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Abstract: Volatile organic compounds (VOCs) are recognized as hazardous contributors to air
pollution, precursors of multiple secondary byproducts, troposphere aerosols, and recognized
contributors to respiratory and cancer-related issues in highly populated areas. Moreover, VOCs
present in indoor environments represent a challenging issue that need to be addressed due to its
increasing presence in nowadays society. Catalytic oxidation by noble metals represents the most
effective but costly solution. The use of photocatalytic oxidation has become one of the most explored
alternatives given the green and sustainable advantages of using solar light or low-consumption light
emitting devices. Herein, we have tried to address the shortcomings of the most studied photocatalytic
systems based on titania (TiO2) with limited response in the UV-range or alternatively the high
recombination rates detected in other transition metal-based oxide systems. We have developed
a silver-copper oxide heteronanostructure able to combine the plasmonic-enhanced properties of Ag
nanostructures with the visible-light driven photoresponse of CuO nanoarchitectures. The entangled
Ag-CuO heteronanostructure exhibits a broad absorption towards the visible-near infrared (NIR)
range and achieves total photo-oxidation of n-hexane under irradiation with different light-emitting
diodes (LEDs) specific wavelengths at temperatures below 180 ◦C and outperforming its thermal
catalytic response or its silver-free CuO illuminated counterpart.

Keywords: plasmonic photocatalysis; silver-copper oxide; VOCs remediation; full-spectrum
photoresponse

1. Introduction

Global warming, massive deforestation for urbanization and increasing contamination caused
by mankind practices are contributing to the alarming rise of pollutant emission levels worldwide.
Among these contaminants, the exposure to volatile organic compounds (hereafter VOCs) is recognized
as a serious hazard to human health contributing to skin, respiratory, and cancer diseases [1–3]. Even
if the exposure dose is very low, it has become an issue of increasing interest since many of the VOCs
emitting sources are not only stemming from big factories or production plants. Indoor sources such
as tobacco smoke, solvents, paints, furniture, computer, personal use products, etc. are continuously
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contributing to the VOCs emissions in indoor habitats [1–5]. There are currently different exploring
technologies devoted to VOCs remediation including the use of plasma discharges [6–9], microwaves
combining absorption–desorption–combustion steps [10–12], photodegradation [2,5,13–20], and
adsorption/catalytic oxidation [2,21–29]. Total oxidation of VOCs promoted by conventional catalysts
represents one of the most appealing alternatives. Noble metals are able to completely oxidize
VOCs into CO2 and H2O at mild reaction temperatures [22,23,25,30–39]. Transition metal oxides and
complex metal oxides (i.e., rare earth element-based perovskites) are also excellent VOCs oxidation
candidates that operate at relatively mild temperatures without incurring in the burdening costs of
noble metals [3,8,16,37–45]. Alternatively, the use of inexpensive arrays of photocatalysts based on
titania (TiO2) has become one of the most important research fields towards the sustainable remediation
of VOCs [5,20,46–51]. The advantages of using solar light or low consume artificial lights to promote
VOCs oxidation at room temperature is being actively pursued. Current limitations are found either in
the weak response of the most active semiconductor photocatalysts (i.e., TiO2, ZnO) beyond the UV
range (that only represents 4%–5% of the full solar spectrum) or in the rapid electron-hole recombination
rates detected in transition metal oxide semiconducting photocatalysts with expanded absorption
capacities towards the visible-near infrared (NIR) ranges (i.e., MOx, M = Cu, Fe, Mn, Co) [2,43,52–58].

To overcome these drawbacks, current research interests in VOCs remediation are focused on
the development of hybrid nanomaterials combining metal oxides, metal transition oxides and/or
noble metals with photocatalytic response expanded towards the visible-NIR ranges [16,21,59–69].
Metallic nanoparticles can play a determining role in expanding the absorption range of regular metal
oxides such as titania (TiO2) and/or reducing the electron-hole recombination rates of metal transition
oxides (i.e., MOx (M = Fe, Mn, Co, Cu) [2,3,19,58,59,70–90]. Furthermore, metallic nanoparticles have
become particularly relevant due to their plasmonic properties [2,76,81,86,91–96]. The localized surface
plasmon resonance (LSPR) is a unique characteristic of these materials (normally Au, Ag, Pt, or other
noble metals), which can extend the absorption of light towards the visible light spectrum [69,87–90].
Thus, LSPR greatly supports the utilization of the solar spectrum [69,81,92,97–104]. In addition,
plasmonic nanoparticles may play active roles as sensitizers (via antenna effects) or accommodate
charges from semiconductors upon forming effective Schottky metal-semiconductor junctions as in
well-established noble metal-TiO2 hybrid systems [69,92,97–100].

In the present work, we aimed at exploring the synthesis of a hybrid heterostructured
catalyst combining the plasmonic properties of Ag and the p-type semiconductor capabilities of
CuO [3,101–104]. Both materials are abundant, affordable, and exhibit a strong potential for full-range
photocatalytic applications. Previous studies based on plasmonic silver nanostructures [76,92],
CuxOy systems [105–107] or in the combination of silver-copper alloys [108–112], silver-copper oxide
heterostructures [109,113–115] or even silver-copper oxide decorating TiO2 [70,108] have already
proved their potential not only in visible-NIR expanded photocatalysis [70,114,116], but also in solar
harvesting, electrocatalysis, bacteria disinfection, field emission enhancement or the formation of novel
superconducting structures [55,108,109,111,114–120]. Herein, we have demonstrated that these Ag-CuO
heterostructures with an intertwined configuration maximize the plasmon-semiconductor interaction.
As a result, a very active hybrid heterostructure with full-spectrum LED-driven photoresponse
towards the total oxidation of n-hexane has been developed. Its photocatalytic response becomes
especially photoactive upon irradiation with LED wavelengths of 460 nm. The heterostructure fully
photooxidizes n-hexane at temperatures below 180 ◦C and outperforms its silver-free CuO counterpart
thereby outlining the relevance of the silver nanostructures entangled with the CuO nanotubes in the
Ag-CuO hybrid. To the best of our knowledge, this study presents the first example of full-spectrum
photocatalytic assisted VOCs oxidation in a diluted gas phase with this kind of Ag-CuO configuration.
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2. Materials and Methods

2.1. Synthesis of the Photocatalysts

The Ag-CuO heteronanostructures were synthesized following a protocol reported elsewhere [121].
Cu(NO3)2·3H2O (3.2 mmol, Aldrich, Saint Louis, MO, USA, 99.9%) and AgNO3 (3.1 mmol, Aldrich,
Saint Louis, MO, USA, 99.9%) were dissolved in 3 mL of deionized water. The resulting silver-copper
solution was added to an aqueous solution of NaOH 3 M (4 mL, Aldrich) with vigorous stirring for 6 h
under an inert Ar atmosphere. The resulting black adduct that was vacuum filtered, washed with water,
and dried at 100 ◦C for 2 h. The solid was calcined at 350 ◦C for 6 h. In order to obtain silver-free CuO
nanostructures, an analogous synthesis protocol was followed but skipping the addition of the silver
salt precursor. The synthesis of the photocatalysts has been performed at the platform of Production of
Biomaterials and Nanoparticles of the NANBIOSIS ICTS, Spain, more specifically by the Nanoparticle
Synthesis Unit of the CIBER in BioEngineering, Biomaterials & Nanomedicine (CIBER-BBN).

2.2. Characterization Techniques

Transmission electron microscopy (TEM) analysis was carried out using a T20–FEI microscope
(Hillsboro, OR, USA). Aberration corrected scanning transmission electron microscopy (STEM) images
were acquired using a high angle annular dark field detector in a FEI XFEG TITAN microscope (Hillsboro,
OR, USA) at 300 kV equipped with a CETCOR Cs-probe corrector. High-resolution transmission
electron microscopy (HR-TEM) images were acquired with the aid of a FEI TITAN3 electron microscope
operated at 200 kV. Elemental analysis was carried out with Energy Dispersive Spectroscopy (EDS)
(EDAX, Mahwah, NJ, USA) detector using single point and scanning profiles. The samples were
drop-casted onto Ni mesh grids. The N2 adsorption/desorption analyses were performed with the aid
of a Micromeritics ASAP2020 analyzer (Norcross, GA, USA). 80–100 mg of the catalyst was degassed
at 90 ◦C for 12 h. The surface area was determined using the Brunauer–Emmett–Teller (BET) method
rendering a value of 4.7 m2

·g−1 for the Ag-CuO tubular heterostructures. Scanning electron microscopy
(SEM) analysis was carried out with FEI-Inspect S50 equipment (Hillsboro, OR, USA). X-ray diffraction
patterns were obtained in a PANalytical Empyrean equipment (Malvern, UK) in Bragg Brentano
configuration using Cu-K radiation and equipped with a PIXcel1D detector. The absorption spectra
were acquired with a JASCO V-670 UV-VIS-NIR spectrophotometer (Tokyo, Japan) and the aid of an
integrated sphere accessory.

2.3. Photocatalytic Reaction Setup

The experimental setup designed to carry out the photocatalytic degradation of n-hexane has
been previously described elsewhere [20,122]. Briefly, the reaction was conducted in a home-made
system comprising a quartz cell (50 × 10 × 5 mm3 (height × width × length). The cell was illuminated
by two high power LEDs (LedEngin) cooled with the aid of custom-designed fans. Different LEDs
wavelengths were individually tested. Each LED operated with different power: 405 nm (3.9 W),
460 nm (2.2 W), and 940 nm (3.2 W). Selected light irradiances ranged from 7 to 11,000 mW/cm2 (based
on LED specifications and experimental setup) and LED powers were programmed with the aid of
an external power supply unit (ISO-TECH, IPS-405, 0–40 V). The temperature of the catalytic bed
containing 300 mg of Ag-CuO during irradiation was monitored with the aid of a K-type thermocouple.
The photocatalytic experiments were performed with a total flow of 50 mL·min−1 of gas containing
200 ppm of n-hexane (space velocity = 10,000 h−1). Conventional heating experiments were carried out
with a home-built system consisting of an aluminium holder designed to heat the same reactor area as
in the quartz reactor used for the photocatalytic test [20]. The inlet final concentration of n-hexane was
achieved upon mixing with the proper flow rates, n-hexane in N2, O2, and synthetic air (all purchased
from PRAXAIR España S.L.U., Madrid, Spain), in order to get the different total flow rates assessed.
After an equilibration period of 30 min that served us to evaluate the adsorption of n-hexane in the
dark, the LED lights were turned on for different time intervals and the gas effluent outlet analyzed by
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gas chromatography (Agilent 3000 Micro GC, Santa Clara, CA, USA). An OV-1 and a PPQ column in
line with a thermal conductivity detector (TCD) were employed to separate and detect the different
gas compounds. The steady state final concentration achieved was always ≤10 ppm of n-hexane when
maximum LED power was used. This steady state was always achieved within minutes regardless of
the experimental settings. Under the conditions used, the n-hexane detection limit was 3 ppm and
CO2 was the only oxidation product detected. Maximum error in the mass balance closures for carbon
and oxygen in this work was ±2%.

