.12), 57.14% (8/14) encoding CHS (chalcone synthase;
EC 2.3.1.74), 60% (3/5) encoding DFR (dihydroflavonol 4-
reductase; EC 1.1.1.219), 48.48% (16/33) encoding F3H (flava-
none 3-hydroxylase; EC 1.14.11.9), 35.29% (6/17) encoding FLS
(Flavonol synthase; EC 1.14.11.23), 55.56% (10/18) encoding F3′
H (flavonoid 3′-hydroxylase; EC 1.14.13.21), 58.33% (7/12)
encoding F3′5′H (flavonoid 3′,5′-hydroxylase; EC 1.14.13.88)
(Fig. 3). The diversity of the expression patterns indicates that
further studies are necessary to verify and characterize the
functions of the TD/PD duplicates.

In contrast, TD and PD duplications seem to have accounted
for much lower proportions of expansions of flowering-time
genes (6.82% (30/424) and 6.84% 424), respectively)/424),
respectively), while WGD appears to have contributed the largest
proportion (159/424, 37.5%) of flowering-time control gene
copies and more than other modes of gene duplication (Fig. 2d).
Interestingly, genes involved in flowering-time control are mostly
present as low-copy gene families, 101 genes from single-copy
families, 128 genes from dual-copy families and 60 genes from
triple-copy families (Supplementary Fig. 19).
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The dynamics of flower pigmentation regulation in R. simsii.
We performed time-ordered comparative transcriptome analyses
(Fig. 4a and Supplementary Fig. 20) and found 8067 genes (618 TFs
and 7,449 structural genes) expressed with an average Transcripts
Per Kilobase Million (TPM) greater than 0.5 and exhibiting sig-
nificant differentiation between any two samples among the five
flowering time stages (T1–T5). As the initial node, a basic helix-
loop-helix (bHLH) transcription factor (Rhsim13G0024200), highly
expressed at the very first time point but not later, was selected to
generate a time-ordered gene co-expression network (TO-GCN)26.
Eight time-series expression levels (L1-L8, nodes >20) centering on
TFs were finally reconstructed using the suggested26 positive/
negative cutoff values (0.81; −0.57) (Fig. 4b). TO-GCN revealed a
co-expression network involving the 618 differentially expressed
TFs and 62 genes from the carotenoid/anthocyanin/flavonol bio-
synthesis pathways (Fig. 4b). Time-course transcriptomes were
further distinguished for the initial (T1, flower appears white and
semi-transparent), the transitional (T2 and T3 for light red flower),
and the terminal (T4 and T5 for the determined red flower color)
stages of corolla pigmentation (Fig. 4c).

The general pattern elucidated that most network members
(358, including 328 TFs) appeared at the initial stage (T1), 177
genes (including 150 TFs) at the terminal stage (T4–T5) and 70
genes (65 TFs) at the transitional stage (T2–T3). Likewise, T1
(corresponding to time-series levels L1–L3) showed the highest
TPM, followed by genes assigned to the transitional stage (T2–T3,
corresponding to L4–L5), and finally the genes that were
expressed at the terminal red color determining stage (T4–T5,
corresponding to L6–L8). Functional enrichment analysis
revealed that distinct gene functions are turned on and off,
respectively, at these different stages (Supplementary Fig. 21). Yet,
some genes encoding key biosynthetic enzymes in color
determination tend to be continuously upregulated, such as
those in the carotenoid biosynthesis pathway encoding phytoene
synthase (PSY; EC 2.5.1.32), carotene isomerase (CRTISO; EC
5.2.1.13) (Supplementary Fig. 17), and anthocyanidin synthase
(ANS; EC 1.14.11.19) in the anthocyanin biosynthesis pathway
(Fig. 3).

More specifically, at the initial stage (T1), we found that 14
enzymatic genes of the carotenoid biosynthesis expressed at high
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levels (Fig. 5a and Supplementary Table 16). Among the 194 TFs
that appeared as potential direct regulators of these enzymatic
genes, WD40 family members were most numerous (21). For
anthocyanin/flavonol biosynthesis, we detected 16 enzymatic
genes expressed at high levels at T1 (Fig. 5b and Supplementary
Table 16), and 120 TFs as their potential direct regulators. For
genes implicated in the sub-network (Fig. 5c) for anthocyanin/
flavonol biosynthesis and their associated bHLH, WD40, and
MYB TFs (Supplementary Table 17), a clear gene expression
decline was evident (Supplementary Fig. 22), exemplified for
some of these TFs and their direct target, a dihydrokaempferol
biosynthetic gene F3H (Rhsim11G0126300) (Fig. 5b–d).

The terminal coloration stage (T4–T5) showed maximal
expression for substantial numbers of TFs and pigment
biosynthetic genes. For anthocyanin/flavonol biosynthesis, we
predicted that seven enzymatic genes (Supplementary Table 16
and Fig. 6a) expressed at high levels were directly regulated by 74
potential regulators, mostly ethylene-responsive element binding
factors (ERFs) (19) and WRKY (16) family members. The
phylogenies, conserved motifs and gene structures of these TFs
associated with flower coloration were further examined
(Supplementary Figs. 23 and 24).

