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Abstract

Channel catfish (Ictalurus punctatus) is a highly adaptive species and has been used as a

research model for comparative immunology, physiology, and toxicology among ectother-

mic vertebrates. It is also economically important for aquaculture. As such, its reference

genome was generated and annotated with protein coding genes. However, the repetitive

elements in the catfish genome are less well understood. In this study, over 417.8 Mega-

base (MB) of repetitive elements were identified and characterized in the channel catfish

genome. Among them, the DNA/TcMar-Tc1 transposons are the most abundant type, mak-

ing up ~20% of the total repetitive elements, followed by the microsatellites (14%). The prev-

alence of repetitive elements, especially the mobile elements, may have provided a driving

force for the evolution of the catfish genome. A number of catfish-specific repetitive ele-

ments were identified including the previously reported Xba elements whose divergence

rate was relatively low, slower than that in untranslated regions of genes but faster than the

protein coding sequences, suggesting its evolutionary restrictions.

Introduction

Eukaryotic genomes contain significant amount of repetitive DNA sequences, and the collec-

tive of the repeated sequences in an organism is known as the repeatome of the organism [1].

Such repetitive sequences were once thought to be junk DNA [2], but recent studies have indi-

cated that they play important roles in propelling genome evolution and adaptation to envi-

ronments [3–9]. The repeatomes of higher vertebrates, especially those of mammals, have

been well studied, but their studies are limited for aquatic species.

Repetitive sequences can be generally divided into three major categories: the dispersed

repeats such as transposable elements or transposons, tandem repeats, and high copy number

genes [1]. Transposons are dispersed across genomes and their proportion are highly variable

among genomes, ranging from 3% to 85% in terms of physical size [10–11]. For instance, the

genome of Utricularia gibba contains only 3% of repetitive sequences [12–13], while the
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genome of maize contains over 85% transposable elements [14–15]. Based on their mecha-

nisms of proliferation, transposons can be further classified into RNA-mediated Class I trans-

posons and RNA-independent Class II DNA transposons. Class I transposons contain three

main subclasses: short interspersed nuclear elements (SINEs), long interspersed nuclear ele-

ments (LINEs), and transposons with long terminal repeats (LTRs). The Class II transposons

can be further divided into two classes based on their transposition mechanisms. The TIR-

based Subclass-I elements such as piggyBacs, hATs, which are proliferated through the cut-

and-paste mechanism; As well as non-TIR based Sub-class II DNA transposons such as Heli-

tron, and Maverick; which are mobilize by rolling- circle replication via a single stranded

DNA intermediate [16–17]. Transposons are capable of moving in the genome, and therefore,

they are believed to be a major driving force for genome evolution [18–21].

Tandem repeats are individual repeats of DNA located adjacent to one another comprising

variable numbers of nucleotides within each repeat sequence, and variable numbers of repeats

such as microsatellites and satellites [22–24]. Tandem repeats are mostly presented in the cen-

tromeric, telomeric, and subtelomeric regions of chromosomes. In some cases, the tandem

repeats can also make up large fractions of the genome [25–26]. The amplification and/or

mutations of tandem repeats may also affect the genome by changing the genome structures

or genome sizes [27–29], thereby affecting recombination of genomes, gene expressions, gene

conversions, and chromosomal organizations [30–34].

High copy number genes such as ribosomal RNA (rRNA) genes or immunoglobulins also

make up significant fractions of the repeatome. For instance, the copy numbers of rRNA genes

can be as high as 4,000 copies, such as in the genome of pea (Pisum sativum) [35]. In Saccharo-
myces cerevisiae, a single cluster of rRNA can cover about 60% of the chromosome XII [36],

thus it has been considered as the “king of the housekeeping genes” in terms of function and

quantity [37]. Similarly, immunoglobulin genes have been found to be highly repetitive. For

instance, the catfish IgH locus contains at least 200 variable (V) region genes, three diversity

(D) and 11 joining (JH) genes for recombination [1, 38–39].