3. Results

3.1. Characterization of the Silver-Copper Oxide Plasmonic Photocatalyst

The morphological evaluation of the Ag-CuO heterostructures by SEM revealed the presence
of tubular-shaped structures (Figure 1a) [121,123,124]. A more detailed analysis by HAADF-STEM
in combination with EDX analysis confirmed the presence of both Ag and Cu species as segregated
elements. Figure 1b–d reveal the corresponding analysis of the outer surfaces of the tubular structures.
Small Ag nanoparticles are supported onto the Cu-based surface (Figure 1b,d). An extended EDX line
profile analysis across two individual nanotubes further confirmed the alternating presence of either
silver or copper elements (see Figure 1e–f).

It is also worth mentioning that Ag was identified with different morphologies, including small
segregated nanoparticles, rod-shaped anisotropic structures (Figure 1g), and non-uniform aggregates
dispersed along the tubular-shaped CuO matrixes (Figure 1i). HR-TEM analysis of the Cu-based
regions confirmed the presence of a well-defined orientation corresponding to a CuO crystalline phase
(Figure 1h). The FFT inset in Figure 1g corresponded to the orientation of the CuO fraction in the [0-1-1]
direction. The (200), (11-1), and (-11-1) planes were identified and matched with a C2/c monoclinic
system. EDX mapping of the intensities of Ag-L and Cu-L signals further assessed the entangled
distribution of Cu (Figure 1j) and Ag phases (Figure 1k).

XRD analysis also corroborated the presence of both silver and copper oxide crystalline phases
assigned to a cubic (Fm3m) and a monoclinic (C2/c) system, respectively (Figure 2a). The optical
characterization of the Ag-CuO nanohybrids by UV-Vis-NIR spectroscopy revealed a broad absorption
spectrum expanding towards the visible and near-infrared (NIR) range (Figure 2c). The silver-free
CuO nanotubes synthesized as control (Figure 2b) exhibited similar optical absorption properties in
the visible range, although it did not expand beyond the visible range and decayed in the NIR region
(Figure 2c). The energy band gap for both the CuO and Ag-CuO nanostructures was determined from
the optical absorption near the band edge using the classical Tauc approach and assuming an indirect
band gap semiconductor system where α·Ephoton = K (Ephoton− Eg)1/2 (being Ephoton and Eg the discrete
photon energy and the band gap energy, respectively). The estimated band gap energy was calculated
at 1.33 eV for the CuO nanostructures and 0.71 eV for the Ag-CuO hybrids (Figure 2d). These values
were lower than the band gap reported for bulk CuO structures (typically 1.4 eV) and confirmed the
potential optical response of these structures in the visible-NIR range [53].



Materials 2019, 12, 3858 5 of 16

Materials 2019, 12, x FOR PEER REVIEW 2 of 16 

 

and the gas effluent outlet analyzed by gas chromatography (Agilent 3000 Micro GC, Santa Clara, 
CA, USA). An OV-1 and a PPQ column in line with a thermal conductivity detector (TCD) were 
employed to separate and detect the different gas compounds. The steady state final concentration 
achieved was always ≤10 ppm of n-hexane when maximum LED power was used. This steady state 
was always achieved within minutes regardless of the experimental settings. Under the conditions 
used, the n-hexane detection limit was 3 ppm and CO2 was the only oxidation product detected. 
Maximum error in the mass balance closures for carbon and oxygen in this work was ±2%. 

3. Results 

3.1. Characterization of the Silver-Copper Oxide Plasmonic Photocatalyst 

The morphological evaluation of the Ag-CuO heterostructures by SEM revealed the presence of 
tubular-shaped structures (Figure 1a) [121,123,124]. A more detailed analysis by HAADF-STEM in 
combination with EDX analysis confirmed the presence of both Ag and Cu species as segregated 
elements. Figure 1b–d reveal the corresponding analysis of the outer surfaces of the tubular 
structures. Small Ag nanoparticles are supported onto the Cu-based surface (Figure 1b,d). An 
extended EDX line profile analysis across two individual nanotubes further confirmed the 
alternating presence of either silver or copper elements (see Figure 1e–f). 

 
Figure 1. Morpho-chemical characterization of the silver-copper oxide photocatalyst: (a) SEM 
representative image accounting for the tubular shape of the Ag-CuO hybrids; (b) High Angle 
Annular Dark-Field (HAADF)-STEM image of small Ag nanoparticles (NPs) in the outer area of the 
nanotubes dispersed in a Cu-based matrix, the numbers refer to specific areas for EDX spectra 
acquisition; (c) EDX analysis of selected spots in (b) accounting for the specific present of Ag or Cu; 
(d) HAADF-STEM image of a CuO nanotube with Ag NPs decorating in the external region; (e) 
STEM image of individual nanotubes and EDX line profile analysis performed and plotted in (f); (f) 

Figure 1. Morpho-chemical characterization of the silver-copper oxide photocatalyst: (a) SEM
representative image accounting for the tubular shape of the Ag-CuO hybrids; (b) High Angle Annular
Dark-Field (HAADF)-STEM image of small Ag nanoparticles (NPs) in the outer area of the nanotubes
dispersed in a Cu-based matrix, the numbers refer to specific areas for EDX spectra acquisition; (c) EDX
analysis of selected spots in (b) accounting for the specific present of Ag or Cu; (d) HAADF-STEM
image of a CuO nanotube with Ag NPs decorating in the external region; (e) STEM image of individual
nanotubes and EDX line profile analysis performed and plotted in (f); (f) evolution of Ag-L and Cu-L
intensities across the EDX line profile analysis depicted in (e); (g) HAADF-STEM image accounting
for the presence of anisotropic Ag shapes embedded within the Cu-based matrix; (h) HR-TEM image
corresponding to the Cu-enriched region accounting for the presence of a monoclinic CuO phase (inset:
Fast Fourier Transform (FFT) image with indexed CuO planes in the [0-1-1] direction); (i) HAADF-STEM
image of a fraction of Ag-CuO nanotube containing bigger aggregates (the square accounts for the
selected area for EDX mapping analysis); (j) EDX map accounting for the Cu-L edge (wt %) intensity in
the selected area of (i); (k) EDX map accounting for the distribution of the Ag-L edge intensity (wt %)
in the selected area of (i).
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Figure 2. Additional characterization of the photocatalytic materials: (a) X-ray diffractogram of the
Ag-CuO hybrid material accounting for the presence of both cubic and monoclinic crystallographic
phases for silver and copper oxide, respectively; (b) HAADF-STEM representative image of the
silver-free CuO nanostructures; (c) UV-Vis-Near Infrared absorption spectra of the Ag-CuO and CuO
nanomaterials; (d) Tauc plots for the determination of the band gap energies for Ag-CuO and CuO
structures assuming an indirect transition.

3.2. Photocatalytic Performance of the Ag-CuO Heterostructures for N-Hexane Total Oxidation

Figure 3 shows the photocatalytic response of the Ag-CuO hybrid towards the oxidation of
n-hexane under illumination with a high irradiance LED emitting at 405 nm (see inset in Figure 3b).
Total oxidation was achieved at temperatures below 180 ◦C. Remarkably, light-off oxidation curves
started at temperatures below 50 ◦C and T50 (Temperature of reaction required to reach 50% of
conversion) remained below 100 ◦C. These results contrast with the photocatalytic behavior identified
for the silver-free CuO counterpart under similar LED irradiation conditions. In this latter case,
temperatures above 200 ◦C were necessary to reach match T50 and a complete n-hexane oxidation
was not achieved (maximum 90% conversion, see Figure 3a). Finally, it is worth mentioning that the
thermal catalytic experiment (in the absence of LED irradiation) with the Ag-CuO catalyst yielded
higher n-hexane conversion levels than the CuO catalyst but were less effective than the photocatalytic
experimental conditions (Figure 3a).

Additional photocatalytic experiments were carried out with the Ag-CuO heterostructure under
illumination with different LED wavelengths at 460 and 940 nm, respectively. The use of LEDs emitting
in the visible and NIR ranges rendered equivalent n-hexane photo-oxidation levels and analogous
overlapping light-off curves to the one displayed in Figure 3a (data not shown). The major differences
were observed in terms of the LED power density required in each experiment to achieve those
conversion levels. Figure 3b summarizes the LED power irradiance (expressed in W/cm2) required
at 405, 460, and 940 nm, respectively. Upon comparison of the three LEDs, it became clear that the
photocatalytic efficiency was higher at 460 nm. The irradiation under the LED emitting at 405 nm
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required almost double irradiance to reach full photo-conversion of n-hexane. We observed a stable
photo-response after multiple cumulative reaction runs performed under different LED wavelengths
and no evidences of deactivation.
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Figure 3. LED-driven photocatalytic oxidation of n-hexane: (a) n-hexane conversion curves obtained
after photocatalytic activation of Ag-CuO (spherical symbols), CuO (triangle symbols) with a LED
emitting at 405 nm, and alternatively after thermal heating of Ag-CuO with a conventional heating setup
(square symbols); (b) n-hexane light-off curves under different irradiation wavelengths as a function of
the irradiance (in W/cm2) specifically required for each LED; (inset: Digital image of the 405 nm LEDs
simultaneously irradiating the quartz cuvette reactor).