F3H represents an important rate-limited enzyme in anthocya-
nins/flavonols synthesis, but its upstream regulators have remained
elusive. By examining the co-expression network inferred from

TO-GCN (Fig. 6b, c), we identified the potential first-order to
third-order upstream regulators. Here, we identified one F3H gene
(Rhsim03G0111400) as the hub within the potential regulatory
network relationships involving 14 TFs (Fig. 6c). We could
infer that this F3H gene may be regulated in a hierarchical order
by WRKY Rhsim05G0226500 as the third regulator, either GRAS
Rhsim13G0080100 or C3H Rhsim13G0068400 as the intermediate
second regulator, and MYB Rhsim08G0132300 or C2H2 Rhsim
10G0164300 as the direct regulator. When we incorporated the
DNA binding site predictions, we found C2H2 may be the sole
intermediary regulator in the hierarchy, since only a C2H2 binding
site was identified 5’ upstream of the F3H gene. By comprehen-
sively examining the putative hierarchical gene regulation for all
key enzymatic genes in anthocyanin/flavonol biosynthesis path-
ways (Fig. 6c and Supplementary Fig. 25), WRKY Rhsim
05G0226500 was identified as an important upstream regulator
in these pathways.

Discussion
We here describe a chromosome-scale genome assembly for a key
parental species of the cultivated azalea, Rhododendron simsii
(Ericales). In the asterids clade of the eudicot plants, representing
~25% of all flowering plant species27, we dated a whole-genome
duplication in the Ericales lineage around 78 Mya. We believe this
WGD event to be shared between Ericaceae and Actinidiaceae, as
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also suggested previously by Wei et al.20, while Soza et al.7 even
suggested this WGD to have occurred in the common ancestor of
Ericaceae, Actinidiaceae, and Theaceae. TD/PD, known to act as
important drivers to increase gene product dosage28 and to
accelerate the metabolic flux for rate limiting steps in certain
biosynthetic pathways29, were found to be highly enriched in
certain gene families30. We found that TD/PD duplications in
azalea have substantially contributed to the proportions of
enzymatic genes for the anthocyanin biosynthesis pathway, highly
suggestive of the important role of TD/PD events in shaping
flower color diversity.

Genetic modification in pigment biosynthetic pathways would
provide a powerful method for obtaining novel flower colors
beyond genetic constraints that are difficult to overcome through
conventional breeding. Previous studies have characterized indi-
vidual genes encoding relevant enzymes and gene transcription
factors underlying pigment formation for floral crops4,31,32.
Nevertheless, despite the studies on pigment composition for
Rhododendron dating back to the 1950s3,33, the molecular basis of
azalea flower coloration has remained elusive6, since, so far, only

preliminary expression analysis was performed and for a limited
number of structural genes.

Based on the chromosome-scale genome sequence of R. simsii
presented here, in combination with the functional mapping and
time-ordered transcriptome analysis, we first reconstructed the
entire metabolic pathways for anthocyanin/flavonol/carotenoids
biosynthesis in Rhododendron. The resolved pathways unravel
that a MYB-bHLH-WD repeat (MBW) complex34 composed of
MYB, bHLH, and WD40 TFs collectively regulates flavonoids
biosynthesis in flower tissues. Importantly, the time-ordered gene
co-expression networks for the terminal stage of flower devel-
opment show WRKY and ERF TFs at the center of the co-
expression network, with all involvedWRKYs belonging to Group
II. We speculate that members of these two TF families, known to
be responsible for biotic/abiotic stress responses35, may also be
involved in flower pigment biosynthesis, and likely play vital roles
in flower color intensity and patterning36.

Flower colors of potted azalea are restricted to red, pink, white,
reddish-purple, and purple, and providing yellow floral color has
been the dream of many azalea breeders. Here, we reconstructed
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the carotenoid biosynthesis pathway known to be responsible for
yellow, orange, or red pigments, as well as several genes encoding
key enzymes of blue-anthocyanin biosynthesis responsible for
blue pigment, none of which has been reported in Rhododendron.
Moreover, gene expression for the generation of myricetin,
kaempferol, and quercetin was detected as representatives of
flavonols, which may also be involved in the flower color for-
mation of Rhododendron33. These findings imply that potted
azalea has the genetic potential to produce yellow and even
extremely rare flower colors, such as violdelphin, and the genetic
basis for flower coloring in Rhododendron far exceeds our cog-
nition and it has great potential as a model plant for flower color
research.

This study uncovered that MBW complexes may regulate F3H
to control the biosynthesis of dihydroflavonols and subsequently
also control anthocyanin/flavonol metabolism, suggesting that
F3H should be a key node gene in regulating flower color for-
mation in azalea. Moreover, the gene co-expression networks for
metabolic pathways revealed that a specific WRKY transcription
factor may play a core role in regulating flower coloration in
azalea. We present a co-expression network for flower coloration,
and inferred the potential contribution of individual members of
transcription factor gene families, as well as structural genes
involved in this regulatory process, a result that will allow for
further functional investigation.

In conclusion, the reference genome sequence presented in this
study provides a key resource for the further development of
hypotheses and techniques in plant biotechnology, such as
molecular marker-assisted breeding and genome editing, which
are necessary to aid Rhododendron horticulture research and
increase the efficiency for Rhododendron breeding.