Channel catfish (Ictalurus punctatus) is a freshwater fish species distributed in lower Can-

ada and the eastern and northern United States, as well as parts of northern Mexico. Its high

tolerance and adaptability to harsh environments made it one of the most popular aquaculture

species. In the United States, it is the primary aquaculture species, accounting for over 60% of

all U.S. aquaculture production [40–41]. Its reference genome sequence with annotation of

protein coding genes was published [42], but its repeatome was not fully characterized. Previ-

ous works reported the presence of an A/T-rich tandem Xba elements on the centromere

regions but not in closely related species [43–44], and presence of dispersed SINE elements

[45] and DNA transposons [46] in the channel catfish genome was also reported. Genomic

sequencing surveys provided additional information about other repetitive sequences such as

microsatellites, and transposons [47–52]. Here we annotated and characterized the repeatome

of the channel catfish genome from sequences generated for whole genome sequencing.

Material and methods

Annotation of repetitive elements in channel catfish genome

The identification and annotation of the repetitive elements in the channel catfish genome

assembly along with the degenerate sequences [42] were conducted using the RepeatModeler

1.0.8 package (http://www.repeatmasker.org/RepeatModeler.html) containing RECON [53]

and RepeatScout [54]. The identified channel catfish repetitive sequences were searched

against curated libraries and repetitive DNA sequence database Repbase [55] and Dfam [56]

derived from RepeatMasker 4.0.6 package (http://www.repeatmasker.org/). To further

Repeatome in channel catfish
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determine characters of the repetitive elements classified as “Unknown” by the RepeatMode-

ler, those sequences were first clustered by self-alignments via CD-HIT, with sequence identity

cut-off set as 50% [57–58]. Then, the clustered sequences were searched against the entire

NCBI Nucleotide collection database (nt) using BLASTN: 2.2.28+ with a relatively relaxed E-

value (<10−5) to annotate the sequence with the best hit.

The distribution and density of repetitive elements

The distribution frequency of the repetitive elements of DNA/TcMar-Tc1 as well as microsat-

ellites and satellites sequences on the chromosomes were subtotaled and calculated by the loca-

tion information and abundance information reported by the RepeatMasker. Their density on

the chromosomes was presented as bp/MB. The heat map was plotted using the Heml1.0 [59].

Divergence time of channel catfish and blue catfish

The divergence time and their 95% credibility intervals of channel catfish and blue catfish

(Ictalurus furcatus) were calculated based on the divergence of cytochrome b genes with the cali-

bration of fossil records. The substitution rate of cytochrome b was determined as normal distri-

bution with mean of 1.05% and a standard deviation of 0.0105% [60]. In addition to channel

catfish and blue catfish, we also used the cytochrome b sequences of blind cave fish (Astyanax
mexicanus), common carp (Cyprinus carpio), and zebrafish (Danio rerio) for phylogenetic analy-

sis (S1 File). The analysis was performed using the BEAST v.1.8.0 package [61]. Two indepen-

dent runs were performed with 1,000 generations sampled from every 10 million generations for

each dataset using MCMC chains [62]. The input files were constructed in BEAUTi, and the best

substitution model was selected by Prottest 3.2.1 according to the alignments [63]. Model param-

eters consisted of a GTR+I+G model with a lognormal relaxed clock [64–65], the speciation

birth-death process, and random starting tree were also applied in the phylogenetic analysis.

For the files of the resulting trees, we used the TreeAnnotator v1.8.0 to discard 10% of

samples as burn-in and summarized the information of the remaining samples of trees onto a

maximum clade credibility chronogram, and the results were viewed in Figtree with mean

divergence times and 95% age credibility intervals.

To calibrate the divergence time of major clades for a better phylogenetic analysis, we have

selected three teleost fossil records for calibration, the following node ages were set using log-

normal priors:

1. Time of most recent common ancestor of Ictalurus (channel catfish and blue catfish), 19

MYR, (lognormal mean of 19 and standard deviation of 1.9), following Blanton and Hard-

man [66–67].

2. Time of most recent common ancestor of Characiformes (blind cave fish), 94 MYR, (log-

normal mean of 94 and standard deviation of 9.4), with the fossil record discovered in Cen-

omanian [68–69].

3. Time of most recent common ancestor of Cypriniformes (common carp and zebrafish), 50

MYR, (lognormal mean of 50 and standard deviation of 5.0) with fossil discovered in Ypre-

sian [70].