4. Discussion

The positive photocatalytic response towards n-hexane oxidation of the present Ag-CuO
hybrid structures can be justified in terms of the synergetic combination of plasmonic silver
and the visible-light response of the p-type semiconductor CuO. In contrast to previous Ag-Cu
systems [55,108,109,111,114,117,119], our synthesis methodology enables the generation of a well
entangled hybrid system where Ag domains of different sizes and morphologies are perfectly
encapsulated within CuO nanotubes (Figures 1 and 2). The most plausible mechanism for the
formation of this hybrid is the thermal decomposition of an unstable silver-copper mixed oxide
AgxCuyOz that evolves into the corresponding silver and copper oxides counterparts [125–127].
The thermal treatment at high temperature during the preparation also favored the subsequent thermal
decomposition of Ag2O into metallic Ag and oxygen at temperatures in the range of 195–205 ◦C and
enabling partial mobility of silver throughout the CuO tubular scaffold (Figure 1) [76,128].
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To justify the full-range response under different LED wavelengths (Figure 3b), a combination of
different photo-excitation and charge-transfer mechanisms can be taking place [68,69,81,99,129,130].
The different photocatalytic response observed after comparison between Ag-CuO and CuO irradiated
with the 405 nm LED (Figure 3a) clearly demonstrates the positive influence of the silver entangled
nanostructures. Given the heterogeneous disposition of silver entities, different photo-activation
pathways can be simultaneously occurring in our catalysts. First of all, a fraction of smaller silver
domains (Figure 1b–d) with the proper energy levels can be acting as sinks or trap centers for the
electrons photogenerated by the CuO semiconductor fraction (Figure 4a). As a result, the expected
high electron-hole recombination rates of CuO can be inhibited and/or partially delayed. Therefore,
the unpaired holes remain available in the valence band of CuO to readily oxidize n-hexane molecules
(Figure 4a). Likewise, electrons in the Ag surface can participate in the formation of reactive superoxide
anions or relax via thermal energy dissipation [95,131]. The superoxide anions may subsequently
react after their photo-induced dissociation (Figure 4a) and contribute to the oxidation of the n-hexane
molecules [5,68,69,76,81,105,130,132].
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Figure 4. Schematic diagram illustrating the most plausible charge-transfer and photocatalytic
mechanisms in the metal/p-type semiconductor Ag-CuO hybrids: (a) If the LED excitation wavelength
is larger than the energy band gap of CuO, electrons from the valence band can be excited to the
conduction of CuO and subsequently transferred and trapped by Ag energy levels; (b) Ag plasmon-
induced charge transfer by hot holes injection into the p-type CuO energy levels.

Another fraction of silver structures with different sizes and anisotropic shapes (i.e., rod-like) that
remain embedded within the CuO tubular matrix (Figure 1e,g,i) can provide additional plasmon-driven
photo-excitation pathways. Metallic silver nanostructures are considered as excellent plasmonic
materials [68,95,133]. The valence electron clouds present in their metal surfaces can oscillate and
resonate at different frequencies in the UV-Vis-NIR ranges generating localized surface plasmons
(LSPR). The surface plasmons can interact with the CuO nanotubes via radiative damping mechanisms
that imply the reemission and/or trapping of light from the metal to the surrounding semiconductor
matrix [95,133]. This approximation would be more likely to occur with the larger Ag domains
isolated within the CuO nanotubes (Figure 1e–i) where scattering phenomena would be more plausible
(Figure 2c) [95,131]. The photocatalytic response under 940 nm wavelengths can be also tentative
attributed in part to the presence of rod-shaped Ag structures entangled within the CuO matrix
(Figures 1g and 3b). These anisotropic silver nanostructures exhibit plasmon absorbance at longer
wavelengths than spheres or cubes (Figure 1g) [68]. The presence of silver expands the absorption and
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light-trapping capabilities in the visible-NIR range, thereby expanding the potential exploitation of the
solar energy (more than 80% of the solar spectrum range) [68,92].

Surface plasmons can alternatively decay via non-radiative pathways involving the generation of
electron-hole pairs by interband and/or intraband excitations [68,81,92,95]. In this scenario, Ag and
CuO entangled interfaces can form a metal/p-type semiconductor Schottky barrier for holes after
matching their Fermi levels [3,55,119]. The excitation with sufficiently high energy LEDs (i.e., 405 and
460 nm, Figures 3 and 4b) enables the plasmon-induced injection of hot holes from the silver bands
into the valence band of the CuO p-type semiconductor (Figure 4b). These high energetic holes are
able to pass the Schottky barrier and rapidly react with the n-hexane. The reduced dimensions of
the heteronanostructures minimize the probability of undergoing another relaxation/recombination
process [68]. While the injection of hot electrons (using n-type semiconductors such as TiO2) is the most
accepted plasmon-driven charge transfer mechanism, there exist recent interesting studies claiming
the importance of hot holes in other plasmonic-based systems [73,86,92,97,134–137] such as Au-NiOx,
Au-pGaN [73], Au nanorods coated with a CoO nanoshell [138], Au nanostructures [101,139,140],
or Ag-BiOCl hybrids [86,137].

We tentatively propose a combination of the different photocatalytic mechanisms given the
diversity of Ag domains. Indeed, the better photoresponse of the Ag-CuO hybrid in comparison with
the CuO nanostructures confirms the important role of silver as plasmonic structure to harvest light in
the whole visible to NIR range. Likewise, the close contact between both metal and semiconductor
phases has enabled a suitable interfacial contact to promote electron and holes mobilities and minimize
undesired recombination and relaxation pathways. In summary, we can conclude that our Ag-CuO
represents a very attractive metal/p-type semiconductor candidate with full-spectrum response that
can be envisioned as an affordable alternative for green and sustainable photo-assisted chemistry, with
special attention to energy and remediation processes.

Author Contributions: Conceptualization, C.J.B.-A. and J.L.H.; Data curation, C.J.B.-A.; Formal analysis, A.R.,
C.J.B.-A., and J.L.H.; Investigation, H.S., A.R., C.J.B.-A., and J.L.H.; Methodology, H.S. and J.L.H.; Supervision,
J.L.H.; Validation, A.R. and C.J.B.-A.; Writing—original draft, J.L.H.; Writing—review and editing, A.R., C.J.B.-A.,
and J.L.H.

Funding: This research was funded by ARCADIA (grant CTQ2016-77147) and CADENCE (grant 742684) and the
APC was waived by the journal.

Acknowledgments: The TEM measurements were conducted at the Laboratorio de Microscopias Avanzadas,
Instituto de Nanociencia de Aragon, Universidad de Zaragoza, Spain. Fundacion Carolina is acknowledged for
funding of a scholarship for H.S. The synthesis of materials has been performed by the Platform of Production of
Biomaterials and Nanoparticles of the NANOBIOSIS ICTS, more specifically by the Nanoparticle Synthesis Unit
of the CIBER in BioEngineering, Biomaterials & Nanomedicine (CIBER-BBN).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Kamal, M.S.; Razzak, S.A.; Hossain, M.M. Catalytic oxidation of volatile organic compounds (VOCs)—A
review. Atmos. Environ. 2016, 140, 117–134. [CrossRef]

2. He, C.; Cheng, J.; Zhang, X.; Douthwaite, M.; Pattisson, S.; Hao, Z.P. Recent Advances in the Catalytic
Oxidation of Volatile Organic Compounds: A Review Based on Pollutant Sorts and Sources. Chem. Rev.
2019, 119, 4471–4568. [CrossRef]

3. Huang, H.B.; Xu, Y.; Feng, Q.Y.; Leung, D.Y.C. Low temperature catalytic oxidation of volatile organic
compounds: A review. Catal. Sci. Technol. 2015, 5, 2649–2669. [CrossRef]

4. Smielowska, M.; Marc, M.; Zabiegala, B. Indoor air quality in public utility environments—A review.
Environ. Sci. Pollut. Res. 2017, 24, 11166–11176. [CrossRef] [PubMed]

5. Mamaghani, A.H.; Haghighat, F.; Lee, C.S. Photocatalytic oxidation technology for indoor environment air
purification: The state-of-the-art. Appl. Catal. B Environ. 2017, 203, 247–269. [CrossRef]

6. Kim, H.H.; Teramoto, Y.; Negishi, N.; Ogata, A. A multidisciplinary approach to understand the interactions
of nonthermal plasma and catalyst: A review. Catal. Today 2015, 256, 13–22. [CrossRef]

http://dx.doi.org/10.1016/j.atmosenv.2016.05.031
http://dx.doi.org/10.1021/acs.chemrev.8b00408
http://dx.doi.org/10.1039/C4CY01733A
http://dx.doi.org/10.1007/s11356-017-8567-7
http://www.ncbi.nlm.nih.gov/pubmed/28236201
http://dx.doi.org/10.1016/j.apcatb.2016.10.037
http://dx.doi.org/10.1016/j.cattod.2015.04.009


Materials 2019, 12, 3858 10 of 16

7. Zhang, Z.X.; Jiang, Z.; Shangguan, W.F. Low-temperature catalysis for VOCs removal in technology and
application: A state-of-the-art review. Catal. Today 2016, 264, 270–278. [CrossRef]

8. Hueso, J.L.; Cotrino, J.; Caballero, A.; Espinos, J.P.; Gonzalez-Elipe, A.R. Plasma catalysis with perovskite-type
catalysts for the removal of NO and CH4 from combustion exhausts. J. Catal. 2007, 247, 288–297. [CrossRef]

9. Mao, L.G.; Chen, Z.Z.; Wu, X.Y.; Tang, X.J.; Yao, S.L.; Zhang, X.M.; Jiang, B.Q.; Han, J.Y.; Wu, Z.L.; Lu, H.;
et al. Plasma-catalyst hybrid reactor with CeO2/gamma-Al2O3 for benzene decomposition with synergetic
effect and nano particle by-product reduction. J. Hazard. Mater. 2018, 347, 150–159. [CrossRef]