Methods
Rhododendron simsii plant material. We sequenced the entire genome of a 20-
year-old Rhododendron simsii individual originating from Jingshan, Hubei Pro-
vince, China, and performed de novo genome assembly (Supplementary Fig. 1).
This shrub had been transplanted to the Botanical Garden, Institute of Botany,
Chinese Academy of Science, Beijing, China, and from which different plant tissues
were sampled: fully expanded leaves were used for genome sequencing library
preparation, while flowers, young leaves, and young stems were sampled for RNA

sequencing (RNAseq) in support of genome annotation. Tissues were immediately
flash frozen and stored at −80 °C for subsequent nucleic acid extractions.

In addition, corolla samples of five developmental stages from five individuals
of R. simsii of the wild population selected for genome sequencing were collected to
unravel the gene regulatory network underpinning flower coloring. Fresh tissues
were first stored in RNAlater (Ambion, Life Technologies, Austin, TX, USA), then
conserved at −80 °C.

Library construction and sequencing of R. simsii. Total DNA was isolated and
extracted from the leaves using the DNeasy Plant Mini Kit (QIAGEN, Inc.) and
then purified using the Mobio PowerClean Pro DNA Clean-Up Kit (MO BIO
Laboratories, Inc.). For PacBio SMRT sequencing, sheared and concentrated DNA
was used to construct sequencing libraries with 20-kb DNA inserts and subse-
quently run on a PacBio RSII platform using P6-C4 chemistry (6 SMRT cells).
After data filtering and preprocessing, a total of 6.5 million PacBio long reads were
generated, yielding ~50 Giga bases (Gb) (100× coverage) with an average read
length of 7705 base pairs (bp).

For Illumina sequencing, 150-bp paired-end (PE) libraries were prepared for
sequencing on an Illumina HiSeq X Ten platform. Short reads were processed with
fastp (version 0.19.3)37. Finally, we obtained ~91.49 Gb of raw sequencing data
(corresponding to roughly 170× the assembled genome).

One Hi-C library prepared with MboI restriction enzyme was sequenced on
Illumina HiSeq X Ten to generate ~55.68 Gb of valid data from 150 PE reads.
Different tissues (stem, leaf, and flower) were used for constructing mRNA
sequencing libraries; 150 bp PE sequencing was performed on an Illumina HiSeq X
Ten machine.

More details on sample preparation and sequencing are available in the
Supplementary Note 2 and 3.

De novo genome assembly of R. simsii and quality control. De novo genome
assembly employed the three following steps: primary assembly, Hi-C scaffolding
and polishing. First, eight versions of the primary assemblies were generated by
SMARTdenovo (see “URLs” section), WTDBG (version 2.1)38, Canu (version 1.7)39

and FALCON-Phase (version 0.1.0-beta) (see “URLs” section) from PacBio long
reads. Subsequently, we merged the two optimal assemblies, v0.3 (criteria: reason-
ably sized assembly, fewest contigs) and v0.4 (criterion: highest contig N50) by
quickmerge (version 0.2)40, further polished with one round of pilon (see “URLs”
section) using clean Illumina reads to generate assembly v1.0. Based on Hi-C data
and assembly v1.0, primary scaffolds were produced by 3D-DNA (version 180922)
(see “URLs” section). These scaffolds were roughly spilt by Juicebox (version 1.8)
(see “URLs” section) and another round of scaffolding by 3D-DNA (version
180922). Afterwards, we elaborately optimized the new scaffolds with gap closing by
LR_Gapcloser (version 1.1) (see “URLs” section) and five rounds of pilon polishing.

BUSCO and LAI were used to assess genome completeness and continuity.
Furthermore, we mapped 51.15 Gb PacBio sequencing reads, 91.49 Gb Illumina
reads, 403.67 Gb clean RNA-seq sequences, and 55.68 raw Hi-C data to the genome
assemble using BWA-MEM (see “URLs” section), minimap2 (version 2.11-r797)41,
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HiSat2 (version 2.1.0) (see “URLs” section) and Juicer (see “URLs” section),
respectively.

Additional details regarding genome assembly and quality control are provided
in the Supplementary Note 4.

Annotation of repeat elements and genes for R. simsii. Repeat elements were
identified by a combination of homology-based and de novo approaches using
RepeatModeler (version 1.0.10) (see “URLs” section) and RepeatMasker (version
4.0.7, rmblast-2.2.28) (see “URLs” section). Furthermore, we examined classifica-
tion, age distribution, birth and death of LTR-RTs (17.01% of the annotated
genome). In addition, amino acid sequences of intact RT domains of the Copia and
Gypsy superfamily were retrieved to perform selection pressure analyses with
codeml42.

De novo and reference genome-guided transcriptome assemblies were
constructed and combined as evidence for coding gene prediction. Coding gene
structures were predicted by MAKER2 pipeline43 applied to the repeat-masked
genome with three main approaches (ab initio predictions, homolog proteins and
transcriptome data). Non-coding RNAs (ncRNAs) were annotated using several
databases and software packages: tRNAscan-SE (version 1.3.1)44, RNAmmer
(version 1.2)45, Rfam database (version 9.1) (see “URLs” section), and BLASTn
(version 2.2.28+). Gene functions were annotated according to both homology and
similarity searches by blat (version 36)46 with 30% identity and 1e−05 E-value
cutoff and domain similarity prediction strategies using InterProScan (version
5.27-66.0) (see “URLs” section).

Locations of all centromeres within the genome were inferred with Centurion47

based on corrected Hi-C data and the tendency of formed clusters in three-
dimensional space.

Additional details are available in the Supplementary Note 5.