Substitution rate of the Xba elements

The overall evolutionary dynamics can be referred from the average number of substitutions

per site (K). The K was estimated from the divergence levels reported by Repeatmasker,

using the one-parameter Jukes-Cantor Formula K = -300/4×Ln(1-D×4/300) as described in

Repeatome in channel catfish

PLOS ONE | https://doi.org/10.1371/journal.pone.0197371 May 15, 2018 3 / 16

https://doi.org/10.1371/journal.pone.0197371


previous studies [71], where D represents the proportion of sites that differ between the frag-

mented repeats and the consensus sequence. For channel catfish and blue catfish Xba ele-

ments, the nucleotide substitution rate (r) was calculated using the formula r = K/(2T) [72],

where T is the divergence time of channel catfish and blue catfish. To calculate the average K

of the different types of repetitive elements, K of each element was multiplied by the length

of the element, and the sum of all elements was divided by the sum of the total length of the

elements.

Results

Annotation of repetitive elements in the channel catfish genome

The major categories of the repetitive elements in the channel catfish genome are shown in Fig

1 and detailed in S1 Table and S2–S5 Files. The channel catfish genome harbored a total of

417.8 Mb of repetitive elements, accounting for 44% of the catfish genome. Of all the repetitive

elements, 84.1% were annotated as known repetitive elements, while 15.9% were previously

unclassified repetitive elements in the channel catfish genome. The known repetitive elements

fell into 70 major categories, with the category of Tc1/mariner transposons accounting for the

largest percentage (19.9% in repeatome, 8.8% in genome), followed by microsatellites (14.1%

in repeatome, 6.2% in genome), repetitive proteins (7.2% in repeatome, 3.2% in genome),

LINE/L2 (4.3% in repeatome, 1.9% in genome), Xba elements (3.5% in repeatome, 1.6% in

genome), LTR/Nagro (3.1% in repeatome, 1.4% in genome), hAT/Ac (3.0% in repeatome,

1.3% in genome), unclassified DNA transposons (2.9% in repeatome, 1.3% in genome), LTR/

Gypsy (2.3% in repeatome, 1.0% in genome), LTR/DIRS (2.2% in repeatome, 1.0% in genome),

CMC-EnSpm (2.1% in repeatome, 0.9% in genome), Ginger (1.8% in repeatome, 0.8% in

genome), satellite (1.7% in repeatome, 0.7% in genome), hAT (1.3% in repeatome, 0.6% in

genome), SINE/MIR (1.3% in repeatome, 0.6% in genome), low complexity elements (1.1% in

repeatome, 0.5% in genome), DNA/hAT-Charlie (1.1% in repeatome, 0.5% in genome), RC/

Helitron (1.1% in repeatome, 0.5% in genome), and LINE/Rex-Babar (1.0% in repeatome,

0.5% in genome). All the remaining categories represented less than 1% each of the repetitive

elements (S1 Table).

Fig 1. The proportion of major categories of repetitive elements within the channel catfish repeatome.

https://doi.org/10.1371/journal.pone.0197371.g001
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The distribution of repeats cross genome

The Tc1/Mariner transposons are distributed cross the whole genome, with no major differ-

ences among chromosomes or among chromosomal regions within chromosomes (Fig 2).

Among the annotated microsatellites, the dinucleotide microsatellites are the most abundant

type, making up nearly 46% of the total annotated microsatellite sequences followed by tetra-

and tri-nucleotide microsatellites, making up 18.6% and 13.6% of the total annotated microsat-

ellites in length, respectively. As shown in Fig 3, the microsatellites and satellites are abundant

on both ends of the chromosomes and some of them are distributed on the middle of the chro-

mosomes. This is in consistent with previous results that telomere regions and centromere

regions contain large part of short tandem repeats [73–75].

Substitution rates

The analysis of evolutionary rate of the unique Xba elements within catfish is useful to assess

their limitations of evolution and assessment of their potential functions. The divergence anal-

ysis indicated that the Xba elements have a low mean Jukes-Cantor distance of 3.53, lower

Fig 2. The distribution of Tc1/Mariner transposons cross channel catfish genome. Color key is indicated at the lower right of the figure, with blue

color to indicate low and red color to indicate high levels of the transposons in the chromosomal regions. Each color bar represented a physical distance

of 1 Mb DNA.

https://doi.org/10.1371/journal.pone.0197371.g002

Fig 3. The distribution of microsatellites and satellites along the chromosomes of the channel catfish genome. Color key is indicated at the lower

right of the figure, with blue color to indicate low and red color to indicate high levels of the microsatellites and satellites in the chromosomal regions.