10. Nigar, H.; Sturm, G.S.J.; Garcia-Banos, B.; Penaranda-Foix, F.L.; Catala-Civera, J.M.; Mallada, R.;
Stankiewicz, A.; Santamaria, J. Numerical analysis of microwave heating cavity: Combining electromagnetic
energy, heat transfer and fluid dynamics for a NaY zeolite fixed-bed. Appl. Therm. Eng. 2019, 155, 226–238.
[CrossRef]

11. Nigar, H.; Julian, I.; Mallada, R.; Santamaria, J. Microwave-Assisted Catalytic Combustion for the Efficient
Continuous Cleaning of VOC-Containing Air Streams. Environ. Sci. Technol. 2018, 52, 5892–5901. [CrossRef]
[PubMed]

12. Nigar, H.; Navascues, N.; De la Iglesia, O.; Mallada, R.; Santamaria, J. Removal of VOCs at trace concentration
levels from humid air by Microwave Swing Adsorption, kinetics and proper sorbent selection. Sep. Purif.
Technol. 2015, 151, 193–200. [CrossRef]

13. Yang, X.G.; Wang, D.W. Photocatalysis: From Fundamental Principles to Materials and Applications.
ACS Appl. Energ. Mater. 2018, 1, 6657–6693. [CrossRef]

14. Kumari, G.; Zhang, X.Q.; Devasia, D.; Heo, J.; Jain, P.K. Watching Visible Light-Driven CO2 Reduction on
a Plasmonic Nanoparticle Catalyst. ACS Nano 2018, 12, 8330–8340. [CrossRef] [PubMed]

15. Brigden, C.T.; Poulston, S.; Twigg, M.V.; Walker, A.P.; Wilkins, A.J.J. Photo-oxidation of short-chain
hydrocarbons over titania. Appl. Catal. B Environ. 2001, 32, 63–71. [CrossRef]

16. Chen, J.Y.; He, Z.G.; Li, G.Y.; An, T.C.; Shi, H.X.; Li, Y.Z. Visible-light-enhanced photothermocatalytic activity
of ABO(3)-type perovskites for the decontamination of gaseous styrene. Appl. Catal. B Environ. 2017, 209,
146–154. [CrossRef]

17. Deng, X.Y.; Yue, Y.H.; Gao, Z. Gas-phase photo-oxidation of organic compounds over nanosized TiO2
photocatalysts by various preparations. Appl. Catal. B Environ. 2002, 39, 135–147. [CrossRef]

18. Boulamanti, A.K.; Philippopoulos, C.J. Photocatalytic degradation of C-5-C-7 alkanes in the gas-phase.
Atmos. Environ. 2009, 43, 3168–3174. [CrossRef]

19. Boyjoo, Y.; Sun, H.Q.; Liu, J.; Pareek, V.K.; Wang, S.B. A review on photocatalysis for air treatment: From
catalyst development to reactor design. Chem. Eng. J. 2017, 310, 537–559. [CrossRef]

20. Bueno-Alejo, C.J.; Hueso, J.L.; Mallada, R.; Julian, I.; Santamaria, J. High-radiance LED-driven fluidized bed
photoreactor for the complete oxidation of n-hexane in air. Chem. Eng. J. 2019, 358, 1363–1370. [CrossRef]

21. Liotta, L.F.; Ousmane, M.; Di Carlo, G.; Pantaleo, G.; Deganello, G.; Marci, G.; Retailleau, L.; Giroir-Fendler, A.
Total oxidation of propene at low temperature over Co3O4-CeO2 mixed oxides: Role of surface oxygen
vacancies and bulk oxygen mobility in the catalytic activity. Appl. Catal. A Gen. 2008, 347, 81–88. [CrossRef]

22. Ousmane, M.; Liotta, L.F.; Di Carlo, G.; Pantaleo, G.; Venezia, A.M.; Deganello, G.; Retailleau, L.; Boreave, A.;
Giroir-Fendler, A. Supported Au catalysts for low-temperature abatement of propene and toluene, as model
VOCs: Support effect. Appl. Catal. B Environ. 2011, 101, 629–637. [CrossRef]

23. Scire, S.; Liotta, L.F. Supported gold catalysts for the total oxidation of volatile organic compounds. Appl. Catal.
B Environ. 2012, 125, 222–246. [CrossRef]

24. Liotta, L.F.; Wu, H.J.; Pantaleo, G.; Venezia, A.M. Co3O4 nanocrystals and Co3O4-MOx binary oxides for CO,
CH4 and VOC oxidation at low temperatures: A review. Catal. Sci. Technol. 2013, 3, 3085–3102. [CrossRef]

25. Ousmane, M.; Liotta, L.F.; Pantaleo, G.; Venezia, A.M.; Di Carlo, G.; Aouine, M.; Retailleau, L.;
Giroir-Fendler, A. Supported Au catalysts for propene total oxidation: Study of support morphology
and gold particle size effects. Catal. Today 2011, 176, 7–13. [CrossRef]

26. Grabchenko, M.V.; Mikheeva, N.N.; Mamontov, G.V.; Salaev, M.A.; Liotta, L.F.; Vodyankina, O.V. Ag/CeO2

Composites for Catalytic Abatement of CO, Soot and VOCs. Catalysts 2018, 8, 285. [CrossRef]
27. Sihaib, Z.; Puleo, F.; Pantaleo, G.; La Parola, V.; Valverde, J.L.; Gil, S.; Liotta, L.F.; Giroir-Fendler, A. The Effect

of Citric Acid Concentration on the Properties of LaMnO3 as a Catalyst for Hydrocarbon Oxidation. Catalysts
2019, 9, 226. [CrossRef]

http://dx.doi.org/10.1016/j.cattod.2015.10.040
http://dx.doi.org/10.1016/j.jcat.2007.02.006
http://dx.doi.org/10.1016/j.jhazmat.2017.12.064
http://dx.doi.org/10.1016/j.applthermaleng.2019.03.117
http://dx.doi.org/10.1021/acs.est.8b00191
http://www.ncbi.nlm.nih.gov/pubmed/29660983
http://dx.doi.org/10.1016/j.seppur.2015.07.019
http://dx.doi.org/10.1021/acsaem.8b01345
http://dx.doi.org/10.1021/acsnano.8b03617
http://www.ncbi.nlm.nih.gov/pubmed/30089207
http://dx.doi.org/10.1016/S0926-3373(00)00292-7
http://dx.doi.org/10.1016/j.apcatb.2017.02.066
http://dx.doi.org/10.1016/S0926-3373(02)00080-2
http://dx.doi.org/10.1016/j.atmosenv.2009.03.036
http://dx.doi.org/10.1016/j.cej.2016.06.090
http://dx.doi.org/10.1016/j.cej.2018.09.223
http://dx.doi.org/10.1016/j.apcata.2008.05.038
http://dx.doi.org/10.1016/j.apcatb.2010.11.004
http://dx.doi.org/10.1016/j.apcatb.2012.05.047
http://dx.doi.org/10.1039/c3cy00193h
http://dx.doi.org/10.1016/j.cattod.2011.07.009
http://dx.doi.org/10.3390/catal8070285
http://dx.doi.org/10.3390/catal9030226


Materials 2019, 12, 3858 11 of 16

28. Liu, L.C.; Corma, A. Metal Catalysts for Heterogeneous Catalysis: From Single Atoms to Nanoclusters and
Nanoparticles. Chem. Rev. 2018, 118, 4981–5079. [CrossRef]

29. Yang, C.T.; Miao, G.; Pi, Y.H.; Xia, Q.B.; Wu, J.L.; Li, Z.; Xiao, J. Abatement of various types of VOCs by
adsorption/catalytic oxidation: A review. Chem. Eng. J. 2019, 370, 1128–1153. [CrossRef]

30. Uson, L.; Hueso, J.L.; Sebastian, V.; Arenal, R.; Florea, I.; Irusta, S.; Arruebo, M.; Santamaria, J. In-situ
preparation of ultra-small Pt nanoparticles within rod-shaped mesoporous silica particles: 3-D tomography
and catalytic oxidation of n-hexane. Catal. Commun. 2017, 100, 93–97. [CrossRef]

31. Uson, L.; Colmenares, M.G.; Hueso, J.L.; Sebastian, V.; Balas, F.; Arruebo, M.; Santamaria, J. VOCs abatement
using thick eggshell Pt/SBA-15 pellets with hierarchical porosity. Catal. Today 2014, 227, 179–186. [CrossRef]

32. Hueso, J.L.; Sebastian, V.; Mayoral, A.; Uson, L.; Arruebo, M.; Santamaria, J. Beyond gold: rediscovering
tetrakis-(hydroxymethyl)-phosphonium chloride (THPC) as an effective agent for the synthesis of ultra-small
noble metal nanoparticles and Pt-containing nanoalloys. RSC Adv. 2013, 3, 10427–10433. [CrossRef]

33. Kumar, G.; Nikolla, E.; Linic, S.; Medlin, J.W.; Janik, M.J. Multicomponent Catalysts: Limitations and
Prospects. ACS Catal. 2018, 8, 3202–3208. [CrossRef]

34. Cellier, C.; Lambert, S.; Gaigneaux, E.M.; Poleunis, C.; Ruaux, V.; Eloy, P.; Lahousse, C.; Bertrand, P.;
Pirard, J.P.; Grange, P. Investigation of the preparation and activity of gold catalysts in the total oxidation of
n-hexane. Appl. Catal. B Environ. 2007, 70, 406–416. [CrossRef]

35. Liotta, L.F. Catalytic oxidation of volatile organic compounds on supported noble metals. Appl. Catal.
B-Environ. 2010, 100, 403–412. [CrossRef]

36. Guo, J.H.; Lin, C.X.; Jiang, C.J.; Zhang, P.Y. Review on noble metal-based catalysts for formaldehyde oxidation
at room temperature. Appl. Surf. Sci. 2019, 475, 237–255. [CrossRef]