Inference and analysis of orthogroups for asterids. To retrieve the evolutionary
history of the asterids clade, a total of 22,455 orthogroups of azalea and 16 repre-
sentative plant species (Supplementary Tables 12 and 13) were identified by using
OrthoFinder (version 2.3.1)22. Then, OrthoFinder provides a formalized procedure
for determining 806 low-copy orthologs with minimum of 76.5% of species having
single-copy genes in any orthogroup. The concatenated amino acid sequences
alignment was created by MUSCLE (version 3.8.31)48 and trimmed with trimAI
(version 1.2) (trimal -gt 0.8 -st 0.001 -cons 60)49. And then a maximum likelihood
(ML) phylogenetic tree was constructed using IQ-TREE (version 1.6.7)50 with the
selected optimal sequence evolution model (-m JTT+ F+ R5) and with ultrafast
bootstrapping (-bb 1000)51 using Vitis vinifera and Arabidopsis thaliana as out-
groups. The ML tree was then used as an input tree to estimate the divergence time
using the MCMCTree program in the PAML package (version 4.9 h)42 with two
fossils and a soft bound at three nodes: (1) the stem node of Rhododendron (56
Mya)52, (2) the crown node of Ericales (89.8 Mya)53, (3) asterids-rosids (116–126
Mya)54 as constraints for calibrating the age of our tree. The expansion and con-
traction of gene families were inferred with CAFÉ (version 4.1)23 based on the
chronogram of these 17 species.

Genome duplication and intergenomic comparison for asterids. To investigate
genome evolution across asterids, we searched for genome-wide duplications in the
order Cornales and Ericales. First, we identified different modes of gene duplication
as whole-genome duplicates (WGD), tandem duplicates (TD), proximal duplicates
(less than 10 gene distance on the same chromosome: PD), transposed duplicates
(transposed gene duplications: TRD), or dispersed duplicates (other duplicates than
WGD, TD, PD and TRD: DSD) using DupGen_finder55 with default parameters.
Second, the Ka (number of substitutions per nonsynonymous site), Ks (number of
substitutions per synonymous site), and Ka/Ks values were estimated for gene pairs
generated by different modes of duplication based on the YN model in KaKs_-
Calculator (version 2.0)56, after conversion of amino acid alignments into the
corresponding codon alignments with PAL2NAL (version 14)57.

For intergenomic comparison, we compared Vitis vinifera genome with five
asterids species (Camellia sinensis, Camptotheca acuminata, Rhododendron
delavayi, R. williamsianum, R. simsii), and also compared R. simsii genome with
that of Actinidia chinensis and a haplotype of Vaccinium corymbosum. The
orthologs between these species were identified using MCScanX_h58. Subsequently,
Ks substitution rates of gene pairs across syntenic blocks were calculated. Finally,
we illustrated Ks distribution and the dotplots of orthologous blocks using
MCScanX58.

WGD time was estimated with asterids-rosids divergence time (mean: 121 Mya)54

as an age constraint. Ks peaks of V. vinifera vs. five species (Camellia sinensis,
Camptotheca acuminata, R. delavayi, R. williamsianum, and R. simsii) syntenic
orthologs allows calculating Ks per year (r) following r=Ks/(2 × (divergence time))16.
We applied the same r value to calculate the time of WGD events for each
species.

Flowering time and flower color genes. We searched for homologs of flowering
time control genes in A. thaliana by querying FLOR-ID24, a recently developed
database which categorizes 295 protein-coding and 11 miRNA genes and describes
their interactions within Arabidopsis’ genome. Flower color is mainly determined by

anthocyanins and carotenoids4,5,32. Given the importance of anthocyanins/car-
otenoids accumulation in R. simsii, we annotated genes associated with the antho-
cyanins/carotenoids biosynthesis pathways by querying the Plant Metabolic
Network59 and validated by Semi-Automated Validation Infrastructure (version 3.02)
59, after enzymatic protein annotations for coding genes through the Ensemble
Enzyme Prediction Pipeline (E2P2) package (version 3.1) (see “URLs” section).

R. simsii transcription factors. We used PlantRegMap60 to identify TFs in the R.
simsii genome. Among all identified transcription factors, we further analyzed the
phylogeny, gene conserved motifs, and protein structures of MYB, bHLH, WD40,
WRKY and ERF. Additional details are available in the Supplementary Note
6 and 7.

Metabolic pathways construction based on TO-GCNs. In order to identify core
genes of flower timing and color development, we performed a gene expression
study using full transcriptome data. For the gene expression study, 25 frozen
corolla tissues from five developmental stages and five-times replicates were ground
with a mortar and pestle and RNA was isolated using the NEBNext Poly (A)
mRNA Magnetic Isolation Module. RNA quality was determined on an Agilent
2100 BioAnalyzer. All of the 25 sequencing libraries were prepared using the
NEBNext Ultra RNA Library Prep Kit for Illumina. Next, 150 bp PE mRNA
sequencing was performed on an Illumina HiSeq X Ten. These Illumina reads were
processed using Trimmomatic (version 0.36)61 and Cutadapt (version 1.13)62, and
then mapped to the final assembly using HiSat2 (version 2.1.0). Only uniquely
mapped paired-end reads were retained for read counting of the annotated genes
by featureCounts63 to generate the count and Transcripts per Kilobase Million
(TPM) tables. Differential gene expression (DEG) analyses between the five stages
were performed with DEseq264, with 0.05 as the FDR cut-off and a log2 fold
change (FC) cut-off of 1 (Supplementary Fig. 20).