Each color bar represented a physical distance of 1 Mb DNA.

https://doi.org/10.1371/journal.pone.0197371.g003
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than the average Jukes-Cantor distance of 13.34 of the channel catfish reaptome. Meanwhile,

compared with Xba elements, the substitution distribution of the catfish DNA/TcMar-Tc1

transposons, most prevalent in the catfish genome, are characterized not only by a broader

distribution of divergence up to more than 50%, but also a larger mean divergence rate of

approximately 12% (Fig 4). This indicated a long history of evolution as well as a more active

evolutionary dynamics during the evolution of DNA/TcMar-Tc1 transposons in the catfish

genomes, and recent acquisition of the Xba elements specific to the Ictalurus catfishes.

The inference of divergence time of channel catfish and blue catfish are important for the

calculation of the rate of nucleotide substitutions of their unique Xba elements. The maximum

clade credibility chronogram analysis indicated that the channel catfish and blue catfish sepa-

rated approximate 16.6 million years (Myr) ago, with a 95% age credibility intervals of 13.3–

19.9 Myr (Fig 5). This is consistent with the earliest fossil record of the channel catfish discov-

ered in Nebraska in the middle Miocene, and agreed with previous analysis of approximate 21

Myr of separation of channel catfish and blue catfish [66]. Based on the average number of

substitution per site and the divergence time, the rate of nucleotide substitutions of the Xba

elements was calculated as 8.9×10−8 to 1.3×10−7 substitutions per site per year. Meanwhile,

based on the results of the previous research on differences of full length cDNA sequences

between channel catfish and blue catfish [76], the rate of nucleotide substitution of Xba ele-

ments are higher than those in the open reading frame regions (2.5×10−8 to 7.6×10−8), but

lower than those in untranslated regions (1.3×10−7 to 1.9×10−7).

Novel repetitive elements in the catfish genome

Among the repetitive elements in channel catfish, there are still about ~16% of the repetitive

sequences which cannot be annotated from neither the repetitive element databases nor the

known non-redundant nucleotide database. Those sequences are rich in A/T (58%), the group-

ing of those sequences with more than 50% in similarity by CD-hit had grouped them into 215

categories (S2 Table). The top categories with over 500 Kb in length and their representative

Fig 4. The divergence distribution of channel catfish Xba elements (blue) and DNA/TcMar-Tc1 transposons (pink). The X-axis represents the

average number of substitutions per site (%), and the Y-axis represents the percentage sequences that comprise the whole genome (%).

https://doi.org/10.1371/journal.pone.0197371.g004
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sequences on the genome are listed in Table 1. Those categories contain more than 15 Mb of

the novel repetitive elements in length and most of them are also A/T enriched. Although

there were no previous annotations of those repetitive elements, they may still have potential

functions in the genome evolutions or biological processes regulations. Our work provides a

Fig 5. The divergence time of the channel catfish and blue catfish with fossil calibrations (orange nodes) based on the mitochondrial cytochrome

b sequences.

https://doi.org/10.1371/journal.pone.0197371.g005

Table 1. The major novel repetitive elements and their characteristics in the channel catfish repeatome.

Size AT content Representative scaffold Representative scf _start Representative scf_end

1,417K 64.1% IpCoco_scf00172 16,372,640 16,373,425

1,316K 45.2% lcl|IpCoco_scf00610 3,078 6,525

1,081K 46.5% IpCoco_scf00517 9,296,133 9,298,172

977K 46.0% IpCoco_scf00474 141,399 143,674

963K 64.8% IpCoco_scf00563_1077_652_655 1,427,889 1,431,117

924K 60.8% IpCoco_scf00369 2,537,431 2,538,007

899K 50.1% IpCoco_scf00203 3,637,116 3,638,889

881K 64.7% IpCoco_scf00789 5,607 11,243

870K 64.9% IpCoco_scf00540 509 4,548

842K 59.5% IpCoco_scf00570_502_500 2,136,706 2,137,523

793K 44.5% IpCoco_scf00419 7,439,807 7,440,803

690K 49.2% IpCoco_scf00021 1,307,023 1,308,497

682K 47.2% IpCoco_scf00077_78 260,739 262,006

630K 65.4% IpCoco_scf00799 9,869 11,749

589K 53.3% IpCoco_scf00354_353 643,250 644,319

546K 60.0% IpCoco_scf00563_1077_652_655 1,372,133 1,373,248

522K 43.9% IpCoco_scf00077_78 1,199,900 1,201,056

518K 66.6% IpCoco_scf00172 2,251,598 2,252,801

https://doi.org/10.1371/journal.pone.0197371.t001

Repeatome in channel catfish

PLOS ONE | https://doi.org/10.1371/journal.pone.0197371 May 15, 2018 7 / 16

https://doi.org/10.1371/journal.pone.0197371.g005
https://doi.org/10.1371/journal.pone.0197371.t001
https://doi.org/10.1371/journal.pone.0197371