37. Liotta, L.F.; Ousmane, M.; Di Carlo, G.; Pantaleo, G.; Deganello, G.; Boreave, A.; Giroir-Fendler, A. Catalytic
Removal of Toluene over Co3O4-CeO2 Mixed Oxide Catalysts: Comparison with Pt/Al2O3. Catal. Lett. 2009,
127, 270–276. [CrossRef]

38. Pereniguez, R.; Hueso, J.L.; Gaillard, F.; Holgado, J.P.; Caballero, A. Study of Oxygen Reactivity in La1-x Sr
(x) CoO3-delta Perovskites for Total Oxidation of Toluene. Catal. Lett. 2012, 142, 408–416. [CrossRef]

39. Pereniguez, R.; Hueso, J.L.; Holgado, J.P.; Gaillard, F.; Caballero, A. Reactivity of LaNi1-y Co (y) O3-delta
Perovskite Systems in the Deep Oxidation of Toluene. Catal. Lett. 2009, 131, 164–169. [CrossRef]

40. Szabo, V.; Bassir, M.; Gallot, J.E.; Van Neste, A.; Kaliaguine, S. Perovskite-type oxides synthesised by reactive
grinding–Part III. Kinetics of n-hexane oxidation over LaCo(1-x)FexO3. Appl. Catal. B Environ. 2003, 42,
265–277. [CrossRef]

41. Rhodes, C.J. Perovskites - some snapshots of recent developments. Sci. Prog. 2018, 101, 384–396. [CrossRef]
42. Njagi, E.C.; Genuino, H.C.; King’ondu, C.K.; Dharmarathna, S.; Suib, S.L. Catalytic oxidation of ethylene at

low temperatures using porous copper manganese oxides. Appl. Catal. A Gen. 2012, 421, 154–160. [CrossRef]
43. Genuino, H.C.; Dharmarathna, S.; Njagi, E.C.; Mei, M.C.; Suib, S.L. Gas-Phase Total Oxidation of Benzene,

Toluene, Ethylbenzene, and Xylenes Using Shape-Selective Manganese Oxide and Copper Manganese Oxide
Catalysts. J. Phys. Chem. C 2012, 116, 12066–12078. [CrossRef]

44. Cordi, E.M.; O’Neill, P.J.; Falconer, J.L. Transient oxidation of volatile organic compounds on a CuO/Al2O3

catalyst. Appl. Catal. B-Environ. 1997, 14, 23–36. [CrossRef]
45. Li, T.Y.; Chiang, S.J.; Liaw, B.J.; Chen, Y.Z. Catalytic oxidation of benzene over CuO/Ce1-xMnxO2 catalysts.

Appl. Catal. B Environ. 2011, 103, 143–148. [CrossRef]
46. Liu, B.S.; Wu, H.; Parkin, I.P. Gaseous Photocatalytic Oxidation of Formic Acid over TiO2: A Comparison

between the Charge Carrier Transfer and Light-Assisted Mars-van Krevelen Pathways. J. Phys. Chem. C
2019, 123, 22261–22272. [CrossRef]

47. Shah, K.W.; Li, W.X. A Review on Catalytic Nanomaterials for Volatile Organic Compounds VOC Removal
and Their Applications for Healthy Buildings. Nanomaterials 2019, 9, 910. [CrossRef]

48. Kontos, A.G.; Katsanaki, A.; Maggos, T.; Likodimos, V.; Ghicov, A.; Kim, D.; Kunze, J.; Vasilakos, C.;
Schmuki, P.; Falaras, P. Photocatalytic degradation of gas pollutants on self-assembled titania nanotubes.
Chem. Phys. Lett. 2010, 490, 58–62. [CrossRef]

49. Van Gerven, T.; Mul, G.; Moulijn, J.; Stankiewicz, A. A review of intensification of photocatalytic processes.
Chem. Eng. Process. 2007, 46, 781–789. [CrossRef]

http://dx.doi.org/10.1021/acs.chemrev.7b00776
http://dx.doi.org/10.1016/j.cej.2019.03.232
http://dx.doi.org/10.1016/j.catcom.2017.06.022
http://dx.doi.org/10.1016/j.cattod.2013.08.014
http://dx.doi.org/10.1039/c3ra40774h
http://dx.doi.org/10.1021/acscatal.8b00145
http://dx.doi.org/10.1016/j.apcatb.2006.01.026
http://dx.doi.org/10.1016/j.apcatb.2010.08.023
http://dx.doi.org/10.1016/j.apsusc.2018.12.238
http://dx.doi.org/10.1007/s10562-008-9640-0
http://dx.doi.org/10.1007/s10562-012-0799-z
http://dx.doi.org/10.1007/s10562-009-9968-0
http://dx.doi.org/10.1016/S0926-3373(02)00239-4
http://dx.doi.org/10.3184/003685018X15360899653905
http://dx.doi.org/10.1016/j.apcata.2012.02.011
http://dx.doi.org/10.1021/jp301342f
http://dx.doi.org/10.1016/S0926-3373(97)00009-X
http://dx.doi.org/10.1016/j.apcatb.2011.01.020
http://dx.doi.org/10.1021/acs.jpcc.9b05357
http://dx.doi.org/10.3390/nano9060910
http://dx.doi.org/10.1016/j.cplett.2010.03.009
http://dx.doi.org/10.1016/j.cep.2007.05.012


Materials 2019, 12, 3858 12 of 16

50. Da Costa, B.M.; Araujo, A.L.P.; Silva, G.V.; Boaventura, R.A.R.; Dias, M.M.; Lopes, J.C.B.; Vilar, V.J.P.
Intensification of heterogeneous TiO2 photocatalysis using an innovative micro-meso-structured-photoreactor
for n-decane oxidation at gas phase. Chem. Eng. J. 2017, 310, 331–341. [CrossRef]

51. Moulis, F.; Krysa, J. Photocatalytic degradation of several VOCs (n-hexane, n-butyl acetate and toluene) on
TiO2 layer in a closed-loop reactor. Catal. Today 2013, 209, 153–158. [CrossRef]

52. Chen, J.; Li, Y.Z.; Fang, S.M.; Yang, Y.; Zhao, X.J. UV-Vis-infrared light-driven thermocatalytic abatement
of benzene on Fe doped OMS-2 nanorods enhanced by a novel photoactivation. Chem. Eng. J. 2018, 332,
205–215. [CrossRef]

53. Wang, L.J.; Zhou, Q.; Zhang, G.L.; Liang, Y.J.; Wang, B.S.; Zhang, W.W.; Lei, B.; Wang, W.Z. A facile room
temperature solution-phase route to synthesize CuO nanowires with enhanced photocatalytic performance.
Mater. Lett. 2012, 74, 217–219. [CrossRef]

54. Wu, S.M.; Li, F.; Zhang, L.J.; Li, Z. Enhanced field emission properties of CuO nanoribbons decorated with
Ag nanoparticles. Mater. Lett. 2016, 171, 220–223. [CrossRef]

55. Yang, J.B.; Li, Z.; Zhao, W.; Zhao, C.X.; Wang, Y.; Liu, X.Q. Controllable synthesis of Ag-CuO composite
nanosheets with enhanced photocatalytic property. Mater. Lett. 2014, 120, 16–19. [CrossRef]

56. Yang, Y.; Li, Y.Z.; Zhang, Q.; Zeng, M.; Wu, S.W.; Lan, L.; Zhao, X.J. Novel photoactivation and
solar-light-driven thermocatalysis on epsilon-MnO2 nanosheets lead to highly efficient catalytic abatement
of ethyl acetate without acetaldehyde as unfavorable by-product. J. Mater. Chem. A 2018, 6, 14195–14206.
[CrossRef]

57. Chang, Y.C.; Guo, J.Y. Double-sided plasmonic silver nanoparticles decorated copper oxide/zinc oxide
heterostructured nanomaces with improving photocatalytic performance. J. Photochem. Photobiol. A Chem.
2019, 378, 184–191. [CrossRef]

58. Zhang, X.D.; Yang, Y.; Li, H.X.; Zou, X.J.; Wang, Y.X. Non-TiO2 Photocatalysts Used for Degradation of
Gaseous VOCs. Prog. Chem. 2016, 28, 1550–1559.

59. Liu, X.Q.; Iocozzia, J.; Wang, Y.; Cui, X.; Chen, Y.H.; Zhao, S.Q.; Li, Z.; Lin, Z.Q. Noble metal-metal
oxide nanohybrids with tailored nanostructures for efficient solar energy conversion, photocatalysis and
environmental remediation. Energy Environ. Sci. 2017, 10, 402–434. [CrossRef]

60. Almquist, C.B.; Biswas, P. The photo-oxidation of cyclohexane on titanium dioxide: An investigation of
competitive adsorption and its effects on product formation and selectivity. Appl. Catal. A Gen. 2001, 214,
259–271. [CrossRef]

61. Tsoncheva, T.; Issa, G.; Blasco, T.; Dimitrov, M.; Popova, M.; Hernandez, S.; Kovacheva, D.; Atanasova, G.;
Nieto, J.M.L. Catalytic VOCs elimination over copper and cerium oxide modified mesoporous SBA-15 silica.
Appl. Catal. A Gen. 2013, 453, 1–12. [CrossRef]

62. Carrillo, A.M.; Carriazo, J.G. Cu and Co oxides supported on halloysite for the total oxidation of toluene.
Appl. Catal. B Environ. 2015, 164, 443–452. [CrossRef]

63. Cui, E.T.; Hou, G.H.; Chen, X.H.; Zhang, F.; Deng, Y.X.; Yu, G.Y.; Li, B.B.; Wu, Y.Q. In-situ hydrothermal
fabrication of Sr2FeTaO6/NaTaO3 heterojunction photocatalyst aimed at the effective promotion of
electron-hole separation and visible-light absorption. Appl. Catal. B Environ. 2019, 241, 52–65. [CrossRef]

64. Li, J.J.; Yu, E.Q.; Cai, S.C.; Chen, X.; Chen, J.; Jia, H.P.; Xu, Y.J. Noble metal free, CeO2/LaMnO3 hybrid
achieving efficient photo-thermal catalytic decomposition of volatile organic compounds under IR light.
Appl. Catal. B Environ. 2019, 240, 141–152. [CrossRef]