We used a recently developed method for reconstructing time-ordered gene co-
expression networks (TO-GCNs26). Significantly differentially expressed genes
with average TPM less than 0.5 were excluded. The Pearson correlations between
618 TFs and 7,449 genes less than −0.57 or above 0.81 in C1+ C2+GCN were
visualized in graphs using Cytoscape65.

Finally, 2 Kb sequences in the upstream of six core genes (Rhsim03G0111400,
Rhsim08G0132300, Rhsim10G0164300, Rhsim11G0126300, Rhsim13G0068400, and
Rhsim13G0080100) were extracted and queried against PlantRegMap and
PlantCARE66. TF binding sites uncovered by PlantRegMap were illustrated with R
package drawProteins67 (Figs. 5d and 6b). Additional details regarding TFs are
provided in the Supplementary Note 8.

Gene functional enrichment. Hypergeometric tests were performed to determine
whether specific functional categories from GO were significantly overrepresented
in R. simsii gene sets within the genome. Functional enrichment was tested using
the R package clusterProfiler (version 3.6.0)68 with the background set of all
annotated R. simsii genes in this study.

URLs. SMARTdenovo [https://github.com/ruanjue/smartdenovo]; FALCON-Phase
(version 0.1.0-beta) [https://github.com/WGLab/EnhancedFALCON]; Pilon
[http://github.com/broadinstitute/pilon]; 3D-DNA (version 180922) [https://
github.com/theaidenlab/3d-dna]; Juicebox (version 1.8) [https://github.com/
aidenlab/Juicebox]; LR_Gapcloser (version 1.1) [https://github.com/CAFS-
bioinformatics/LR_Gapcloser]; BWA-MEM [https://github.com/lh3/bwa]; HiSat2
(version 2.1.0) [https://github.com/infphilo/hisat2]; Juicer [https://github.com/
aidenlab/juicer]; RepeatMasker [http://www.repeatmasker.org]; RepeatModeler
[http://www.repeatmasker.org]; Rfam database (version 9.1) [http://eggnogdb.
embl.de]; InterProScan (version 5.27-66.0) [http://www.ebi.ac.uk/InterProScan];
PMN Ensemble Enzyme Prediction Pipeline (E2P2, version 3.1) [https://gitlab.
com/rhee-lab/E2P2]; Global Biodiversity Information Facility database [https://
www.gbif.org/]; database of retrotransposon protein domains (REXdb) [http://
repeatexplorer.org/]; Gypsy database [http://gydb.org]; Actinidia chinensis [ftp://
ftp.ncbi.nlm.nih.gov/genomes/all/GCA/003/024/255/GCA_003024255.1_Red5_
PS1_1.69.0/]; Arabidopsis thaliana [https://phytozome-next.jgi.doe.gov/info/
Athaliana_TAIR10]; Camellia sinensis [http://tpia.teaplant.org/download.html];
Camptotheca acuminata [https://datadryad.org/stash/dataset/doi:10.5061/dryad.
nc8qr]; Coffea canephora [http://coffee-genome.org/]; Daucus carota Daucus carota
[https://phytozome-next.jgi.doe.gov/info/Dcarota_v2_0]; Eucommia ulmoides
[ftp://download.big.ac.cn/gwh/Plants/Eucommia_ulmoides_hardy_rubberv0_
GWHAAAL00000000/]; Helianthus annuus [ftp://ftp.ncbi.nlm.nih.gov/genomes/
all/GCF/002/127/325/GCF_002127325.1_HanXRQr1.0]; Lactuca sativa [ftp://ftp.
ncbi.nlm.nih.gov/genomes/all/GCF/002/870/075/GCF_002870075.1_Lsat_Salinas_
v7]; Primula vulgaris [https://opendata.earlham.ac.uk/opendata/data/primula/
sci_reports_Cocker_et_al_2018/]; Rhododendron delavayi [http://gigadb.org/
dataset/100331]; Rhododendron williamsianum [https://genomevolution.org/
coge/GenomeInfo.pl?gid=51210]; Sesamum indicum [http://ocri-genomics.org/
Sinbase/]; Solanum lycopersicum [https://phytozome-next.jgi.doe.gov/info/
Slycopersicum_ITAG2_4]; Vaccinium corymbosum [http://gigadb.org/dataset/
100537]; Vitis vinifera [https://www.ncbi.nlm.nih.gov/assembly/GCF_
000003745.3].
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Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Data supporting the findings of this work are available within the paper and its
Supplementary Information files. A reporting summary for this Article is available as a
Supplementary Information file. The datasets generated and analyzed during this study
are available from the corresponding author upon request. The raw sequence data of R.
simsii genome sequencing and RNA sequencing have been deposited in NCBI under the
accession number SRP229032 (Bio-Project PRJNA588298). The final assembly is
available at DDBJ/ENA/GenBank under the accession number WJXA00000000. Genome
assembly, repeat and gene annotation, gene expression profiles could be downloaded and
explored online under URL http://rhododendron.plantgenie.org/. The source data
underlying Figs. 1a, 2a, 2b, 2d, 3, 4b, 5d, 6b, and Table 1, as well as Supplementary Figs. 5,
13, 14, 16–18, 21, 23 and 24 are provided as a Source Data file. Source data are provided
with this paper.