brief classification of those repetitive elements (S2 Table). However, whether those sequences

are generated internally or are “molecular parasites” from external environments, as well as

the more detailed identifications and annotations of the functions of those novel repetitive ele-

ments still deserve further studies especially experiment demonstrations.

Discussion

Repetitive elements in channel catfish

Using repetitive element databases combined with the nucleotide (nt) database, we identified,

annotated, and characterized the repetitive elements in the channel catfish genome. Channel

catfish harbors a large variety of repetitive elements in its genome, accounting for about 44%

of its genome. The DNA transposons are the most abundant group of repetitive elements in

the channel catfish genome, accounting for 15.9% of the catfish genome. These numbers are in

line with our previous observations through genome sequence surveys [48, 52], but the data

were analyzed from the whole genome and therefore is more complete.

The DNA/TcMar-Tc1 transposon sequences make up the highest percentage among Class

II transposons in channel catfish genome, accounting for about ~20% of the total repetitive

elements and are interspersed on the genome. The DNA-TcMAr/Tc1 is a typical ‘cut-paste’

transposon ([77]), which is prevalent in nature and can be transferred not only vertically but

also horizontally cross species during evolution [78]. It is this character that allows DNA-Tc-

MAr/Tc1 transposons to escape from the vertical extinction and being so abundant in nature

[79–81]. Channel catfish is a freshwater benthopelagic species that inhabits in rapid fluctuating

environments such as muddy ponds and rivers exposing to various biologic agents such as bac-

teria and viruses. Large amount of DNA/TcMar-Tc1 transposon footprints in channel catfish

genome may indicate an external origin of parasitic transposable elements invasion to the

genome during evolution [82]. As “parasitic” mobile elements, DNA transposons are known

to be potent sources of mutation, and the long-time effective population shrinking in channel

catfish can contribute to the evolution of more complex genomes such as more mobile ele-

ments or larger genome sizes [42, 83–84]. It is believed that the large amount of mobile trans-

posons such as the DNA/TcMar-Tc1 can in turn contribute to the generation of novel genes

and consequently facilitate considerably to species adaptations to novel environments [85–86].

Previous studies indicated that the transposition by a member of the Tc1/mariner family of

transposable elements appears to have integrated in the duplicated Cμ region of the immuno-

globulin [87]. Channel catfish is a quite hardy fish species that can survive in a wide range of

environmental conditions [88]. It is also possible that the prevalent of DNA/TcMar-Tc1

sequences, as well as other transposons in channel catfish genomes, play important roles in

their adaptations to environments. Currently, there are no specific hotspots of DNA/TcMar-

Tc1 on each individual chromosome observed.

Considerable amount of tandem repeats, especially microsatellite sequences, were found in

the channel catfish genome. As short tandem DNA repeats of 2–8 nt long are ubiquitous in

nearly all eukaryotic genomes [89–91], the expansion of microsatellites is disputable but it is

generally considered to be expanded through DNA polymerase slippage [92–94]. High content

of microsatellites in catfish genomes compared with other freshwater teleost such as tilapia or

medaka [95, 96], indicates a high level of DNA polymerase slippage, may suggest a relationship

to the high magnesium concentration (meq/L) in the channel catfish tissue compared with

other teleost [97–98]. It was speculated that the magnesium concentration can contribute to

DNA polymerase slippage by stabilizing the hairpin structure [99]. However, DNA polymerase

slippage is a very complicated process that can be affected by various conditions including the

genome structures (such as GC content), DNA repair mechanisms, flanking DNA sequences

Repeatome in channel catfish
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(such as SINEs and LINEs), the centromere sequences and proteins involved in various DNA

replication processes [100–109]. Whatever the mechanism is, high levels of microsatellites may

help modulate the evolutionary mutation rate, thereby serving as a strategy to increase the spe-

cies’ versatility under stressful conditions [110–111]. Our analysis of the distribution of the

microsatellites and satellites indicates that those short tandem repeats were mostly presented

on the telomere and the centromere regions of the chromosome, consistent with the previous

analysis [112–116].