65. Liu, Y.; Zhang, Z.Y.; Fang, Y.R.; Liu, B.K.; Huang, J.D.; Miao, F.J.; Bao, Y.A.; Dong, B. IR-Driven strong
plasmonic-coupling on Ag nanorices/W18O49 nanowires heterostructures for photo/thermal synergistic
enhancement of H-2 evolution from ammonia borane. Appl. Catal. B Environ. 2019, 252, 164–173. [CrossRef]

66. Lee, Y.E.; Chung, W.C.; Chang, M.B. Photocatalytic oxidation of toluene and isopropanol by
LaFeO3/black-TiO2. Environ. Sci. Pollut. Res. 2019, 26, 20908–20919. [CrossRef]

67. Ray, C.; Pal, T. Recent advances of metal-metal oxide nanocomposites and their tailored nanostructures in
numerous catalytic applications. J. Mater. Chem. A 2017, 5, 9465–9487. [CrossRef]

68. Valenti, M.; Jonsson, M.P.; Biskos, G.; Schmidt-Ott, A.; Smith, W.A. Plasmonic nanoparticle-semiconductor
composites for efficient solar water splitting. J. Mater. Chem. A 2016, 4, 17891–17912. [CrossRef]

69. Wu, N.Q. Plasmonic metal-semiconductor photocatalysts and photoelectrochemical cells: A review. Nanoscale
2018, 10, 2679–2696. [CrossRef]

http://dx.doi.org/10.1016/j.cej.2016.09.080
http://dx.doi.org/10.1016/j.cattod.2012.10.017
http://dx.doi.org/10.1016/j.cej.2017.08.130
http://dx.doi.org/10.1016/j.matlet.2012.01.123
http://dx.doi.org/10.1016/j.matlet.2016.02.096
http://dx.doi.org/10.1016/j.matlet.2014.01.026
http://dx.doi.org/10.1039/C8TA04274H
http://dx.doi.org/10.1016/j.jphotochem.2019.04.036
http://dx.doi.org/10.1039/C6EE02265K
http://dx.doi.org/10.1016/S0926-860X(01)00495-1
http://dx.doi.org/10.1016/j.apcata.2012.12.007
http://dx.doi.org/10.1016/j.apcatb.2014.09.027
http://dx.doi.org/10.1016/j.apcatb.2018.09.006
http://dx.doi.org/10.1016/j.apcatb.2018.08.069
http://dx.doi.org/10.1016/j.apcatb.2019.04.035
http://dx.doi.org/10.1007/s11356-019-05436-z
http://dx.doi.org/10.1039/C7TA02116J
http://dx.doi.org/10.1039/C6TA06405A
http://dx.doi.org/10.1039/C7NR08487K


Materials 2019, 12, 3858 13 of 16

70. Mendez-Medrano, M.G.; Kowalska, E.; Lehoux, A.; Herissan, A.; Ohtani, B.; Bahena, D.; Briois, V.;
Colbeau-Justin, C.; Rodriguez-Lopez, J.L.; Remita, H. Surface Modification of TiO2 with Ag Nanoparticles
and CuO Nanoclusters for Application in Photocatalysis. J. Phys. Chem. C 2016, 120, 5143–5154. [CrossRef]

71. Boriskina, S.V.; Ghasemi, H.; Chen, G. Plasmonic materials for energy: From physics to applications.
Mater. Today 2013, 16, 375–386. [CrossRef]

72. Zhang, X.D.; Yang, Y.; Song, L.; Wang, Y.X.; He, C.; Wang, Z.; Cui, L.F. High and stable catalytic activity of
Ag/Fe2O3 catalysts derived from MOFs for CO oxidation. Mol. Catal. 2018, 447, 80–89. [CrossRef]

73. DuChene, J.S.; Tagliabue, G.; Welch, A.J.; Cheng, W.H.; Atwater, H.A. Hot Hole Collection and
Photoelectrochemical CO2 Reduction with Plasmonic Au/p-GaN Photocathodes. Nano Lett. 2018, 18,
2545–2550. [CrossRef] [PubMed]

74. Kim, Y.; Torres, D.D.; Jain, P.K. Activation Energies of Plasmonic Catalysts. Nano Lett. 2016, 16, 3399–3407.
[CrossRef]

75. Khiavi, N.D.; Katal, R.; Eshkalak, S.K.; Masudy-Panah, S.; Ramakrishna, S.; Hu, J.Y. Visible Light Driven
Heterojunction Photocatalyst of CuO-Cu2O Thin Films for Photocatalytic Degradation of Organic Pollutants.
Nanomaterials 2019, 9, 1011. [CrossRef]

76. Christopher, P.; Xin, H.L.; Linic, S. Visible-light-enhanced catalytic oxidation reactions on plasmonic silver
nanostructures. Nat. Chem. 2011, 3, 467–472. [CrossRef]

77. Leong, K.H.; Abd Aziz, A.; Sim, L.C.; Saravanan, P.; Jang, M.; Bahnemann, D. Mechanistic insights into
plasmonic photocatalysts in utilizing visible light. Beilstein J. Nanotechnol. 2018, 9, 628–648. [CrossRef]

78. Ma, L.; Chen, S.; Shao, Y.; Chen, Y.L.; Liu, M.X.; Li, H.X.; Mao, Y.L.; Ding, S.J. Recent Progress in Constructing
Plasmonic Metal/Semiconductor Hetero-Nanostructures for Improved Photocatalysis. Catalysts 2018, 8, 634.
[CrossRef]

79. Truppi, A.; Petronella, F.; Placido, T.; Striccoli, M.; Agostiano, A.; Curri, M.L.; Comparelli, R.
Visible-Light-Active TiO2-Based Hybrid Nanocatalysts for Environmental Applications. Catalysts 2017, 7,
100. [CrossRef]

80. Zhang, Y.C.; He, S.; Guo, W.X.; Hu, Y.; Huang, J.W.; Mulcahy, J.R.; Wei, W.D. Surface-Plasmon-Driven Hot
Electron Photochemistry. Chem. Rev. 2018, 118, 2927–2954. [CrossRef]

81. Tatsuma, T.; Nishi, H.; Ishida, T. Plasmon-induced charge separation: chemistry and wide applications.
Chem. Sci. 2017, 8, 3325–3337. [CrossRef] [PubMed]

82. Erwin, W.R.; Zarick, H.F.; Talbert, E.M.; Bardhan, R. Light trapping in mesoporous solar cells with plasmonic
nanostructures. Energy Environ. Sci. 2016, 9, 1577–1601. [CrossRef]

83. Araujo, T.P.; Quiroz, J.; Barbosa, E.C.M.; Camargo, P.H.C. Understanding plasmonic catalysis with controlled
nanomaterials based on catalytic and plasmonic metals. Curr. Opin. Colloid Interface Sci. 2019, 39, 110–122.
[CrossRef]

84. Mao, M.Y.; Li, Y.Z.; Lv, H.Q.; Hou, J.T.; Zeng, M.; Ren, L.; Huang, H.; Zhao, X.J. Efficient UV-vis-IR
light-driven thermocatalytic purification of benzene on a Pt/CeO2 nanocomposite significantly promoted by
hot electron-induced photoactivation. Environ. Sci. Nano 2017, 4, 373–384. [CrossRef]

85. Fu, S.F.; Zheng, Y.; Zhou, X.B.; Ni, Z.M.; Xia, S.J. Visible light promoted degradation of gaseous volatile
organic compounds catalyzed by Au supported layered double hydroxides: Influencing factors, kinetics and
mechanism. J. Hazard. Mater. 2019, 363, 41–54. [CrossRef]

86. Ma, X.C.; Dai, Y.; Yu, L.; Huang, B.B. Energy transfer in plasmonic photocatalytic composites. Light Sci. Appl.
2016, 5, e16017. [CrossRef]

87. Gomez, L.; Hueso, J.L.; Ortega-Liebana, M.C.; Santamaria, J.; Cronin, S.B. Evaluation of gold-decorated
halloysite nanotubes as plasmonic photocatalysts. Catal. Commun. 2014, 56, 115–118. [CrossRef]

88. Graus, J.; Bueno-Alejo, C.J.; Hueso, J.L. In-Situ Deposition of Plasmonic Gold Nanotriangles and Nanoprisms
onto Layered Hydroxides for Full-Range Photocatalytic Response towards the Selective Reduction of
p-Nitrophenol. Catalysts 2018, 8, 354. [CrossRef]

89. Uson, L.; Sebastian, V.; Mayoral, A.; Hueso, J.L.; Eguizabal, A.; Arruebo, M.; Santamaria, J. Spontaneous
formation of Au-Pt alloyed nanoparticles using pure nano-counterparts as starters: A ligand and size
dependent process. Nanoscale 2015, 7, 10152–10161. [CrossRef]

90. Zieba, M.; Hueso, J.L.; Arruebo, M.; Martinez, G.; Santamaria, J. Gold-coated halloysite nanotubes as tunable
plasmonic platforms. New J. Chem. 2014, 38, 2037–2042. [CrossRef]

http://dx.doi.org/10.1021/acs.jpcc.5b10703
http://dx.doi.org/10.1016/j.mattod.2013.09.003
http://dx.doi.org/10.1016/j.mcat.2018.01.007
http://dx.doi.org/10.1021/acs.nanolett.8b00241
http://www.ncbi.nlm.nih.gov/pubmed/29522350
http://dx.doi.org/10.1021/acs.nanolett.6b01373
http://dx.doi.org/10.3390/nano9071011
http://dx.doi.org/10.1038/nchem.1032
http://dx.doi.org/10.3762/bjnano.9.59
http://dx.doi.org/10.3390/catal8120634
http://dx.doi.org/10.3390/catal7040100
http://dx.doi.org/10.1021/acs.chemrev.7b00430
http://dx.doi.org/10.1039/C7SC00031F
http://www.ncbi.nlm.nih.gov/pubmed/28507702
http://dx.doi.org/10.1039/C5EE03847B
http://dx.doi.org/10.1016/j.cocis.2019.01.014
http://dx.doi.org/10.1039/C6EN00472E
http://dx.doi.org/10.1016/j.jhazmat.2018.10.009
http://dx.doi.org/10.1038/lsa.2016.17
http://dx.doi.org/10.1016/j.catcom.2014.07.017
http://dx.doi.org/10.3390/catal8090354
http://dx.doi.org/10.1039/C5NR01819F
http://dx.doi.org/10.1039/c3nj01127e