Received: 11 January 2020; Accepted: 11 September 2020;

References
1. Geng, Y. Y. The genus Rhododendron of China (Shanghai Scientific and

Technical Publishers, Shanghai, 2014).
2. Sleumer, H. Ein system der gattung Rhododendron L. Botanische Jahrb. Syst.

74, 511–553 (1949).
3. De Riek, J. et al. Ornamental Crops. 237–271 (Springer, Cham, 2018).
4. Tanaka, Y., Sasaki, N. & Ohmiya, A. Biosynthesis of plant pigments:

anthocyanins, betalains and carotenoids. Plant J. 54, 733–749 (2008).
5. Wessinger, C. A. & Rausher, M. D. Lessons from flower colour evolution on

targets of selection. J. Exp. Bot. 63, 5741–5749 (2012).
6. Mizuta, D., Ban, T., Miyajima, I., Nakatsuka, A. & Kobayashi, N. Comparison

of flower color with anthocyanin composition patterns in evergreen azalea. Sci.
Horticult. 122, 594–602 (2009).

7. Soza, V. L. et al. The Rhododendron genome and chromosomal organization
provide insight into shared whole genome duplications across the heath family
(Ericaceae). Genome Biol. Evol. 11, 3357–3371 (2019).

8. Zhang, L. et al. The draft genome assembly of Rhododendron delavayi Franch.
var. delavayi. Gigascience 6, 1–11 (2017).

9. Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-
Wheeler transform. Bioinformatics 25, 1754–1760 (2009).

10. Ross, M. G. et al. Characterizing and measuring bias in sequence data. Genome
Biol. 14, R51 (2013).

11. Chen, R. Chromosome atlas of major economic plants genome in China.
(Science Press, Beijing, 2003).

12. Simao, F. A., Waterhouse, R. M., Ioannidis, P., Kriventseva, E. V. & Zdobnov,
E. M. BUSCO: assessing genome assembly and annotation completeness with
single-copy orthologs. Bioinformatics 31, 3210–3212 (2015).

13. Ou, S., Chen, J. & Jiang, N. Assessing genome assembly quality using the LTR
Assembly Index (LAI). Nucleic Acids Res. 46, e126 (2018).

14. Jaillon, O. et al. The grapevine genome sequence suggests ancestral
hexaploidization in major angiosperm phyla. Nature 449, 463–467 (2007).

15. Iorizzo, M. et al. A high-quality carrot genome assembly provides new insights
into carotenoid accumulation and asterid genome evolution. Nat. Genet. 48,
657–666 (2016).

16. Badouin, H. et al. The sunflower genome provides insights into oil
metabolism, flowering and Asterid evolution. Nature 546, 148–152 (2017).

17. Chase, M. W. et al. An update of the Angiosperm Phylogeny Group
classification for the orders and families of flowering plants: APG IV. Bot. J.
Linn. Soc. 181, 1–20 (2016).

18. Colle, M. et al. Haplotype-phased genome and evolution of phytonutrient
pathways of tetraploid blueberry. Gigascience 8, giz012 (2019).

19. Pilkington, S. M. et al. A manually annotated Actinidia chinensis var. chinensis
(kiwifruit) genome highlights the challenges associated with draft genomes
and gene prediction in plants. BMC Genomics 19, 257 (2018).

20. Wei, C. et al. Draft genome sequence of Camellia sinensis var. sinensis
provides insights into the evolution of the tea genome and tea quality. Proc.
Natl Acad. Sci. USA 115, E4151–E4158 (2018).

21. Zhao, D. et al. De novo genome assembly of Camptotheca acuminata, a natural
source of the anti-cancer compound camptothecin. Gigascience 6, 1–7 (2017).

22. Emms, D. M. & Kelly, S. OrthoFinder: phylogenetic orthology inference for
comparative genomics. Genome Biol. 20, 238 (2019).

23. De Bie, T., Cristianini, N., Demuth, J. P. & Hahn, M. W. CAFE: a
computational tool for the study of gene family evolution. Bioinformatics 22,
1269–1271 (2006).

24. Bouche, F., Lobet, G., Tocquin, P. & Perilleux, C. FLOR-ID: an interactive
database of flowering-time gene networks in Arabidopsis thaliana. Nucleic
Acids Res. 44, D1167–D1171 (2016).

25. Sivitz, A. B. et al. Arabidopsis sucrose transporter AtSUC9. High-affinity
transport activity, intragenic control of expression, and early flowering mutant
phenotype. Plant Physiol. 143, 188–198 (2007).

26. Chang, Y. M. et al. Comparative transcriptomics method to infer gene
coexpression networks and its applications to maize and rice leaf
transcriptomes. Proc. Natl Acad. Sci. USA 116, 3091–3099 (2019).

27. Soltis, D. E. et al. Polyploidy and angiosperm diversification. Am. J. Bot. 96,
336–348 (2009).

28. Conant, G. C. & Wolfe, K. H. Turning a hobby into a job: how duplicated
genes find new functions. Nat. Rev. Genet. 9, 938–950 (2008).

29. Bekaert, M., Edger, P. P., Pires, J. C. & Conant, G. C. Two-phase resolution of
polyploidy in the Arabidopsis metabolic network gives rise to relative and
absolute dosage constraints. Plant Cell 23, 1719–1728 (2011).