The catfish genome also contains a large fraction of repetitive proteins in the reaptome. The

main types of repetitive proteins are related to the adaptive immunology and metabolism as

previous analysis indicated [38]. This may indicate that the abundance of repetitive genes in

the genome is an adaptation that meets the large demand of immune defenses. Remarkably,

there are at least 3.8MB of protein coding repetitive domains that are identified to be related to

immunoglobulins in the channel catfish genome (Table 2). This may suggest that the expan-

sion of the immunoglobulin family in the channel catfish genome can be one of the mecha-

nisms of its defense against various pathogens.

The divergence of Xba elements sequence in channel catfish

The Xba elements are a group of A/T-rich repetitive sequences that were found in channel

catfish and blue catfish centromeres but not in closely related species such as white catfish

Table 2. The major repetitive protein domains characterized from the channel catfish repeatome.

Rank Total

Abundance

Gene Ontology

1 2,990K Adaptive immunity, Immunity

2 1,046K Adaptive immunity, Immunity

3 375K Cellular morphogenesis.

4 353K Nucleus, cell junction, nucleoplasm

5 255K Integral component of membrane

6 232K Unknown

7 214K Kinase, Transferase

8 204K DNA replication, mismatch repair

9 203K Kinase, Transferase

10 174K Transferase, Ubl conjugation, pathway, zinc binding

11 145K GTP-binding, Nucleotide-binding

12 132K Structural molecule activity

13 131K Osteogenesis, Transcription regulation

14 129K Cell adhesion

15 124K Adaptive immunity, Immunity

16 118K Adaptive immunity, Immunity

17 114K Guanine-nucleotide releasing factor

18 109K Integral component of membrane

19 109K Hydrolase, Ligase, Oxidoreductase, Amino-acid biosynthesis, Histidine biosynthesis,

Methionine biosynthesis, One-carbon metabolism, Purine biosynthesis, ATP-binding,

NADP, Nucleotide-binding

20 108K Hormone

21 108K Zinc binding, Cytosol, Plasma membrane

22 107K Nucleotide-binding, DNA integration

23 107K Endopeptidase inhibitor, liver development

24 106K ATP binding, protein serine/threonine kinase activity

https://doi.org/10.1371/journal.pone.0197371.t002
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(Ameiurus catus) and flathead catfish (Pylodictus olivaris) [43–44]. It is conserved among

strains with minor changes in sequence identity and length, making it not only potentially

important for genetic expression vectors but also of vital importance for the exploration of the

channel catfish genome evolutions [43–44]. As the centromeres contain large amounts of

DNA and are often packaged into heterochromatin, where the large-scale DNA sequences

recombination and rearrangements varies greatly among phylogenetic related species [117–

118]. The large amount of conservative Xba elements on centromere identified by fluorescen-

cein situ hybridization [44] suggests a unique evolutionary status of the Ictalurus catfish. In

addition, those centromeric repetitive sequences may be involved in centromere functions,

such as kinetochore assembly and chromosome segregation during mitosis or meiosis [119–

120], or even some epigenetic regulations [121].

Based on the number of substitutions per site and the divergence time, the rate of nucleo-

tide substitutions of the Xba elements is calculated as 8.9×10−8 to 1.3×10−7 substitutions per

site per year. Compared with the rate of nucleotide substitutions of full length cDNA calcu-

lated from the divergence level between the channel catfish and blue catfish [76], the rate of

nucleotide substitutions of Xba elements is higher than that of the sequences in the open read-

ing frames, but lower than those in untranslated regions. Slower rates of evolution suggest

functional constraints [72]. The relatively slow evolutionary rate of Xba elements in catfish

may indicate their potential functions, although unknown at present.

Conclusion

In this study, we identified 417.8 MB of repetitive sequences in the channel catfish genome,

among which 84% were annotated. Among the annotated repetitive element, the most preva-

lent was the DNA/TcMar-Tc1 transposons, making up ~20% of the repeatome, followed by

microsatellite (14%). A number of catfish-specific repetitive elements were identified including

the previously known Xba elements. This work represents the most comprehensive analysis of

the repeatome of the channel catfish genome with the best available chromosomal assembly so

far, and it should facilitate the annotation of various teleost genomes.
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