Materials 2019, 12, 3858 14 of 16

91. Halas, N.J.; Lal, S.; Chang, W.S.; Link, S.; Nordlander, P. Plasmons in Strongly Coupled Metallic Nanostructures.
Chem. Rev. 2011, 111, 3913–3961. [CrossRef] [PubMed]

92. Aslam, U.; Rao, V.G.; Chavez, S.; Linic, S. Catalytic conversion of solar to chemical energy on plasmonic
metal nanostructures. Nat. Catal. 2018, 1, 656–665. [CrossRef]

93. Kim, Y.; Smith, J.G.; Jain, P.K. Harvesting multiple electron-hole pairs generated through plasmonic excitation
of Au nanoparticles. Nat. Chem. 2018, 10, 763–769. [CrossRef] [PubMed]

94. Bernardi, M.; Mustafa, J.; Neaton, J.B.; Louie, S.G. Theory and computation of hot carriers generated by
surface plasmon polaritons in noble metals. Nat. Commun. 2015, 6, 7044. [CrossRef] [PubMed]

95. Brongersma, M.L.; Halas, N.J.; Nordlander, P. Plasmon-induced hot carrier science and technology.
Nat. Nanotechnol. 2015, 10, 25–34. [CrossRef]

96. Kriegel, I.; Scotognella, F.; Manna, L. Plasmonic doped semiconductor nanocrystals: Properties, fabrication,
applications and perspectives. Phys. Rep. Rev. Sec. Phys. Lett. 2017, 674, 1–52. [CrossRef]

97. Rao, V.G.; Aslam, U.; Linic, S. Chemical Requirement for Extracting Energetic Charge Carriers from Plasmonic
Metal Nanoparticles to Perform Electron-Transfer Reactions. J. Am. Chem. Soc. 2019, 141, 643–647. [CrossRef]

98. Aslam, U.; Chavez, S.; Linic, S. Controlling energy flow in multimetallic nanostructures for plasmonic
catalysis. Nat. Nanotechnol. 2017, 12, 1000–1005. [CrossRef]

99. Boerigter, C.; Aslam, U.; Linic, S. Mechanism of Charge Transfer from Plasmonic Nanostructures to Chemically
Attached Materials. ACS Nano 2016, 10, 6108–6115. [CrossRef]

100. Linic, S.; Aslam, U.; Boerigter, C.; Morabito, M. Photochemical transformations on plasmonic metal
nanoparticles. Nat. Mater. 2015, 14, 567–576. [CrossRef]

101. Gargiulo, J.; Berte, R.; Li, Y.; Maier, S.A.; Cortes, E. From Optical to Chemical Hot Spots in Plasmonics.
Acc. Chem. Res. 2019, 52, 2525–2535. [CrossRef]

102. Linic, S.; Christopher, P.; Xin, H.L.; Marimuthu, A. Catalytic and Photocatalytic Transformations on Metal
Nanoparticles with Targeted Geometric and Plasmonic Properties. Acc. Chem. Res. 2013, 46, 1890–1899.
[CrossRef]

103. Brus, L. Noble Metal Nanocrystals: Plasmon Electron Transfer Photochemistry and Single-Molecule Raman
Spectroscopy. Acc. Chem. Res. 2008, 41, 1742–1749. [CrossRef]

104. El-Sayed, M.A. Some interesting properties of metals confined in time and nanometer space of different
shapes. Acc. Chem. Res. 2001, 34, 257–264. [CrossRef]

105. Marimuthu, A.; Zhang, J.W.; Linic, S. Tuning Selectivity in Propylene Epoxidation by Plasmon Mediated
Photo-Switching of Cu Oxidation State. Science 2013, 339, 1590–1593. [CrossRef]

106. Wan, L.L.; Zhou, Q.X.; Wang, X.; Wood, T.E.; Wang, L.; Duchesne, P.N.; Guo, J.L.; Yan, X.L.; Xia, M.K.;
Lie, Y.F.; et al. Cu2O nanocubes with mixed oxidation-state facets for (photo)catalytic hydrogenation of
carbon dioxide. Nat. Catal. 2019, 2, 889–898. [CrossRef]

107. Zhang, Q.B.; Zhang, K.L.; Xu, D.G.; Yang, G.C.; Huang, H.; Nie, F.D.; Liu, C.M.; Yang, S.H. CuO nanostructures:
Synthesis, characterization, growth mechanisms, fundamental properties, and applications. Prog. Mater. Sci.
2014, 60, 208–337. [CrossRef]

108. Kumar, M.K.; Bhavani, K.; Naresh, G.; Srinivas, B.; Venugopal, A. Plasmonic resonance nature of Ag-Cu/TiO2

photocatalyst under solar and artificial light: Synthesis, characterization and evaluation of H2O splitting
activity. Appl. Catal. B Environ. 2016, 199, 282–291.

109. Nguyen, N.L.; de Gironcoli, S.; Piccinin, S. Ag-Cu catalysts for ethylene epoxidation: Selectivity and activity
descriptors. J. Chem. Phys. 2013, 138, 184707. [CrossRef]

110. Rapallo, A.; Rossi, G.; Ferrando, R.; Fortunelli, A.; Curley, B.C.; Lloyd, L.D.; Tarbuck, G.M.; Johnston, R.L.
Global optimization of bimetallic cluster structures. I. Size-mismatched Ag-Cu, Ag-Ni, and Au-Cu systems.
J. Chem. Phys. 2005, 122, 194308. [CrossRef]

111. Verma, A.; Gupta, R.K.; Shukla, M.; Malviya, M.; Sinha, I. Ag-Cu Bimetallic Nanoparticles as Efficient
Oxygen Reduction Reaction Electrocatalysts in Alkaline Media. J. Nanosci. Nanotechnol. 2020, 20, 1765–1772.
[CrossRef] [PubMed]

112. Piccinin, S.; Zafeiratos, S.; Stampfl, C.; Hansen, T.W.; Havecker, M.; Teschner, D.; Bukhtiyarov, V.I.; Girgsdies, F.;
Knop-Gericke, A.; Schlogl, R.; et al. Alloy Catalyst in a Reactive Environment: The Example of Ag-Cu
Particles for Ethylene Epoxidation. Phys. Rev. Lett. 2010, 104, 035503. [CrossRef] [PubMed]

113. Tchaplyguine, M.; Zhang, C.F.; Andersson, T.; Bjorneholm, O. Ag-Cu oxide nanoparticles with high oxidation
states: towards new high T-c materials. Dalton Trans. 2018, 47, 16660–16667. [CrossRef] [PubMed]

http://dx.doi.org/10.1021/cr200061k
http://www.ncbi.nlm.nih.gov/pubmed/21542636
http://dx.doi.org/10.1038/s41929-018-0138-x
http://dx.doi.org/10.1038/s41557-018-0054-3
http://www.ncbi.nlm.nih.gov/pubmed/29736005
http://dx.doi.org/10.1038/ncomms8044
http://www.ncbi.nlm.nih.gov/pubmed/26033445
http://dx.doi.org/10.1038/nnano.2014.311
http://dx.doi.org/10.1016/j.physrep.2017.01.003
http://dx.doi.org/10.1021/jacs.8b11949
http://dx.doi.org/10.1038/nnano.2017.131
http://dx.doi.org/10.1021/acsnano.6b01846
http://dx.doi.org/10.1038/nmat4281
http://dx.doi.org/10.1021/acs.accounts.9b00234
http://dx.doi.org/10.1021/ar3002393
http://dx.doi.org/10.1021/ar800121r
http://dx.doi.org/10.1021/ar960016n
http://dx.doi.org/10.1126/science.1231631
http://dx.doi.org/10.1038/s41929-019-0338-z
http://dx.doi.org/10.1016/j.pmatsci.2013.09.003
http://dx.doi.org/10.1063/1.4803157
http://dx.doi.org/10.1063/1.1898223
http://dx.doi.org/10.1166/jnn.2020.17154
http://www.ncbi.nlm.nih.gov/pubmed/31492341
http://dx.doi.org/10.1103/PhysRevLett.104.035503
http://www.ncbi.nlm.nih.gov/pubmed/20366656
http://dx.doi.org/10.1039/C8DT04118K
http://www.ncbi.nlm.nih.gov/pubmed/30426128


Materials 2019, 12, 3858 15 of 16

114. Zhang, Y.Y.; Wang, L.L.; Kong, X.Y.; Jiang, H.Y.; Zhang, F.; Shi, J.S. Novel Ag-Cu bimetallic alloy
decorated near-infrared responsive three-dimensional rod-like architectures for efficient photocatalytic water
purification. J. Colloid Interface Sci. 2018, 522, 29–39. [CrossRef] [PubMed]

115. Walsh, D.; Arcelli, L.; Ikoma, T.; Tanaka, J.; Mann, S. Dextran templating for the synthesis of metallic and
metal oxide sponges. Nat. Mater. 2003, 2, 386. [CrossRef] [PubMed]

116. Liang, Y.; Chen, Z.; Yao, W.; Wang, P.Y.; Yu, S.J.; Wang, X.K. Decorating of Ag and CuO on Cu Nanoparticles
for Enhanced High Catalytic Activity to the Degradation of Organic Pollutants. Langmuir 2017, 33, 7606–7614.
[CrossRef]

117. Elemike, E.E.; Onwudiwe, D.C.; Ogeleka, D.F.; Mbonu, J.I. Phyto-assisted Preparation of Ag and Ag-CuO
Nanoparticles Using Aqueous Extracts of Mimosa pigra and their Catalytic Activities in the Degradation of
Some Common Pollutants. J. Inorg. Organomet. Polym. Mater. 2019, 29, 1798–1806. [CrossRef]