30. Kliebenstein, D. J., Lambrix, V. M., Reichelt, M., Gershenzon, J. & Mitchell-
Olds, T. Gene duplication in the diversification of secondary metabolism:
tandem 2-oxoglutarate–dependent dioxygenases control glucosinolate
biosynthesis in Arabidopsis. Plant Cell 13, 681–693 (2001).

31. Sun, T. et al. Carotenoid metabolism in plants: the role of plastids. Mol. Plant
11, 58–74 (2018).

32. Grotewold, E. The genetics and biochemistry of floral pigment. Annu. Rev.
Plant Biol. 57, 761–780 (2006).

33. De Loose, R. The flower pigments of the Belgian hybrids of Rhododendron
simsii and other species and varieties from Rhododendron subseries obtusum.
Phytochemistry 8, 253–259 (1969).

34. Ramsay, N. A. & Glover, B. J. MYB-bHLH-WD40 protein complex and the
evolution of cellular diversity. Trends Plant Sci. 10, 63–70 (2005).

35. Rushton, P. J., Somssich, I. E., Ringler, P. & Shen, Q. J. WRKY transcription
factors. Trends Plant Sci. 15, 247–258 (2010).

36. Martins, T. R., Berg, J. J., Blinka, S., Rausher, M. D. & Baum, D. A. Precise
spatio-temporal regulation of the anthocyanin biosynthetic pathway leads to
petal spot formation in Clarkia gracilis (Onagraceae). N. Phytol. 197, 958–969
(2013).

37. Chen, S., Zhou, Y., Chen, Y. & Gu, J. fastp: an ultra-fast all-in-one FASTQ
preprocessor. Bioinformatics 34, i884–i890 (2018).

38. Ruan, J. & Li, H. Fast and accurate long-read assembly with wtdbg2. Nat.
Meth. 17, 155–158 (2020).

39. Koren, S. et al. Canu: scalable and accurate long-read assembly via adaptive
K-mer weighting and repeat separation. Genome Res. 27, 722–736 (2017).

40. Chakraborty, M., Baldwin-Brown, J. G., Long, A. D. & Emerson, J. J.
Contiguous and accurate de novo assembly of metazoan genomes with modest
long read coverage. Nucleic Acids Res. 44, e147 (2016).

41. Li, H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics
34, 3094–3100 (2018).

42. Yang, Z. PAML 4: phylogenetic analysis by maximum likelihood. Mol. Biol.
Evol. 24, 1586–1591 (2007).

43. Holt, C. & Yandell, M. MAKER2: an annotation pipeline and genome-
database management tool for second-generation genome projects. BMC
Bioinf. 12, 491 (2011).

44. Lowe, T. M. & Eddy, S. R. tRNAscan-SE: a program for improved detection of
transfer RNA genes in genomic sequence. Nucleic Acids Res. 25, 955–964
(1997).

45. Lagesen, K. et al. RNAmmer: consistent and rapid annotation of ribosomal
RNA genes. Nucleic Acids Res. 35, 3100–3108 (2007).

46. Kent, W. J. BLAT–the BLAST-like alignment tool. Genome Res. 12, 656–664
(2002).

47. Varoquaux, N. et al. Accurate identification of centromere locations in yeast
genomes using Hi-C. Nucleic Acids Res. 43, 5331–5339 (2015).

48. Edgar, R. C. MUSCLE: multiple sequence alignment with high accuracy and
high throughput. Nucleic Acids Res. 32, 1792–1797 (2004).

49. Capella-Gutiérrez, S., Silla-Martínez, J. M. & Gabaldón, T. trimAl: a tool for
automated alignment trimming in large-scale phylogenetic analyses.
Bioinformatics 25, 1972–1973 (2009).

50. Nguyen, L. T., Schmidt, H. A., von Haeseler, A. & Minh, B. Q. IQ-TREE: a fast
and effective stochastic algorithm for estimating maximum-likelihood
phylogenies. Mol. Biol. Evol. 32, 268–274 (2015).

51. Minh, B. Q., Nguyen, M. A. & von Haeseler, A. Ultrafast approximation for
phylogenetic bootstrap. Mol. Biol. Evol. 30, 1188–1195 (2013).

52. Collinson, M. E. & Crane, P. R. Rhododendron seeds from the Palaeocene of
southern England. Bot. J. Linn. Soc. 76, 195–205 (1978).

53. Nixon, K. C. & Crepet, W. L. Late Cretaceous fossil flowers of Ericalean
affinity. Am. J. Bot. 80, 616–623 (1993).

54. Li, H. T. et al. Origin of angiosperms and the puzzle of the Jurassic gap. Nat.
Plants 5, 461–470 (2019).

55. Qiao, X. et al. Gene duplication and evolution in recurring polyploidization-
diploidization cycles in plants. Genome Biol. 20, 38 (2019).

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-18771-4

12 NATURE COMMUNICATIONS |         (2020) 11:5269 | https://doi.org/10.1038/s41467-020-18771-4 | www.nature.com/naturecommunications

https://www.ncbi.nlm.nih.gov/sra/?term=SRP229032
https://www.ncbi.nlm.nih.gov/bioproject/PRJNA588298
https://www.ncbi.nlm.nih.gov/nuccore/WJXA00000000
http://rhododendron.plantgenie.org/
www.nature.com/naturecommunications


56. Wang, D., Zhang, Y., Zhang, Z., Zhu, J. & Yu, J. KaKs_Calculator 2.0: a toolkit
incorporating gamma-series methods and sliding window strategies. Genomics
Proteom. Bioinform. 8, 77–80 (2010).