118. Ji, W.K.; Shen, T.; Kong, J.J.; Rui, Z.B.; Tong, Y.X. Synergistic Performance between Visible-Light Photocatalysis
and Thermocatalysis for VOCs Oxidation over Robust Ag/F-Codoped SrTiO3. Ind. Eng. Chem. Res. 2018, 57,
12766–12773. [CrossRef]

119. Wan, X.; Yang, J.; Huang, X.Y.; Tie, S.L.; Lan, S. A high-performance room temperature thermocatalyst
Cu2O/Ag-0@Ag-NPs for dye degradation under dark condition. J. Alloys Compd. 2019, 785, 398–409.
[CrossRef]

120. Kung, M.L.; Tai, M.H.; Lin, P.Y.; Wu, D.C.; Wu, W.J.; Yeh, B.W.; Hung, H.S.; Kuo, C.H.; Chen, Y.W.; Hsieh, S.L.;
et al. Silver decorated copper oxide (Ag@CuO) nanocomposite enhances ROS-mediated bacterial architecture
collapse. Colloid Surf. B Biointerfaces 2017, 155, 399–407. [CrossRef]

121. Ramirez, A.; Hueso, J.L.; Suarez, H.; Mallada, R.; Ibarra, A.; Irusta, S.; Santamaria, J. A Nanoarchitecture
Based on Silver and Copper Oxide with an Exceptional Response in the Chlorine-Promoted Epoxidation of
Ethylene. Angew. Chem. Int. Edit. 2016, 55, 11158–11161. [CrossRef] [PubMed]

122. Bottega-Pergher, B.; Graus, J.; Bueno-Alejo, C.J.; Hueso, J.L. Triangular and Prism-Shaped Gold-Zinc Oxide
Plasmonic Nanostructures: In situ Reduction, Assembly, and Full-Range Photocatalytic Performance. Eur. J.
Inorg. Chem. 2019, 2019, 3228–3234. [CrossRef]

123. Ramirez, A.; Hueso, J.L.; Mallada, R.; Santamaria, J. Ethylene epoxidation in microwave heated structured
reactors. Catal. Today 2016, 273, 99–105. [CrossRef]

124. Ramirez, A.; Hueso, J.L.; Mallada, R.; Santamaria, J. In situ temperature measurements in microwave-heated
gas-solid catalytic systems. Detection of hot spots and solid-fluid temperature gradients in the ethylene
epoxidation reaction. Chem. Eng. J. 2017, 316, 50–60. [CrossRef]

125. Gomez-Romero, P.; Tejada-Rosales, E.M.; Palacin, M.R. Ag2Cu2O3: The first silver copper oxide. Angew.
Chem. Int. Edit. 1999, 38, 524–525. [CrossRef]

126. Tejada-Rosales, E.M.; Rodriguez-Carvajal, J.; Casan-Pastor, N.; Alemany, P.; Ruiz, E.; El-Fallah, M.S.;
Alvarez, S.; Gomez-Romero, P. Room-temperature synthesis and crystal, magnetic, and electronic structure
of the first silver copper oxide. Inorg. Chem. 2002, 41, 6604–6613. [CrossRef]

127. Carreras, A.; Conejeros, S.; Camon, A.; Garcia, A.; Casan-Pastor, N.; Alemany, P.; Canadell, E. Charge
Delocalization, Oxidation States, and Silver Mobility in the Mixed Silver-Copper Oxide AgCuO2. Inorg. Chem.
2019, 58, 7026–7035. [CrossRef]

128. Navaladian, S.; Viswanathan, B.; Viswanath, R.P.; Varadarajan, T.K. Thermal decomposition as route for
silver nanoparticles. Nanoscale Res. Lett. 2007, 2, 44–48. [CrossRef]

129. Boerigter, C.; Campana, R.; Morabito, M.; Linic, S. Evidence and implications of direct charge excitation as
the dominant mechanism in plasmon-mediated photocatalysis. Nat. Commun. 2016, 7, 10545. [CrossRef]

130. Zhang, T.; Wang, S.J.; Zhang, X.Y.; Su, D.; Yang, Y.; Wu, J.Y.; Xu, Y.Y.; Zhao, N. Progress in the Utilization
Efficiency Improvement of Hot Carriers in Plasmon-Mediated Heterostructure Photocatalysis. Appl. Sci.
2019, 9, 2093. [CrossRef]

131. Zhou, L.A.; Swearer, D.F.; Zhang, C.; Robatjazi, H.; Zhao, H.Q.; Henderson, L.; Dong, L.L.; Christopher, P.;
Carter, E.A.; Nordlander, P.; et al. Quantifying hot carrier and thermal contributions in plasmonic
photocatalysis. Science 2018, 362, 69–72. [CrossRef] [PubMed]

132. Huang, Y.F.; Zhang, M.; Zhao, L.B.; Feng, J.M.; Wu, D.Y.; Ren, B.; Tian, Z.Q. Activation of Oxygen on Gold and
Silver Nanoparticles Assisted by Surface Plasmon Resonances. Angew. Chem. Int. Edit. 2014, 53, 2353–2357.
[CrossRef] [PubMed]

http://dx.doi.org/10.1016/j.jcis.2018.02.005
http://www.ncbi.nlm.nih.gov/pubmed/29574266
http://dx.doi.org/10.1038/nmat903
http://www.ncbi.nlm.nih.gov/pubmed/12764358
http://dx.doi.org/10.1021/acs.langmuir.7b01540
http://dx.doi.org/10.1007/s10904-019-01142-y
http://dx.doi.org/10.1021/acs.iecr.8b02873
http://dx.doi.org/10.1016/j.jallcom.2019.01.215
http://dx.doi.org/10.1016/j.colsurfb.2017.04.041
http://dx.doi.org/10.1002/anie.201603886
http://www.ncbi.nlm.nih.gov/pubmed/27404950
http://dx.doi.org/10.1002/ejic.201900213
http://dx.doi.org/10.1016/j.cattod.2016.01.007
http://dx.doi.org/10.1016/j.cej.2017.01.077
http://dx.doi.org/10.1002/(SICI)1521-3773(19990215)38:4&lt;524::AID-ANIE524&gt;3.0.CO;2-F
http://dx.doi.org/10.1021/ic025872b
http://dx.doi.org/10.1021/acs.inorgchem.9b00662
http://dx.doi.org/10.1007/s11671-006-9028-2
http://dx.doi.org/10.1038/ncomms10545
http://dx.doi.org/10.3390/app9102093
http://dx.doi.org/10.1126/science.aat6967
http://www.ncbi.nlm.nih.gov/pubmed/30287657
http://dx.doi.org/10.1002/anie.201310097
http://www.ncbi.nlm.nih.gov/pubmed/24481674


Materials 2019, 12, 3858 16 of 16

133. Kim, M.; Lee, J.H.; Nam, J.M. Plasmonic Photothermal Nanoparticles for Biomedical Applications. Adv. Sci.
2019, 6, 1900471. [CrossRef] [PubMed]

134. Brown, A.M.; Sundararaman, R.; Narang, P.; Goddard, W.A.; Atwater, H.A. Nonradiative Plasmon Decay and
Hot Carrier Dynamics: Effects of Phonons, Surfaces, and Geometry. ACS Nano 2016, 10, 957–966. [CrossRef]
[PubMed]

135. Atwater, H.A.; Polman, A. Plasmonics for improved photovoltaic devices. Nat. Mater. 2010, 9, 205–213.
[CrossRef] [PubMed]

136. Jermyn, A.S.; Tagliabue, G.; Atwater, H.A.; Goddard, W.A.; Narang, P.; Sundararaman, R. Transport of hot
carriers in plasmonic nanostructures. Phys. Rev. Mater. 2019, 3, 075201. [CrossRef]

137. Bai, S.; Li, X.Y.; Kong, Q.; Long, R.; Wang, C.M.; Jiang, J.; Xiong, Y.J. Toward Enhanced Photocatalytic Oxygen
Evolution: Synergetic Utilization of Plasmonic Effect and Schottky Junction via Interfacing Facet Selection.
Adv. Mater. 2015, 27, 3444–3452. [CrossRef]

138. Ghosh, P.; Kar, A.; Khandelwal, S.; Vyas, D.; Mir, A.; Chakraborty, A.L.; Hegde, R.S.; Sharma, S.; Dutta, A.;
Khatua, S. Plasmonic CoO-Decorated Au Nanorods for Photoelectrocatalytic Water Oxidation. ACS Appl.
Nano Mater. 2019, 2, 5795–5803. [CrossRef]

139. Al-Zubeidi, A.; Hoener, B.S.; Collins, S.S.E.; Wang, W.X.; Kirchner, S.R.; Jebeli, S.A.H.; Joplin, A.; Chang, W.S.;
Link, S.; Landes, C.F. Hot Holes Assist Plasmonic Nanoelectrode Dissolution. Nano Lett. 2019, 19, 1301–1306.
[CrossRef]

140. Pensa, E.; Gargiulo, J.; Lauri, A.; Schlucker, S.; Cortes, E.; Maier, S.A. Spectral Screening of the Energy of Hot
Holes over a Particle Plasmon Resonance. Nano Lett. 2019, 19, 1867–1874. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1002/advs.201900471
http://www.ncbi.nlm.nih.gov/pubmed/31508273
http://dx.doi.org/10.1021/acsnano.5b06199
http://www.ncbi.nlm.nih.gov/pubmed/26654729
http://dx.doi.org/10.1038/nmat2629
http://www.ncbi.nlm.nih.gov/pubmed/20168344
http://dx.doi.org/10.1103/PhysRevMaterials.3.075201
http://dx.doi.org/10.1002/adma.201501200
http://dx.doi.org/10.1021/acsanm.9b01258
http://dx.doi.org/10.1021/acs.nanolett.8b04894
http://dx.doi.org/10.1021/acs.nanolett.8b04950
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Synthesis of the Photocatalysts 
	Characterization Techniques 
	Photocatalytic Reaction Setup 

	Results 
	Characterization of the Silver-Copper Oxide Plasmonic Photocatalyst 
	Photocatalytic Performance of the Ag-CuO Heterostructures for N-Hexane Total Oxidation 

	Discussion 
	References