57. Suyama, M., Torrents, D. & Bork, P. PAL2NAL: robust conversion of protein
sequence alignments into the corresponding codon alignments. Nucleic Acids
Res. 34, W609–W612 (2006).

58. Wang, Y. et al. MCScanX: a toolkit for detection and evolutionary analysis of
gene synteny and collinearity. Nucleic Acids Res. 40, e49 (2012).

59. Schlapfer, P. et al. Genome-wide prediction of metabolic enzymes, pathways,
and gene clusters in plants. Plant Physiol. 173, 2041–2059 (2017).

60. Tian, F., Yang, D. C., Meng, Y. Q., Jin, J. & Gao, G. PlantRegMap: charting
functional regulatory maps in plants. Nucleic Acids Res. 48, D1104–D1113
(2019).

61. Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for
Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).

62. Martin, M. Cutadapt removes adapter sequences from high-throughput
sequencing reads. EMBnet J. 17, 10–12 (2011).

63. Liao, Y., Smyth, G. K. & Shi, W. featureCounts: an efficient general purpose
program for assigning sequence reads to genomic features. Bioinformatics 30,
923–930 (2014).

64. Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and
dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).

65. Shannon, P. et al. Cytoscape: a software environment for integrated models of
biomolecular interaction networks. Genome Res. 13, 2498–2504 (2003).

66. Lescot, M. et al. PlantCARE, a database of plant cis-acting regulatory elements
and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids
Res. 30, 325–327 (2002).

67. Brennan, P. drawProteins: a Bioconductor/R package for reproducible and
programmatic generation of protein schematics. F1000Research 7, 1105 (2018).

68. Yu, G., Wang, L. G., Han, Y. & He, Q. Y. clusterProfiler: an R package for
comparing biological themes among gene clusters. OMICS J. Integr. Biol. 16,
284–287 (2012).

69. Wang, J. P. et al. Two likely auto-tetraploidization events shaped kiwifruit
genome and contributed to establishment of the Actinidiaceae family. iScience
7, 230–240 (2018).

70. Pelletier, M. K., Murrell, J. R. & Shirley, B. W. Characterization of flavonol
synthase and leucoanthocyanidin dioxygenase genes in Arabidopsis (further
evidence for differential regulation of “early” and “late” genes). Plant Physiol.
113, 1437–1445 (1997).

Acknowledgements
This work was supported by grants from the Second Tibetan Plateau Scientific Expe-
dition and Research (STEP) program (2019QZKK0502), Project of Construction of
World Class Universities in Beijing Forestry University (2019XKJS0308), the Funda-
mental Research Funds for the Central Universities in Beijing Forestry University

(2018BLCB08), National Key R&D Program of China (2017YFA0605100), and Strategic
Priority Research Program of the Chinese Academy of Sciences (XDA23080000).

Author contributions
J.F.M., F.S.Y., and Y.V.P. conceived and designed the study; F.S.Y., S.N., T.L.S., X.C.T.,
H.L., S.S.Z., Y.T.B., K.H.J., J.F.G., W.Z., N.A, R.G.Z., Q.Z.Y., X.Z.W., C.M., and N.R.S.
prepared the materials, conducted the experiments, analyzed data and prepared results;
J.F.M., F.S.Y., and S.N. wrote the manuscript; X.R.W., I.P., Y.A.E., and Y.V.P. were
involved in data interpretation and finalizing the manuscript draft. All authors read and
approved the final draft.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information is available for this paper at https://doi.org/10.1038/s41467-
020-18771-4.

Correspondence and requests for materials should be addressed to Y.V.P. or J.F.M.

Peer review information Nature Communications thanks Wen-Hsiung Li, Marek
Mutwil, Robert VanBuren and the other, anonymous, reviewer(s) for their contribution
to the peer review of this work. Peer reviewer reports are available.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2020

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-18771-4 ARTICLE

NATURE COMMUNICATIONS |         (2020) 11:5269 | https://doi.org/10.1038/s41467-020-18771-4 | www.nature.com/naturecommunications 13

https://doi.org/10.1038/s41467-020-18771-4
https://doi.org/10.1038/s41467-020-18771-4
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/naturecommunications
www.nature.com/naturecommunications

	Chromosome-level genome assembly of a parent species of widely cultivated azaleas
	Results
	R. simsii genome assembly and annotation
	R. simsii is an ancient polyploid
	Gypsy dominated pericentromeric regions in R. simsii
	TD/PD contributed to gene family expansion in R. simsii
	Flowering-time genes in R. simsii
	Flower pigmentation genes in R. simsii
	Gene duplication events linked to flowering time and color
	The dynamics of flower pigmentation regulation in R. simsii

	Discussion
	Methods
	Rhododendron simsii plant material
	Library construction and sequencing of R. simsii
	De novo genome assembly of R. simsii and quality control
	Annotation of repeat elements and genes for R. simsii
	Inference and analysis of orthogroups for asterids
	Genome duplication and intergenomic comparison for asterids
	Flowering time and flower color genes
	R. simsii transcription factors
	Metabolic pathways construction based on TO-GCNs
	Gene functional enrichment
	URLs

	Reporting summary
	Data availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




